Drug Discovery in Low Data Regimes: Leveraging a Computational Pipeline for the Discovery of Novel SARS-CoV-2 Nsp14-MTase Inhibitors

. 2024 Jan 13 ; () : . [epub] 20240113

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic

Typ dokumentu preprinty, časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37873443

Grantová podpora
P30 CA008748 NCI NIH HHS - United States
R01 GM123296 NIGMS NIH HHS - United States
S10 OD020095 NIH HHS - United States

The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has led to significant global morbidity and mortality. A crucial viral protein, the non-structural protein 14 (nsp14), catalyzes the methylation of viral RNA and plays a critical role in viral genome replication and transcription. Due to the low mutation rate in the nsp region among various SARS-CoV-2 variants, nsp14 has emerged as a promising therapeutic target. However, discovering potential inhibitors remains a challenge. In this work, we introduce a computational pipeline for the rapid and efficient identification of potential nsp14 inhibitors by leveraging virtual screening and the NCI open compound collection, which contains 250,000 freely available molecules for researchers worldwide. The introduced pipeline provides a cost-effective and efficient approach for early-stage drug discovery by allowing researchers to evaluate promising molecules without incurring synthesis expenses. Our pipeline successfully identified seven promising candidates after experimentally validating only 40 compounds. Notably, we discovered NSC620333, a compound that exhibits a strong binding affinity to nsp14 with a dissociation constant of 427 ± 84 nM. In addition, we gained new insights into the structure and function of this protein through molecular dynamics simulations. We identified new conformational states of the protein and determined that residues Phe367, Tyr368, and Gln354 within the binding pocket serve as stabilizing residues for novel ligand interactions. We also found that metal coordination complexes are crucial for the overall function of the binding pocket. Lastly, we present the solved crystal structure of the nsp14-MTase complexed with SS148 (PDB:8BWU), a potent inhibitor of methyltransferase activity at the nanomolar level (IC50 value of 70 ± 6 nM). Our computational pipeline accurately predicted the binding pose of SS148, demonstrating its effectiveness and potential in accelerating drug discovery efforts against SARS-CoV-2 and other emerging viruses.

Acceleration Consortium University of Toronto Toronto ON Canada

Canadian Institute for Advanced Research Toronto ON Canada

Chemical Physics Theory Group Department of Chemistry University of Toronto 80 St George St Toronto Ontario M5S 3H6 Canada

Computational and Systems Biology Program Memorial Sloan Kettering Cancer Center

Current affiliation Stratingh Institute for Chemistry University of Groningen The Netherlands

Department of Biochemistry and Molecular Biophysics Kansas State University Manhattan KS 66506 USA

Department of Cancer Biology Dana Farber Cancer Institute Boston USA

Department of Chemical Engineering and Applied Chemistry University of Toronto Canada

Department of Chemistry Temple University Philadelphia PA 19122 USA

Department of Computer Science Stanford University

Department of Computer Science University of Toronto 40 St George St Toronto Ontario M5S 2E4 Canada

Department of Genetics Stanford University

Department of Materials Science and Engineering University of Toronto Canada

Department of Pharmacological Sciences and Oncological Sciences Mount Sinai Center for Therapeutics Discovery Tisch Cancer Institute Ichan School of Medicine at Mount Sinai New York NY USA

Department of Pharmacology and Toxicology University of Toronto Toronto Ontario M5S 1A8 Canada

Department of Physics Faculty of Arts and Sciences Harvard University Cambridge USA

Drug Discovery Program Ontario Institute for Cancer Research Toronto Ontario Canada

Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Prague Czech Republic

QBI COVID 19 Research Group San Francisco CA USA

St Jude Children's Research Hospital Department of Structural Biology Memphis TN USA

Structural Bioinformatics and Computational Biochemistry Department of Biochemistry University of Oxford South Parks Road Oxford OX1 3QU UK

Structural Genomics Consortium University of Toronto Toronto Ontario M5G 1L7 Canada

Vector Institute for Artificial Intelligence Toronto Canada

Zobrazit více v PubMed

Paules Catharine I, Marston Hilary D, and Fauci Anthony S. Coronavirus infections—more than just the common cold. Jama, 323(8):707–708, 2020. PubMed

World Health Organization et al. The corona virus disease 2019 (covid-19). Brazilian Journal of Implantology and Health Sciences, 4(6):45–46, 2022.

