Bulk and single-nucleus RNA sequencing highlight immune pathways induced in individuals during an Ixodes scapularis tick bite
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
UL1 TR001863
NCATS NIH HHS - United States
R01 AI126033
NIAID NIH HHS - United States
P01 AI138949
NIAID NIH HHS - United States
PubMed
37846980
PubMed Central
PMC10652856
DOI
10.1128/iai.00282-23
Knihovny.cz E-zdroje
- Klíčová slova
- RNA-seq, acquired resistance, human, immune pathways, tick, tick-borne pathogens,
- MeSH
- klíště * genetika MeSH
- kousnutí klíštětem * MeSH
- lidé MeSH
- morčata MeSH
- RNA malá jaderná MeSH
- sekvence nukleotidů MeSH
- stravovací zvyklosti fyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- morčata MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- RNA malá jaderná MeSH
Ticks are hematophagous arthropods that use a complex mixture of salivary proteins to evade host defenses while taking a blood meal. Little is known about the immunological and physiological consequences of tick feeding on humans. Here, we performed the first bulk and single-nucleus RNA sequencing (snRNA-seq) of skin and blood of four persons presenting with naturally acquired, attached Ixodes scapularis ticks. Pathways and individual genes associated with innate and adaptive immunity were identified based on bulk RNA sequencing, including interleukin-17 signaling and platelet activation pathways at the site of tick attachment or in peripheral blood. snRNA-seq further revealed that the Hippo signaling, cell adhesion, and axon guidance pathways were involved in the response to an I. scapularis bite in humans. Features of the host response in these individuals also overlapped with that of laboratory guinea pigs exposed to I. scapularis and which acquired resistance to ticks. These findings offer novel insights for the development of new biomarkers for I. scapularis exposure and anti-tick vaccines for human use.
Czech University of Life Sciences Prague Praha Suchdol Czechia
Department of Dermatology Yale University School of Medicine New Haven Connecticut USA
Department of Immunobiology Yale University School of Medicine New Haven Connecticut USA
Zobrazit více v PubMed
Eisen RJ, Kugeler KJ, Eisen L, Beard CB, Paddock CD. 2017. Tick-borne zoonoses in the United States: persistent and emerging threats to human health. ILAR J 58:319–335. doi:10.1093/ilar/ilx005 PubMed DOI PMC
Kugeler KJ, Schwartz AM, Delorey MJ, Mead PS, Hinckley AF. 2021. Estimating the frequency of Lyme disease diagnoses, United States, 2010–2018. Emerging Infect Dis 27:616. doi:10.3201/eid2702.202731 PubMed DOI PMC
Thanassi WT, Schoen RT. 2000. The Lyme disease vaccine: conception, development, and implementation. Ann Intern Med 132:661–668. doi:10.7326/0003-4819-132-8-200004180-00009 PubMed DOI
Pugh SJ, Moïsi JC, Kundi M, Santonja I, Erber W, Angulo FJ, Jodar L. 2022. Effectiveness of two doses of tick-borne encephalitis (TBE) vaccine. J Travel Med 29:taab193. doi:10.1093/jtm/taab193 PubMed DOI
Sajid A, Matias J, Arora G, Kurokawa C, DePonte K, Tang X, Lynn G, Wu M-J, Pal U, Strank NO, Pardi N, Narasimhan S, Weissman D, Fikrig E. 2021. mRNA vaccination induces tick resistance and prevents transmission of the lyme disease agent. Sci Transl Med 13:eabj9827. doi:10.1126/scitranslmed.abj9827 PubMed DOI
Tang X, Arora G, Matias J, Hart T, Cui Y, Fikrig E. 2022. A tick C1q protein alters infectivity of the lyme disease agent by modulating interferon γ. Cell Rep 41:111673. doi:10.1016/j.celrep.2022.111673 PubMed DOI PMC
