Neuroimaging-based classification of PTSD using data-driven computational approaches: A multisite big data study from the ENIGMA-PGC PTSD consortium
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
K01 MH122774
NIMH NIH HHS - United States
IK2 RX002922
RRD VA - United States
UL1 TR001863
NCATS NIH HHS - United States
T32 GM007507
NIGMS NIH HHS - United States
R01 MH119227
NIMH NIH HHS - United States
F31 MH122047
NIMH NIH HHS - United States
T32 MH018931
NIMH NIH HHS - United States
R01 MH043454
NIMH NIH HHS - United States
P50 HD103556
NICHD NIH HHS - United States
K01 MH118467
NIMH NIH HHS - United States
R21 MH097784
NIMH NIH HHS - United States
R01 MH129832
NIMH NIH HHS - United States
R01 MH119132
NIMH NIH HHS - United States
R61 MH127005
NIMH NIH HHS - United States
R01 MH111671
NIMH NIH HHS - United States
U54 EB020403
NIBIB NIH HHS - United States
R01 MH117601
NIMH NIH HHS - United States
R01 AT011267
NCCIH NIH HHS - United States
K23 MH090366
NIMH NIH HHS - United States
R61 NS120249
NINDS NIH HHS - United States
IK2 CX001600
CSRD VA - United States
PubMed
37858907
PubMed Central
PMC10842116
DOI
10.1016/j.neuroimage.2023.120412
PII: S1053-8119(23)00563-3
Knihovny.cz E-zdroje
- Klíčová slova
- Classification, Deep learning, Machine learning, Multimodal MRI, Posttraumatic stress disorder,
- MeSH
- big data MeSH
- lidé MeSH
- magnetická rezonanční tomografie metody MeSH
- mozek diagnostické zobrazování MeSH
- neurozobrazování MeSH
- posttraumatická stresová porucha * diagnostické zobrazování MeSH
- reprodukovatelnost výsledků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Recent advances in data-driven computational approaches have been helpful in devising tools to objectively diagnose psychiatric disorders. However, current machine learning studies limited to small homogeneous samples, different methodologies, and different imaging collection protocols, limit the ability to directly compare and generalize their results. Here we aimed to classify individuals with PTSD versus controls and assess the generalizability using a large heterogeneous brain datasets from the ENIGMA-PGC PTSD Working group. METHODS: We analyzed brain MRI data from 3,477 structural-MRI; 2,495 resting state-fMRI; and 1,952 diffusion-MRI. First, we identified the brain features that best distinguish individuals with PTSD from controls using traditional machine learning methods. Second, we assessed the utility of the denoising variational autoencoder (DVAE) and evaluated its classification performance. Third, we assessed the generalizability and reproducibility of both models using leave-one-site-out cross-validation procedure for each modality. RESULTS: We found lower performance in classifying PTSD vs. controls with data from over 20 sites (60 % test AUC for s-MRI, 59 % for rs-fMRI and 56 % for d-MRI), as compared to other studies run on single-site data. The performance increased when classifying PTSD from HC without trauma history in each modality (75 % AUC). The classification performance remained intact when applying the DVAE framework, which reduced the number of features. Finally, we found that the DVAE framework achieved better generalization to unseen datasets compared with the traditional machine learning frameworks, albeit performance was slightly above chance. CONCLUSION: These results have the potential to provide a baseline classification performance for PTSD when using large scale neuroimaging datasets. Our findings show that the control group used can heavily affect classification performance. The DVAE framework provided better generalizability for the multi-site data. This may be more significant in clinical practice since the neuroimaging-based diagnostic DVAE classification models are much less site-specific, rendering them more generalizable.