Sharma Atul, Tiwari Swapnil, Deb Manas Kanti, and Marty Jean Louis. Severe acute respiratory syndrome coronavirus-2 (sars-cov-2): a global pandemic and treatment strategies. International journal of antimicrobial agents, 56(2):106054, 2020. PubMed PMC

Naqvi Ahmad Abu Turab, Fatima Kisa, Mohammad Taj, Fatima Urooj, Singh Indrakant K, Singh Archana, Atif Shaikh Muhammad, Hariprasad Gururao, Hasan Gulam Mustafa, and Hassan Md Imtaiyaz. Insights into sars-cov-2 genome, structure, evolution, pathogenesis and therapies: Structural genomics approach. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1866(10):165878, 2020. PubMed PMC

Ng Teresa I, Correia Ivan, Seagal Jane, De-Goey David A, Schrimpf Michael R, Hardee David J, Noey Elizabeth L, and Kati Warren M. Antiviral drug discovery for the treatment of covid-19 infections. Viruses, 14(5):961, 2022. PubMed PMC

Bouvet Mickaël, Debarnot Claire, Imbert Isabelle, Selisko Barbara, Snijder Eric J, Canard Bruno, and Decroly Etienne. In vitro reconstitution of sars-coronavirus mrna cap methylation. PLoS pathogens, 6(4):e1000863, 2010. PubMed PMC

Chen Yu, Cai Hui, Pan Ji’an, Xiang Nian, Tien Po, Ahola Tero, and Guo Deyin. Functional screen reveals sars coronavirus nonstructural protein nsp14 as a novel cap n7 methyltransferase. Proceedings of the National Academy of Sciences, 106(9):3484–3489, 2009. PubMed PMC

Corman Victor M, Muth Doreen, Niemeyer Daniela, and Drosten Christian. Hosts and sources of endemic human coronaviruses. Advances in virus research, 100:163–188, 2018. PubMed PMC

Delft Annette von, Hall Matthew D, Kwong Ann D, Purcell Lisa A, Saikatendu Kumar Singh, Schmitz Uli, Tallarico John A, and Lee Alpha A. Accelerating antiviral drug discovery: lessons from covid-19. Nature Reviews Drug Discovery, pages 1–19, 2023. PubMed PMC

Ihlenfeldt Wolf-Dietrich, Voigt Johannes H, Bienfait Bruno, Oellien Frank, and Nicklaus Marc C. Enhanced cactvs browser of the open nci database. Journal of chemical information and computer sciences, 42(1):46–57, 2002. PubMed

Voigt Johannes H, Bienfait Bruno, Wang Shaomeng, and Nicklaus Marc C. Comparison of the nci open database with seven large chemical structural databases. Journal of chemical information and computer sciences, 41(3):702–712, 2001. PubMed

Pagadala Nataraj S, Syed Khajamohiddin, and Tuszynski Jack. Software for molecular docking: a review. Biophysical reviews, 9:91–102, 2017. PubMed PMC

Nigam AkshatKumar, Pollice Robert, Tom Gary, Jorner Kjell, Thiede Luca A, Kundaje Anshul, and Aspuru-Guzik Alan. Tartarus: A benchmarking platform for realistic and practical inverse molecular design. arXiv preprint arXiv:2209.12487, 2022.

Miller Bill R III, Dwight McGee T Jr, Swails Jason M, Homeyer Nadine, Gohlke Holger, and Roitberg Adrian E. Mmpbsa. py: an efficient program for end-state free energy calculations. Journal of chemical theory and computation, 8(9):3314–3321, 2012. PubMed

Ylilauri Mikko and Pentik¨:”ainen Olli T. Mmgbsa as a tool to understand the binding affinities of filamin–peptide interactions. Journal of chemical information and modeling, 53(10):2626–2633, 2013. PubMed

Hollingsworth Scott A and Dror Ron O. Molecular dynamics simulation for all. Neuron, 99(6):1129–1143, 2018. PubMed PMC

Gelpi J. Hospital a, goñi r, orozco m. Molecular dynamics simulations: Advances and applications. Advances and Applications in Bioinformatics and Chemistry, 8:37–47, 2015. PubMed PMC

Levin-Konigsberg Roni, Mitra Koushambi, Nigam AkshatKumar, Spees Kaitlyn, Hivare Pravin, Liu Katherine, Kundaje Anshul, Krishnan Yamuna, and Bassik Michael. Slc12a9 is a lysosome-detoxifying ammonium-chloride cotransporter. bioRxiv, pages 2023–05, 2023.