Strobl J, Mündler V, Müller S, Gindl A, Berent S, Schötta A-M, Kleissl L, Staud C, Redl A, Unterluggauer L, Aguilar González AE, Weninger ST, Atzmüller D, Klasinc R, Stanek G, Markowicz M, Stockinger H, Stary G. 2022. Tick feeding modulates the human skin immune landscape to facilitate tick-borne pathogen transmission. J Clin Invest 132:e161188. doi:10.1172/JCI161188 PubMed DOI PMC
Jiang R, Meng H, Raddassi K, Fleming I, Hoehn KB, Dardick KR, Belperron AA, Montgomery RR, Shalek AK, Hafler DA, Kleinstein SH, Bockenstedt LK. 2021. Single-cell immunophenotyping of the skin lesion erythema migrans identifies IgM memory B cells. JCI Insight 6:e148035. doi:10.1172/jci.insight.148035 PubMed DOI PMC
Glatz M, Means T, Haas J, Steere AC, Müllegger RR. 2017. Characterization of the early local immune response to Ixodes ricinus tick bites in human skin. Exp Dermatol 26:263–269. doi:10.1111/exd.13207 PubMed DOI PMC
Trager W. 1939. Acquired immunity to ticks. J Parasitol 25:57. doi:10.2307/3272160 DOI
Narasimhan S, Kurokawa C, DeBlasio M, Matias J, Sajid A, Pal U, Lynn G, Fikrig E. 2021. Acquired tick resistance: the trail is hot. Parasite Immunol. 43:e12808. doi:10.1111/pim.12808 PubMed DOI PMC
Nazario S, Das S, de Silva AM, Deponte K, Marcantonio N, Anderson JF, Fish D, Fikrig E, Kantor FS. 1998. Prevention of Borrelia burgdorferi transmission in guinea pigs by tick immunity. Am J Trop Med Hyg 58:780–785. doi:10.4269/ajtmh.1998.58.780 PubMed DOI
Kurokawa C, Narasimhan S, Vidyarthi A, Booth CJ, Mehta S, Meister L, Diktas H, Strank N, Lynn GE, DePonte K, Craft J, Fikrig E. 2020. Repeat tick exposure elicits distinct immune responses in guinea pigs and mice. Ticks Tick Borne Dis 11:101529. doi:10.1016/j.ttbdis.2020.101529 PubMed DOI PMC
Kaminski S, Hermann-Kleiter N, Meisel M, Thuille N, Cronin S, Hara H, Fresser F, Penninger JM, Baier G. 2011. Coronin 1A is an essential regulator of the TGFβ receptor/SMAD3 signaling pathway in Th17 CD4+ T cells. J Autoimmun 37:198–208. doi:10.1016/j.jaut.2011.05.018 PubMed DOI
Zamani F, Zare Shahneh F, Aghebati-Maleki L, Baradaran B. 2013. Induction of CD14 expression and differentiation to monocytes or mature macrophages in promyelocytic cell lines: new approach. Adv Pharm Bull 3:329–332. doi:10.5681/apb.2013.053 PubMed DOI PMC
Wernimont SA, Wiemer AJ, Bennin DA, Monkley SJ, Ludwig T, Critchley DR, Huttenlocher A. 2011. Contact-dependent T cell activation and T cell stopping require talin1. J Immunol 187:6256–6267. doi:10.4049/jimmunol.1102028 PubMed DOI PMC
Hong L, Li X, Zhou D, Geng J, Chen L. 2018. Role of hippo signaling in regulating immunity. Cell Mol Immunol 15:1003–1009. doi:10.1038/s41423-018-0007-1 PubMed DOI PMC
Wikel S. 2013. Ticks and tick-borne pathogens at the cutaneous interface: host defenses, tick countermeasures, and a suitable environment for pathogen establishment. Front Microbiol 4:337. doi:10.3389/fmicb.2013.00337 PubMed DOI PMC
Kazimírová M, Štibrániová I. 2013. Tick salivary compounds: their role in modulation of host defences and pathogen transmission. Front Cell Infect Microbiol 3:43. doi:10.3389/fcimb.2013.00043 PubMed DOI PMC
Lee WS, Lee W-H, Bae YC, Suk K. 2019. Axon guidance molecules guiding neuroinflammation. Exp Neurobiol 28:311–319. doi:10.5607/en.2019.28.3.311 PubMed DOI PMC
Xia C, Braunstein Z, Toomey AC, Zhong J, Rao X. 2017. S100 proteins as an important regulator of macrophage inflammation. Front Immunol 8:1908. doi:10.3389/fimmu.2017.01908 PubMed DOI PMC
Neelakanta G, Sultana H. 2021. Tick saliva and salivary glands: what do we know so far on their role in arthropod blood feeding and pathogen transmission. Front Cell Infect Microbiol 11:816547. doi:10.3389/fcimb.2021.816547 PubMed DOI PMC