Baylor College of Medicine Houston TX USA; Yale University School of Medicine New Haven CT USA
Brain Health Research Centre Department of Anatomy University of Otago Dunedin New Zealand
Brain Research and Innovation Centre Ministry of Defence Utrecht The Netherlands
Center of Excellence for Stress and Mental Health VA San Diego Healthcare System San Diego CA USA
Civil Aerospace Medical Institute US Federal Aviation Administration Oklahoma City OK USA
Cognitive and Clinical Neuroimaging Core McLean Hospital Belmont MA USA
Department of Neuroscience Western University London ON Canada
Department of Pediatrics University of Minnesota Minneapolis MN USA
Department of Psychiatry and Behavioral Health Ohio State University Columbus OH USA
Department of Psychiatry Columbia University Medical Center New York NY USA
Department of Psychiatry University of Texas at Austin Austin TX USA
Department of Psychology and Neuroscience Baylor University Waco TX USA
Department of Psychology Vanderbilt University Nashville TN USA
Department of Radiology The Affiliated Yixing Hospital of Jiangsu University Yixing Jiangsu China
Department of Radiology Washington University School of Medicine St Louis MO USA
Division of Neuroradiology Brigham and Women's Hospital Boston MA USA
Division of Women's Mental Health McLean Hospital Belmont MA USA
Emory University Department of Psychiatry and Behavioral Sciences Atlanta GA USA
Ghent University Ghent Belgium
Harvard University Boston MA USA
Heidelberg University Heidelberg Germany
Institute of Psychology Chinese Academy of Sciences Beijing China
Leiden University Medical Center Leiden The Netherlands
Marquette University Milwaukee WI USA
Masaryk University Brno Czechia
McLean Hospital Belmont MA USA; Harvard Medical School Boston MA USA
Medical College of Wisconsin Milwaukee WI USA
Minneapolis VA Health Care System Minneapolis MN USA
Minneapolis VA Health Care System Minneapolis MN USA; University of Minnesota Minneapolis MN USA
Munroe Meyer Institute University of Nebraska Medical Center Omaha NE USA
New York State Psychiatric Institute New York NY USA
Psychiatry Neuroimaging Laboratory Brigham and Women's Hospital Boston MA USA
Sanford School of Medicine University of South Dakota Vermillion SD USA
School of Medicine and Public Health University of Wisconsin Madison Madison WI USA
School of Psychology University of New South Wales Sydney NSW Australia
Stanford University Stanford CA USA
Tel Aviv University Tel Aviv Israel
UMR 1253 CIC 1415 University of Tours CHRU de Tours INSERM France
University of California Irvine Irvine CA USA
University of California San Diego La Jolla CA USA
University of Cape Town Cape Town South Africa
University of Groningen Groningen The Netherlands
University of Haifa Haifa Israel
University of Illinois at Chicago Chicago IL USA
University of Iowa Iowa City IA USA
University of Michigan Ann Arbor MI USA
University of Münster Münster Germany
University of North Carolina at Chapel Hill Chapel Hill NC USA
University of Rochester Rochester NY USA
University of South Dakota Vermillion SD USA
University of Toledo Toledo OH USA
University of Utah School of Medicine Salt Lake City UT USA
University of Washington Seattle WA USA
University of Wisconsin Madison Madison WI USA
University of Wisconsin Milwaukee Milwaukee WI USA
VISN 17 Center of Excellence for Research on Returning War Veterans Waco TX USA
Wayne State University School of Medicine Detroit MI USA
Westmead Institute for Medical Research Westmead NSW Australia
Zobrazit více v PubMed
Altmann A, Tolosi L, Sander O, et al., 2010. Permutation importance: a corrected feature importance measure. Bioinformatics 26, 1340–1347. PubMed
Arbabshirani MR, Plis S, Sui J, et al., 2017. Single subject prediction of brain disorders in neuroimaging: promises and pitfalls. Neuroimage 145, 137–165. PubMed PMC
Bai X, Wang X, Liu X, et al., 2021. Explainable deep learning for efficient and robust pattern recognition: a survey of recent developments. Pattern Recognit. 120, 108102.
Behzadi Y, Restom K, Liau J, et al., 2007. A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. Neuroimage 37, 90–101. PubMed PMC
Belleau EL, Ehret LE, Hanson JL, et al., 2020. Amygdala functional connectivity in the acute aftermath of trauma prospectively predicts severity of posttraumatic stress symptoms. Neurobiol. Stress 12, 100217. PubMed PMC
Ben-Zion Z, Zeevi Y, Keynan NJ, et al., 2020. Multi-domain potential biomarkers for post-traumatic stress disorder (PTSD) severity in recent trauma survivors. Transl. Psychiatry 10, 208. PubMed PMC
Breiman L, 2001. Random forests. Mach. Learn. 45, 5–32.
Bruin WB, Taylor L, Thomas RM, et al., 2020. Structural neuroimaging biomarkers for obsessive-compulsive disorder in the ENIGMA-OCD consortium: medication matters. Transl. Psychiatry 10, 342. PubMed PMC
Bzdok D, Meyer-Lindenberg A, 2018. Machine learning for precision psychiatry: opportunities and challenges. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 3, 223–230. PubMed
Cai XL, Xie DJ, Madsen KH, et al., 2020. Generalizability of machine learning for classification of schizophrenia based on resting-state functional MRI data. Hum. Brain Mapp. 41, 172–184. PubMed PMC
Daniels JK, McFarlane AC, Bluhm RL, et al., 2010. Switching between executive and default mode networks in posttraumatic stress disorder: alterations in functional connectivity. J. Psychiatry Neurosci. 35, 258–266. PubMed PMC
Dennis EL, Disner SG, Fani N, et al., 2021. Altered white matter microstructural organization in posttraumatic stress disorder across 3047 adults: results from the PGC-ENIGMA PTSD consortium. Mol. Psychiatry 26, 4315–4330. PubMed PMC
Dinsdale NK, Jenkinson M, Namburete AIL, 2021. Deep learning-based unlearning of dataset bias for MRI harmonisation and confound removal. Neuroimage 228, 117689. PubMed PMC
Du B, Xiong W, Wu J, et al., 2017. Stacked convolutional denoising auto-encoders for feature representation. IEEE Trans. Cybern. 47, 1017–1027. PubMed
Eslami T, Mirjalili V, Fong A, et al., 2019. ASD-DiagNet: a hybrid learning approach for detection of autism spectrum disorder using fMRI data. Front Neuroinform 13, 70. PubMed PMC
Gao S, Calhoun VD, Sui J, 2018. Machine learning in major depression: from classification to treatment outcome prediction. CNS Neurosci. Ther. 24, 1037–1052. PubMed PMC
Gong Q, Li L, Tognin S, et al., 2014. Using structural neuroanatomy to identify trauma survivors with and without post-traumatic stress disorder at the individual level. Psychol. Med. 44, 195–203. PubMed PMC
Han K, Wen H, Shi J, et al., 2019. Variational autoencoder: an unsupervised model for encoding and decoding fMRI activity in visual cortex. Neuroimage 198, 125–136. PubMed PMC
Im JJ, Kim B, Hwang J, et al., 2017. Diagnostic potential of multimodal neuroimaging in posttraumatic stress disorder. PLoS One 12, e0177847. PubMed PMC
Jahanshad N, Kochunov PV, Sprooten E, et al., 2013. Multi-site genetic analysis of diffusion images and voxelwise heritability analysis: a pilot project of the ENIGMA-DTI working group. Neuroimage 81, 455–469. PubMed PMC
Ju R, Hu C, Zhou P, et al., 2019. Early diagnosis of Alzheimer’s disease based on resting-state brain networks and deep learning. IEEE/ACM Trans. Comput. Biol. Bioinform. 16, 244–257. PubMed
Ju Y, Ou W, Su J, et al., 2020. White matter microstructural alterations in posttraumatic stress disorder: an ROI and whole-brain based meta-analysis. J. Affect. Disord. 266, 655–670. PubMed
Ke J, Zhang L, Qi R, et al., 2018. Typhoon-related post-traumatic stress disorder and trauma might lead to functional integration abnormalities in intra- and inter-resting state networks: a resting-state fmri independent component analysis. Cell. Physiol. Biochem. 48, 99–110. PubMed
Kessler RC, Aguilar-Gaxiola S, Alonso J, et al., 2017. Trauma and PTSD in the WHO World Mental Health Surveys. Eur. J. Psychotraumatol. 8, 1353383. PubMed PMC
Kim J, Calhoun VD, Shim E, et al., 2016. Deep neural network with weight sparsity control and pre-training extracts hierarchical features and enhances classification performance: evidence from whole-brain resting-state functional connectivity patterns of schizophrenia. Neuroimage 124, 127–146. PubMed PMC
Kingma DPW, 2013. M.: auto-Encoding Variational Bayes. arXiv 1312, 6114.
Kingma DPB, J.: adam: a Method for Stochastic Optimization . arXiv 2014; 1412.6980.