Ogando Natacha S, Zevenhoven-Dobbe Jessika C, Meer Yvonne van der, Bredenbeek Peter J, Posthuma Clara C, and Snijder Eric J. The enzymatic activity of the nsp14 exoribonuclease is critical for replication of mers-cov and sars-cov-2. Journal of virology, 94(23):10–1128, 2020. PubMed PMC

Gorgulla Christoph, Nigam AkshatKumar, Koop Matt, Cinaroglu Suleyman S, Secker Christopher, Haddadnia Mohammad, Kumar Abhishek, Malets Yehor, Hasson Alexander, Levin-Konigsberg Roni, et al. Virtualflow 2.0-the next generation drug discovery platform enabling adaptive screens of 69 billion molecules. bioRxiv, pages 2023–04, 2023.

Devkota Kanchan, Schapira Matthieu, Perveen Sumera, Yazdi Aliakbar Khalili, Li Fengling, Chau Irene, Ghiabi Pegah, Hajian Taraneh, Loppnau Peter, Bolotokova Albina, et al. Probing the sam binding site of sarscov-2 nsp14 in vitro using sam competitive inhibitors guides developing selective bisubstrate inhibitors. SLAS DISCOVERY: Advancing the Science of Drug Discovery, 26(9):1200–1211, 2021. PubMed PMC

Klima Martin, Yazdi Aliakbar Khalili, Li Fengling, Chau Irene, Hajian Taraneh, Bolotokova Albina, Ümit Kaniskan H, Han Yulin, Wang Ke, Li Deyao, et al. Crystal structure of sars-cov-2 nsp10–nsp16 in complex with small molecule inhibitors, ss148 and wz16. Protein Science, 31(9):e4395, 2022. PubMed PMC

Schenone Monica, Dančík Vlado, Wagner Bridget K, and Clemons Paul A. Target identification and mechanism of action in chemical biology and drug discovery. Nature chemical biology, 9(4):232–240, 2013. PubMed PMC

Wan Shunzhou, Bhati Agastya P, Zasada Stefan J, and Coveney Peter V. Rapid, accurate, precise and reproducible ligand–protein binding free energy prediction. Interface Focus, 10(6):20200007, 2020. PubMed PMC

Friesner Richard A, Banks Jay L, Murphy Robert B, Halgren Thomas A, Klicic Jasna J, Mainz Daniel T, Repasky Matthew P, Knoll Eric H, Shelley Mee, Perry Jason K, et al. Glide: a new approach for rapid, accurate docking and scoring. 1. method and assessment of docking accuracy. Journal of medicinal chemistry, 47(7):1739–1749, 2004. PubMed

Homola Jiří and Piliarik Marek. Surface plasmon resonance (SPR) sensors. Springer, 2006. PubMed

Varshney Dhaval, Petit Alain-Pierre, Bueren-Calabuig Juan A, Jansen Chimed, Fletcher Dan A, Peggie Mark, Weidlich Simone, Scullion Paul, Pisliakov Andrei V, and Cowling Victoria H. Molecular basis of rna guanine-7 methyltransferase (rnmt) activation by ram. Nucleic acids research, 44(21):10423–10436, 2016. PubMed PMC

Jain Kanishk and Clarke Steven G. Prmt7 as a unique member of the protein arginine methyltransferase family: A review. Archives of biochemistry and biophysics, 665:36–45, 2019. PubMed PMC

Ramanathan Anand, Brett Robb G, and Chan Siu-Hong. mrna capping: biological functions and applications. Nucleic acids research, 44(16):7511–7526, 2016. PubMed PMC

Pal Sharmistha and Sif Saïd. Interplay between chromatin remodelers and protein arginine methyltransferases. Journal of cellular physiology, 213(2):306–315, 2007. PubMed

Pande Vijay S, Beauchamp Kyle, and Bowman Gregory R. Everything you wanted to know about markov state models but were afraid to ask. Methods, 52(1):99–105, 2010. PubMed PMC

Naritomi Yusuke and Fuchigami Sotaro. Slow dynamics in protein fluctuations revealed by time-structure based independent component analysis: the case of domain motions. The Journal of chemical physics, 134(6), 2011. PubMed

Hartigan IA and Algoritm AS. 136: A k-means clustering algorithm/ja hartigan, ma wong. Journal of the Royal Statistical Society Series C (Applied Statistic), 28(1):100–108, 1979.