Aounallah H, Bensaoud C, M’ghirbi Y, Faria F, Chmelar JI, Kotsyfakis M. 2020. Tick salivary compounds for targeted immunomodulatory therapy. Front Immunol 11:583845. doi:10.3389/fimmu.2020.583845 PubMed DOI PMC
Zhao B, Tumaneng K, Guan K-L. 2011. The hippo pathway in organ size control, tissue regeneration and stem cell self-renewal. Nat Cell Biol 13:877–883. doi:10.1038/ncb2303 PubMed DOI PMC
Yu F-X, Zhao B, Guan K-L. 2015. Hippo pathway in organ size control, tissue homeostasis, and cancer. Cell 163:811–828. doi:10.1016/j.cell.2015.10.044 PubMed DOI PMC
Zhang Q, Zhou R, Xu P. 2020. The hippo pathway in innate anti-microbial immunity and anti-tumor immunity. Front Immunol 11:1473. doi:10.3389/fimmu.2020.01473 PubMed DOI PMC
Yamauchi T, Moroishi T. 2019. Hippo pathway in mammalian adaptive immune system. Cells 8:398. doi:10.3390/cells8050398 PubMed DOI PMC
Geng J, Yu S, Zhao H, Sun X, Li X, Wang P, Xiong X, Hong L, Xie C, Gao J, Shi Y, Peng J, Johnson RL, Xiao N, Lu L, Han J, Zhou D, Chen L. 2017. The transcriptional coactivator TAZ regulates reciprocal differentiation of TH17 cells and treg cells. Nat Immunol 18:800–812. doi:10.1038/ni.3748 PubMed DOI
Lee M-J, Byun MR, Furutani-Seiki M, Hong J-H, Jung H-S. 2014. YAP and TAZ regulate skin wound healing. J Invest Dermatol 134:518–525. doi:10.1038/jid.2013.339 PubMed DOI
Apari P, Földvári G. 2021. Harm or protection? the adaptive function of tick toxins. Evol Appl 14:271–277. doi:10.1111/eva.13123 PubMed DOI PMC
Mans BJ, Gothe R, Neitz AWH. 2004. Biochemical perspectives on paralysis and other forms of toxicoses caused by ticks. Parasitology 129 Suppl:S95–S111. doi:10.1017/s0031182003004670 PubMed DOI
Kim TK, Tirloni L, Pinto AFM, Moresco J, Yates JR, da Silva Vaz I, Mulenga A, Dinglasan RR. 2016. Ixodes scapularis tick saliva proteins sequentially secreted every 24 h during blood feeding. PLoS Negl Trop Dis 10:e0004323. doi:10.1371/journal.pntd.0004323 PubMed DOI PMC
Dai S-X, Zhang A-D, Huang J-F. 2012. Evolution, expansion and expression of the kunitz/BPTI gene family associated with long-term blood feeding in Ixodes scapularis. BMC Evol Biol 12:1–16. doi:10.1186/1471-2148-12-4 PubMed DOI PMC
Kurokawa C, Lynn GE, Pedra JHF, Pal U, Narasimhan S, Fikrig E. 2020. Interactions between Borrelia burgdorferi and ticks. Nat Rev Microbiol 18:587–600. doi:10.1038/s41579-020-0400-5 PubMed DOI PMC
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR. 2013. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29:15–21. doi:10.1093/bioinformatics/bts635 PubMed DOI PMC
Xing Y, Yu T, Wu YN, Roy M, Kim J, Lee C. 2006. An expectation-maximization algorithm for probabilistic reconstructions of full-length Isoforms from splice graphs. Nucleic Acids Res. 34:3150–3160. doi:10.1093/nar/gkl396 PubMed DOI PMC
Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. 2018. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol 36:411–420. doi:10.1038/nbt.4096 PubMed DOI PMC
Hao Y, Stuart T, Kowalski MH, Choudhary S, Hoffman P, Hartman A, Srivastava A, Molla G, Madad S, Fernandez-Granda C, Satija R. 2023. Dictionary learning for integrative, multimodal and Scalable single-cell analysis. Nat Biotechnol. doi:10.1038/s41587-023-01767-y PubMed DOI PMC
Hu C, Li T, Xu Y, Zhang X, Li F, Bai J, Chen J, Jiang W, Yang K, Ou Q, Li X, Wang P, Zhang Y. 2023. Cellmarker 2.0: an updated database of manually curated cell markers in human/mouse and web tools based on scRNA-seq data. Nucleic Acids Res. 51:D870–D876. doi:10.1093/nar/gkac947 PubMed DOI PMC
Raudvere U, Kolberg L, Kuzmin I, Arak T, Adler P, Peterson H, Vilo J. 2019. G:profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res 47:W191–W198. doi:10.1093/nar/gkz369 PubMed DOI PMC