Klein A, Tourville J, 2012. 101 labeled brain images and a consistent human cortical labeling protocol. Front. Neurosci. 6, 171. PubMed PMC
Koch SB, van Zuiden M, Nawijn L, et al., 2016. Aberrant resting-state brain activity in posttraumatic stress disorder: a meta-analysis and systematic review. Depress. Anxiety 33, 592–605. PubMed
Koenen KC, Ratanatharathorn A, Ng L, et al., 2017. Posttraumatic stress disorder in the World Mental Health Surveys. Psychol. Med. 47, 2260–2274. PubMed PMC
Lama RK, Gwak J, Park JS, et al., 2017. Diagnosis of Alzheimer’s disease based on structural mri images using a regularized extreme learning machine and PCA features. J. Healthc. Eng. 2017, 5485080. PubMed PMC
Lanka P, Rangaprakash D, Dretsch MN, et al., 2020. Supervised machine learning for diagnostic classification from large-scale neuroimaging datasets. Brain Imaging Behav. 14, 2378–2416. PubMed PMC
Li X, Zhu D, Jiang X, et al., 2014. Dynamic functional connectomics signatures for characterization and differentiation of PTSD patients. Hum. Brain Mapp. 35, 1761–1778. PubMed PMC
Li Y, Zhu H, Ren Z, et al., 2020a. Exploring memory function in earthquake trauma survivors with resting-state fMRI and machine learning. BMC Psychiatry 20, 43. PubMed PMC
Li G, Han D, Wang C, et al., 2020b. Application of deep canonically correlated sparse autoencoder for the classification of schizophrenia. Comput. Methods Programs Biomed. 183, 105073. PubMed
Liu F, Xie B, Wang Y, et al., 2015. Characterization of post-traumatic stress disorder using resting-state fMRI with a multi-level parametric classification approach. Brain Topogr. 28, 221–237. PubMed
Liu S, Zhao L, Wang X, et al., 2021. Deep spatio-temporal representation and ensemble classification for attention deficit/hyperactivity disorder. IEEE Trans. Neural Syst. Rehabil. Eng. 29, 1–10. PubMed
Madley-Dowd P, Hughes R, Tilling K, et al., 2019. The proportion of missing data should not be used to guide decisions on multiple imputation. J. Clin. Epidemiol. 110, 63–73. PubMed PMC
McCunn P, Richardson JD, Jetly R, et al., 2021. Diffusion tensor imaging reveals white matter differences in military personnel exposed to trauma with and without post-traumatic stress disorder. Psychiatry Res. 298, 113797. PubMed
Morey RA, Clarke EK, Haswell CC, et al., 2020. Amygdala nuclei volume and shape in military veterans with posttraumatic stress disorder. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 5, 281–290. PubMed PMC
Moyer D, Ver Steeg G, Tax CMW, et al., 2020. Scanner invariant representations for diffusion MRI harmonization. Magn. Reson. Med. 84, 2174–2189. PubMed PMC
Mwangi B, Tian TS, Soares JC, 2014. A review of feature reduction techniques in neuroimaging. Neuroinformatics 12, 229–244. PubMed PMC
Nunes A, Schnack HG, Ching CRK, et al., 2020. Using structural MRI to identify bipolar disorders - 13 site machine learning study in 3020 individuals from the ENIGMA Bipolar Disorders Working Group. Mol. Psychiatry 25, 2130–2143. PubMed PMC
O’Doherty DCM, Tickell A, Ryder W, et al., 2017. Frontal and subcortical grey matter reductions in PTSD. Psychiatry Res. Neuroimaging 266, 1–9. PubMed
O’Doherty DCM, Ryder W, Paquola C, et al., 2018. White matter integrity alterations in post-traumatic stress disorder. Hum. Brain Mapp. 39, 1327–1338. PubMed PMC
Pedregosa F, Varoquaux GG, A., Michel V, Thirion B, Grisel O, 2011. Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830.