Wagner Jeffrey R, Lee Christopher T, Durrant Jacob D, Malmstrom Robert D, Feher Victoria A, and Amaro Rommie E. Emerging computational methods for the rational discovery of allosteric drugs. Chemical reviews, 116(11):6370–6390, 2016. PubMed PMC

Andrews PR, Craik DJ, and Martin JL. Functional group contributions to drug-receptor interactions. Journal of medicinal chemistry, 27(12):1648–1657, 1984. PubMed

Teague Simon J. Implications of protein flexibility for drug discovery. Nature reviews Drug discovery, 2(7):527–541, 2003. PubMed

Li Huameng and Li Chenglong. Multiple ligand simultaneous docking: orchestrated dancing of ligands in binding sites of protein. Journal of computational chemistry, 31(10):2014–2022, 2010. PubMed

Kottur Jithesh, Rechkoblit Olga, Quintana-Feliciano Richard, Sciaky Daniela, and Aggarwal Aneel K. High-resolution structures of the sars-cov-2 n7-methyltransferase inform therapeutic development. Nature Structural & Molecular Biology, 29(9):850–853, 2022. PubMed PMC

Liu Chang, Shi Wei, Becker Scott T, Schatz David G, Liu Bin, and Yang Yang. Structural basis of mismatch recognition by a sars-cov-2 proofreading enzyme. Science, 373(6559):1142–1146, 2021. PubMed PMC

Schrödinger Release. 2: Protein preparation wizard, epik, schrödinger, llc, new york, ny, 2021. Impact, Schrödinger, LLC, New York, NY, 2021.

Ma Yuanyuan, Wu Lijie, Shaw Neil, Gao Yan, Wang Jin, Sun Yuna, Lou Zhiyong, Yan Liming, Zhang Rongguang, and Rao Zihe. Structural basis and functional analysis of the sars coronavirus nsp14–nsp10 complex. Proceedings of the National Academy of Sciences, 112(30):9436–9441, 2015. PubMed PMC

Lu Chao, Wu Chuanjie, Ghoreishi Delaram, Chen Wei, Wang Lingle, Damm Wolfgang, Ross Gregory A, Dahlgren Markus K, Russell Ellery, Von Bargen Christopher D, et al. Opls4: Improving force field accuracy on challenging regimes of chemical space. Journal of chemical theory and computation, 17(7):4291–4300, 2021. PubMed

Alhossary Amr, Handoko Stephanus Daniel, Mu Yuguang, and Kwoh Chee-Keong. Fast, accurate, and reliable molecular docking with quickvina 2. Bioinformatics, 31(13):2214–2216, 2015. PubMed

Koes David Ryan, Baumgartner Matthew P, and Camacho Carlos J. Lessons learned in empirical scoring with smina from the csar 2011 benchmarking exercise. Journal of chemical information and modeling, 53(8):1893–1904, 2013. PubMed PMC

Rogers David and Hahn Mathew. Extended-connectivity fingerprints. Journal of chemical information and modeling, 50(5):742–754, 2010. PubMed

Maier James A, Martinez Carmenza, Kasavajhala Koushik, Wickstrom Lauren, Hauser Kevin E, and Simmerling Carlos. ff14sb: improving the accuracy of protein side chain and backbone parameters from ff99sb. Journal of chemical theory and computation, 11(8):3696–3713, 2015. PubMed PMC

Wang Junmei, Wolf Romain M, Caldwell James W, Kollman Peter A, and Case David A. Development and testing of a general amber force field. Journal of computational chemistry, 25(9):1157–1174, 2004. PubMed

Wang Junmei, Wang Wei, Kollman Peter A, and Case David A. Antechamber: an accessory software package for molecular mechanical calculations. J. Am. Chem. Soc, 222(1), 2001.

Kaus Joseph W, Pierce Levi T, Walker Ross C, and Andrew McCammon J. Improving the efficiency of free energy calculations in the amber molecular dynamics package. Journal of chemical theory and computation, 9(9):4131–4139, 2013. PubMed PMC

Case David A, Metin Aktulga H, Belfon Kellon, Ben-Shalom Ido, Brozell Scott R, Cerutti David S, Cheatham Thomas E III, Cruzeiro Vinícius Wilian D, Darden Tom A, Duke Robert E, et al. Amber 2021. University of California, San Francisco, 2021.