Pereira F, Mitchell T, Botvinick M, 2009. Machine learning classifiers and fMRI: a tutorial overview. Neuroimage 45, S199–S209. PubMed PMC
Pinaya WHL, Mechelli A, Sato JR, 2019. Using deep autoencoders to identify abnormal brain structural patterns in neuropsychiatric disorders: a large-scale multi-sample study. Hum. Brain Mapp. 40, 944–954. PubMed PMC
Pomponio R, Erus G, Habes M, et al., 2020. Harmonization of large MRI datasets for the analysis of brain imaging patterns throughout the lifespan. Neuroimage 208, 116450. PubMed PMC
Power JD, Cohen AL, Nelson SM, et al., 2011. Functional network organization of the human brain. Neuron 72, 665–678. PubMed PMC
Radua J, Vieta E, Shinohara R, et al., 2020. Increased power by harmonizing structural MRI site differences with the ComBat batch adjustment method in ENIGMA. Neuroimage 218, 116956. PubMed PMC
Renteria ME, Schmaal L, Hibar DP, et al., 2017. Subcortical brain structure and suicidal behaviour in major depressive disorder: a meta-analysis from the ENIGMA-MDD working group. Transl. Psychiatry 7, e1116. PubMed PMC
Rozycki M, Satterthwaite TD, Koutsouleris N, et al., 2018. Multisite machine learning analysis provides a robust structural imaging signature of schizophrenia detectable across diverse patient populations and within individuals. Schizophr. Bull. 44, 1035–1044. PubMed PMC
Sheela KGDSN, 2013. Review on methods to fix number of hidden neurons in neural networks. Mathematical Problems in Engineering.
Sheynin J, Duval ER, Lokshina Y, et al., 2020. Altered resting-state functional connectivity in adolescents is associated with PTSD symptoms and trauma exposure. Neuroimage Clin. 26, 102215. PubMed PMC
Sheynin S, Wolf L, Ben-Zion Z, et al., 2021. Deep learning model of fMRI connectivity predicts PTSD symptom trajectories in recent trauma survivors. Neuroimage 238, 118242. PubMed PMC
Siehl S, Wicking M, Pohlack S, et al., 2020. Structural white and gray matter differences in a large sample of patients with Posttraumatic Stress Disorder and a healthy and trauma-exposed control group: diffusion tensor imaging and region-based morphometry. Neuroimage Clin 28, 102424. PubMed PMC
Singh A, Sengupta S, Lakshminarayanan V, 2020. Explainable deep learning models in medical image analysis. J. Imaging 6, 52. PubMed PMC
Skatun KC, Kaufmann T, Doan NT, et al., 2017. Consistent functional connectivity alterations in schizophrenia spectrum disorder: a multisite study. Schizophr. Bull. 43, 914–924. PubMed PMC
Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R, 2014. Dropout: a simple way to prevent neural networks from overfitting. J. Machine Learn. Res. 15, 1929–1958.
Steardo L Jr., Carbone EA, de Filippis R, et al., 2020. Application of support vector machine on fmri data as biomarkers in schizophrenia diagnosis: a systematic review. Front. Psychiatry 11, 588. PubMed PMC
Suk HI, Lee SW, Shen D, et al., 2015. Latent feature representation with stacked auto-encoder for AD/MCI diagnosis. Brain Struct. Funct. 220, 841–859. PubMed PMC
Sumpter RE, McMillan TM, 2005. Misdiagnosis of post-traumatic stress disorder following severe traumatic brain injury. Br. J. Psychiatry 186, 423–426. PubMed
van Loo HM, de Jonge P, Romeijn JW, et al., 2012. Data-driven subtypes of major depressive disorder: a systematic review. BMC Med. 10, 156. PubMed PMC
Varoquaux G, 2018. Cross-validation failure: small sample sizes lead to large error bars. Neuroimage 180, 68–77. PubMed
Wang X, Xie H, Chen T, et al., 2021. Cortical volume abnormalities in posttraumatic stress disorder: an ENIGMA-psychiatric genomics consortium PTSD workgroup mega-analysis. Mol. Psychiatry 26, 4331–4343. PubMed PMC
Weng Y, Qi R, Zhang L, et al., 2019. Disturbed effective connectivity patterns in an intrinsic triple network model are associated with posttraumatic stress disorder. Neurol Sci 40, 339–349. PubMed
Woo CW, Chang LJ, Lindquist MA, et al., 2017. Building better biomarkers: brain models in translational neuroimaging. Nat. Neurosci. 20, 365–377. PubMed PMC
Ying X, 2019. An Overview of Overfitting and Its Solutions. IOP Publishing.
Zhao Y, Dong Q, Chen H, et al., 2017. Constructing fine-granularity functional brain network atlases via deep convolutional autoencoder. Med. Image Anal. 42, 200–211. PubMed PMC
Zilcha-Mano S, Zhu X, Suarez-Jimenez B, et al., 2020. Diagnostic and predictive neuroimaging biomarkers for posttraumatic stress disorder. Biol. Psychiatry Cogn. Neurosci. Neuroimag. 5, 688–696. PubMed PMC