Mueller Uwe, Förster Ronald, Hellmig Michael, Huschmann Franziska U, Kastner Alexandra, Malecki Piotr, Pühringer Sandra, Röwer Martin, Sparta Karine, Steffien Michael, et al. The macromolecular crystallography beamlines at bessy ii of the helmholtz-zentrum berlin: Current status and perspectives. The European Physical Journal Plus, 130:1–10, 2015.

Kabsch Wolfgang. xds. Acta Crystallographica Section D: Biological Crystallography, 66(2):125–132, 2010. PubMed PMC

McCoy Airlie J, Grosse-Kunstleve Ralf W, Adams Paul D, Winn Martyn D, Storoni Laurent C, and Read Randy J. Phaser crystallographic software. Journal of applied crystallography, 40(4):658–674, 2007. PubMed PMC

Liebschner Dorothee, Afonine Pavel V, Baker Matthew L, Bunkóczi Gábor, Chen Vincent B, Croll Tristan I, Hintze Bradley, Hung L-W, Jain Swati, McCoy Airlie J, et al. Macromolecular structure determination using x-rays, neutrons and electrons: recent developments in phenix. Acta Crystallographica Section D: Structural Biology, 75(10):861–877, 2019. PubMed PMC

Afonine Pavel V, Grosse-Kunstleve Ralf W, Echols Nathaniel, Headd Jeffrey J, Moriarty Nigel W, Mustyakimov Marat, Terwilliger Thomas C, Urzhumtsev Alexandre, Zwart Peter H, and Adams Paul D. Towards automated crystallographic structure refinement with phenix. refine. Acta Crystallographica Section D: Biological Crystallography, 68(4):352–367, 2012. PubMed PMC

Emsley Paul and Cowtan Kevin. Coot: model-building tools for molecular graphics. Acta crystallographica section D: biological crystallography, 60(12):2126–2132, 2004. PubMed

DeLano Warren L. The pymol molecular graphics system. http://www.pymol.org/, 2002.

Jo Sunhwan, Kim Taehoon, Iyer Vidyashankara G, and Wonpil Im. Charmm-gui: a web-based graphical user interface for charmm. Journal of computational chemistry, 29(11):1859–1865, 2008. PubMed

Huang Jing, Rauscher Sarah, Nawrocki Grzegorz, Ran Ting, Feig Michael, De Groot Bert L, Grubmüller Helmut, and MacKerell Alexander D Jr. Charmm36m: an improved force field for folded and intrinsically disordered proteins. Nature methods, 14(1):71–73, 2017. PubMed PMC

Spoel David Van Der, Lindahl Erik, Hess Berk, Groenhof Gerrit, Mark Alan E, and Berendsen Herman JC. Gromacs: fast, flexible, and free. Journal of computational chemistry, 26(16):1701–1718, 2005. PubMed

Miyamoto Shuichi and Kollman Peter A. Settle: An analytical version of the shake and rattle algorithm for rigid water models. Journal of computational chemistry, 13(8):952–962, 1992.

Vanommeslaeghe Kenno and MacKerell Alexander D Jr. Automation of the charmm general force field (cgenff) i: bond perception and atom typing. Journal of chemical information and modeling, 52(12):3144–3154, 2012. PubMed PMC

McGibbon Robert T, Beauchamp Kyle A, Harrigan Matthew P, Klein Christoph, Swails Jason M, Hernández Carlos X, Schwantes Christian R, Wang Lee-Ping, Lane Thomas J, and Pande Vijay S. Mdtraj: a modern open library for the analysis of molecular dynamics trajectories. Biophysical journal, 109(8):1528–1532, 2015. PubMed PMC

Spurr Sophie S, Bayle Elliott D, Yu Wenyu, Li Fengling, Tempel Wolfram, Vedadi Masoud, Schapira Matthieu, and Fish Paul V. New small molecule inhibitors of histone methyl transferase dot1l with a nitrile as a non-traditional replacement for heavy halogen atoms. Bioorganic & Medicinal Chemistry Letters, 26(18):4518–4522, 2016. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace