Sustained Survival Benefit in Recurrent Medulloblastoma by a Metronomic Antiangiogenic Regimen: A Nonrandomized Controlled Trial
Language English Country United States Media print
Document type Controlled Clinical Trial, Multicenter Study, Journal Article, Research Support, Non-U.S. Gov't
PubMed
37883081
PubMed Central
PMC10603581
DOI
10.1001/jamaoncol.2023.4437
PII: 2811045
Knihovny.cz E-resources
- MeSH
- Child MeSH
- Etoposide MeSH
- Quality of Life MeSH
- Humans MeSH
- Medulloblastoma * drug therapy etiology MeSH
- Administration, Metronomic MeSH
- Adolescent MeSH
- Cerebellar Neoplasms * drug therapy etiology MeSH
- Brain Neoplasms * drug therapy MeSH
- Child, Preschool MeSH
- Antineoplastic Combined Chemotherapy Protocols adverse effects MeSH
- Check Tag
- Child MeSH
- Humans MeSH
- Adolescent MeSH
- Male MeSH
- Child, Preschool MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Controlled Clinical Trial MeSH
- Multicenter Study MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Etoposide MeSH
IMPORTANCE: Medulloblastoma recurrence in patients who have previously received irradiation has a dismal prognosis and lacks a standard salvage regimen. OBJECTIVE: To evaluate the response rate of pediatric patients with medulloblastoma recurrence using an antiangiogenic metronomic combinatorial approach (Medulloblastoma European Multitarget Metronomic Anti-Angiogenic Trial [MEMMAT]). DESIGN, SETTING, AND PARTICIPANTS: This phase 2, investigator-initiated, multicenter nonrandomized controlled trial assessed 40 patients with relapsed or refractory medulloblastoma without a ventriculoperitoneal shunt who were younger than 20 years at original diagnosis. Patients were enrolled between April 1, 2014, and March 31, 2021. INTERVENTIONS: Treatment consisted of daily oral thalidomide, fenofibrate, celecoxib, and alternating 21-day cycles of low-dose (metronomic) oral etoposide and cyclophosphamide, supplemented by intravenous bevacizumab and intraventricular therapy consisting of alternating etoposide and cytarabine. MAIN OUTCOMES AND MEASURES: The primary end point was response after 6 months of antiangiogenic metronomic therapy. Secondary end points included progression-free survival (PFS), overall survival (OS), and quality of life. Adverse events were monitored to assess safety. RESULTS: Of the 40 patients (median [range] age at treatment start, 10 [4-17] years; 25 [62.5%] male) prospectively enrolled, 23 (57.5%) achieved disease control after 6 months of treatment, with a response detected in 18 patients (45.0%). Median OS was 25.5 months (range, 10.9-40.0 months), and median PFS was 8.5 months (range, 1.7-15.4 months). Mean (SD) PFS at both 3 and 5 years was 24.6% (7.9%), while mean (SD) OS at 3 and 5 years was 43.6% (8.5%) and 22.6% (8.8%), respectively. No significant differences in PFS or OS were evident based on molecular subgroup analysis or the number of prior recurrences. In patients demonstrating a response, mean (SD) overall 5-year PFS was 49.7% (14.3%), and for patients who remained progression free for the first 12 months of treatment, mean (SD) 5-year PFS was 66.7% (16.1%). Treatment was generally well tolerated. Grade 3 to 4 treatment-related adverse events included myelosuppression, infections, seizures, and headaches. One heavily pretreated patient with a third recurrence died of secondary acute myeloid leukemia. CONCLUSIONS AND RELEVANCE: This feasible and well-tolerated MEMMAT combination regimen demonstrated promising activity in patients with previously irradiated recurrent medulloblastoma. Given these results, this predominantly oral, well-tolerated, and outpatient treatment warrants further evaluation. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT01356290.
Aix Marseille University Cancer Research Center of Marseille Marseille France
Centre Léon Bérard Institut d'Hématologie et d'Oncologie Pediatrique Lyon France
Comprehensive Center for Pediatrics Medical University of Vienna Vienna Austria
Department of Neurology Medical University of Vienna Vienna Austria
Department of Paediatric and Adolescent Medicine Haukeland University Hospital Bergen Norway
Department of Paediatrics and Adolescent Medicine Rigshospitalet Copenhagen Denmark
Department of Paediatrics Linköping University Hospital Linköping Sweden
Department of Pediatric Hematology and Oncology Karolinska University Hospital Stockholm Sweden
Department of Pediatric Neuro Oncology Dana Farber Cancer Institute Boston Massachusetts
Department of Pediatric Neuro Oncology Hospital Infantil Universitario Niño Jesús Madrid Spain
Départment of Pediatric Oncology Assistance Publique Hopitaux de Marseille Marseille France
Department of Pediatrics and Adolescent Medicine Medical University of Vienna Vienna Austria
Department of Pediatrics Uppsala University Uppsala Sweden
Department of Radio Oncology Medical University of Vienna Vienna Austria
Division of Pediatric Neurooncology German Cancer Research Center Heidelberg Germany
Hopp Children's Cancer Center Heidelberg Germany
Institute of Clinical Sciences Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
Kinderonkologie Salzburger Universitätsklinikum Salzburg Austria
Pediatric Cancer Center Skane University Hospital Lund Sweden
Pediatric Oncology Department University Hospital Brno Brno Czech Republic
Pediatric Oncology Unit Oscar Lambret Comprehensive Cancer Center Lille France
Princess Máxima Center for Pediatric Oncology Utrecht the Netherlands
See more in PubMed
Ostrom QT, Price M, Ryan K, et al. . CBTRUS statistical report: Pediatric Brain Tumor Foundation Childhood and Adolescent Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2014-2018. Neuro Oncol. 2022;24(suppl 3):iii1-iii38. doi:10.1093/neuonc/noac161 PubMed DOI PMC
Taylor MD, Northcott PA, Korshunov A, et al. . Molecular subgroups of medulloblastoma: the current consensus. Acta Neuropathol. 2012;123(4):465-472. doi:10.1007/s00401-011-0922-z PubMed DOI PMC
Schwalbe EC, Lindsey JC, Nakjang S, et al. . Novel molecular subgroups for clinical classification and outcome prediction in childhood medulloblastoma: a cohort study. Lancet Oncol. 2017;18(7):958-971. doi:10.1016/S1470-2045(17)30243-7 PubMed DOI PMC
Sharma T, Schwalbe EC, Williamson D, et al. . Second-generation molecular subgrouping of medulloblastoma: an international meta-analysis of Group 3 and Group 4 subtypes. Acta Neuropathol. 2019;138(2):309-326. doi:10.1007/s00401-019-02020-0 PubMed DOI PMC
Louis DN, Perry A, Wesseling P, et al. . The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro Oncol. 2021;23(8):1231-1251. doi:10.1093/neuonc/noab106 PubMed DOI PMC
Ramaswamy V, Remke M, Bouffet E, et al. . Recurrence patterns across medulloblastoma subgroups: an integrated clinical and molecular analysis. Lancet Oncol. 2013;14(12):1200-1207. doi:10.1016/S1470-2045(13)70449-2 PubMed DOI PMC
Pizer B, Donachie PHJ, Robinson K, et al. . Treatment of recurrent central nervous system primitive neuroectodermal tumours in children and adolescents: results of a Children’s Cancer and Leukaemia Group study. Eur J Cancer. 2011;47(9):1389-1397. doi:10.1016/j.ejca.2011.03.004 PubMed DOI
Sabel M, Fleischhack G, Tippelt S, et al. ; SIOP-E Brain Tumour Group . Relapse patterns and outcome after relapse in standard risk medulloblastoma: a report from the HIT-SIOP-PNET4 study. J Neurooncol. 2016;129(3):515-524. doi:10.1007/s11060-016-2202-1 PubMed DOI PMC
Hill RM, Richardson S, Schwalbe EC, et al. . Time, pattern, and outcome of medulloblastoma relapse and their association with tumour biology at diagnosis and therapy: a multicentre cohort study. Lancet Child Adolesc Health. 2020;4(12):865-874. doi:10.1016/S2352-4642(20)30246-7 PubMed DOI PMC
Kumar R, Smith KS, Deng M, et al. . Clinical outcomes and patient-matched molecular composition of relapsed medulloblastoma. J Clin Oncol. 2021;39(7):807-821. doi:10.1200/JCO.20.01359 PubMed DOI PMC
Huybrechts S, Le Teuff G, Tauziède-Espariat A, et al. . Prognostic clinical and biologic features for overall survival after relapse in childhood medulloblastoma. Cancers (Basel). 2020;13(1):53. doi:10.3390/cancers13010053 PubMed DOI PMC
Hill RM, Plasschaert SLA, Timmermann B, et al. . Relapsed medulloblastoma in pre-irradiated patients: current practice for diagnostics and treatment. Cancers (Basel). 2021;14(1):126. doi:10.3390/cancers14010126 PubMed DOI PMC
Grill J, Geoerger B, Gesner L, et al. ; European Consortium Innovative Therapies for Children with Cancer (ITCC) and the European Society for Paediatric Oncology (SIOPE) brain tumor group . Phase II study of irinotecan in combination with temozolomide (TEMIRI) in children with recurrent or refractory medulloblastoma: a joint ITCC and SIOPE brain tumor study. Neuro Oncol. 2013;15(9):1236-1243. doi:10.1093/neuonc/not097 PubMed DOI PMC
Levy AS, Krailo M, Chi S, et al. . Temozolomide with irinotecan versus temozolomide, irinotecan plus bevacizumab for recurrent medulloblastoma of childhood: report of a COG randomized Phase II screening trial. Pediatr Blood Cancer. 2021;68(8):e29031. doi:10.1002/pbc.29031 PubMed DOI PMC
Browder T, Butterfield CE, Kräling BM, et al. . Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer. Cancer Res. 2000;60(7):1878-1886. PubMed
Panigrahy D, Kaipainen A, Butterfield CE, et al. . Inhibition of tumor angiogenesis by oral etoposide. Exp Ther Med. 2010;1(5):739-746. doi:10.3892/etm.2010.127 PubMed DOI PMC
Ashley DM, Meier L, Kerby T, et al. . Response of recurrent medulloblastoma to low-dose oral etoposide. J Clin Oncol. 1996;14(6):1922-1927. doi:10.1200/JCO.1996.14.6.1922 PubMed DOI
Panigrahy D, Kaipainen A, Huang S, et al. . PPARα agonist fenofibrate suppresses tumor growth through direct and indirect angiogenesis inhibition. Proc Natl Acad Sci U S A. 2008;105(3):985-990. doi:10.1073/pnas.0711281105 PubMed DOI PMC
Zhang G, Panigrahy D, Hwang SH, et al. . Dual inhibition of cyclooxygenase-2 and soluble epoxide hydrolase synergistically suppresses primary tumor growth and metastasis. Proc Natl Acad Sci U S A. 2014;111(30):11127-11132. doi:10.1073/pnas.1410432111 PubMed DOI PMC
D’Amato RJ, Loughnan MS, Flynn E, Folkman J. Thalidomide is an inhibitor of angiogenesis. Proc Natl Acad Sci U S A. 1994;91(9):4082-4085. doi:10.1073/pnas.91.9.4082 PubMed DOI PMC
Slavc I, Mayr L, Stepien N, et al. . Improved long-term survival of patients with recurrent medulloblastoma treated with a “MEMMAT-like” metronomic antiangiogenic approach. Cancers (Basel). 2022;14(20):5128. doi:10.3390/cancers14205128 PubMed DOI PMC
Peyrl A, Chocholous M, Kieran MW, et al. . Antiangiogenic metronomic therapy for children with recurrent embryonal brain tumors. Pediatr Blood Cancer. 2012;59(3):511-517. doi:10.1002/pbc.24006 PubMed DOI
World Medical Association . World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA. 2013;310(20):2191-2194. doi:10.1001/jama.2013.281053 PubMed DOI
Capper D, Jones DTW, Sill M, et al. . DNA methylation-based classification of central nervous system tumours. Nature. 2018;555(7697):469-474. doi:10.1038/nature26000 PubMed DOI PMC
Ravens-Sieberer U, Bullinger M. Assessing health-related quality of life in chronically ill children with the German KINDL: first psychometric and content analytical results. Qual Life Res. 1998;7(5):399-407. doi:10.1023/A:1008853819715 PubMed DOI
Chen K, Shan M. Optimal and minimax three-stage designs for phase II oncology clinical trials. Contemp Clin Trials. 2008;29(1):32-41. doi:10.1016/j.cct.2007.04.008 PubMed DOI
Le Teuff G, Castaneda-Heredia A, Dufour C, et al. ; European consortium Innovative Therapies for Children with Cancer (ITCC) . Phase II study of temozolomide and topotecan (TOTEM) in children with relapsed or refractory extracranial and central nervous system tumors including medulloblastoma with post hoc Bayesian analysis: a European ITCC study. Pediatr Blood Cancer. 2020;67(1):e28032. doi:10.1002/pbc.28032 PubMed DOI
Erker C, Mynarek M, Bailey S, et al. . Outcomes of infants and young children with relapsed medulloblastoma after initial craniospinal irradiation-sparing approaches: an international cohort study. J Clin Oncol. 2023;41(10):1921-1932. doi:10.1200/JCO.21.02968 PubMed DOI
Ridola V, Grill J, Doz F, et al. . High-dose chemotherapy with autologous stem cell rescue followed by posterior fossa irradiation for local medulloblastoma recurrence or progression after conventional chemotherapy. Cancer. 2007;110(1):156-163. doi:10.1002/cncr.22761 PubMed DOI
Gajjar A, Pizer B. Role of high-dose chemotherapy for recurrent medulloblastoma and other CNS primitive neuroectodermal tumors. Pediatr Blood Cancer. 2010;54(4):649-651. doi:10.1002/pbc.22378 PubMed DOI
Dunkel IJ, Boyett JM, Yates A, et al. ; Children’s Cancer Group . High-dose carboplatin, thiotepa, and etoposide with autologous stem-cell rescue for patients with recurrent medulloblastoma. J Clin Oncol. 1998;16(1):222-228. doi:10.1200/JCO.1998.16.1.222 PubMed DOI
Tsang DS, Sarhan N, Ramaswamy V, et al. . Re-irradiation for children with recurrent medulloblastoma in Toronto, Canada: a 20-year experience. J Neurooncol. 2019;145(1):107-114. doi:10.1007/s11060-019-03272-2 PubMed DOI
Ghiringhelli F, Menard C, Puig PE, et al. . Metronomic cyclophosphamide regimen selectively depletes CD4+CD25+ regulatory T cells and restores T and NK effector functions in end stage cancer patients. Cancer Immunol Immunother. 2007;56(5):641-648. doi:10.1007/s00262-006-0225-8 PubMed DOI PMC
Anders HJ, Saxena R, Zhao MH, Parodis I, Salmon JE, Mohan C. Lupus nephritis. Nat Rev Dis Primers. 2020;6(1):7. doi:10.1038/s41572-019-0141-9 PubMed DOI
Zotta F, Vivarelli M, Emma F. Update on the treatment of steroid-sensitive nephrotic syndrome. Pediatr Nephrol. 2022;37(2):303-314. doi:10.1007/s00467-021-04983-3 PubMed DOI
Sterba J, Valik D, Mudry P, et al. . Combined biodifferentiating and antiangiogenic oral metronomic therapy is feasible and effective in relapsed solid tumors in children: single-center pilot study. Onkologie. 2006;29(7):308-313. PubMed
Zapletalova D, André N, Deak L, et al. . Metronomic chemotherapy with the COMBAT regimen in advanced pediatric malignancies: a multicenter experience. Oncology. 2012;82(5):249-260. doi:10.1159/000336483 PubMed DOI
Robison NJ, Campigotto F, Chi SN, et al. . A phase II trial of a multi-agent oral antiangiogenic (metronomic) regimen in children with recurrent or progressive cancer. Pediatr Blood Cancer. 2014;61(4):636-642. doi:10.1002/pbc.24794 PubMed DOI PMC
Kieran MW, Turner CD, Rubin JB, et al. . A feasibility trial of antiangiogenic (metronomic) chemotherapy in pediatric patients with recurrent or progressive cancer. J Pediatr Hematol Oncol. 2005;27(11):573-581. doi:10.1097/01.mph.0000183863.10792.d4 PubMed DOI
El Kababri M, Benmiloud S, Cherkaoui S, et al. . Metro-SMHOP 01: metronomics combination with cyclophosphamide-etoposide and valproic acid for refractory and relapsing pediatric malignancies. Pediatr Blood Cancer. 2020;67(9):e28508. doi:10.1002/pbc.28508 PubMed DOI
Porkholm M, Toiviainen-Salo S, Seuri R, et al. . Metronomic therapy can increase quality of life during paediatric palliative cancer care, but careful patient selection is essential. Acta Paediatr. 2016;105(8):946-951. doi:10.1111/apa.13338 PubMed DOI
Gaab C, Adolph JE, Tippelt S, et al. . Local and systemic therapy of recurrent medulloblastomas in children and adolescents: results of the P-HIT-REZ 2005 study. Cancers (Basel). 2022;14(3):471. doi:10.3390/cancers14030471 PubMed DOI PMC
Robinson GW, Rudneva VA, Buchhalter I, et al. . Risk-adapted therapy for young children with medulloblastoma (SJYC07): therapeutic and molecular outcomes from a multicentre, phase 2 trial. Lancet Oncol. 2018;19(6):768-784. doi:10.1016/S1470-2045(18)30204-3 PubMed DOI PMC
André N, Orbach D, Pasquier E. Metronomic maintenance for high-risk pediatric malignancies: one size will not fit all. Trends Cancer. 2020;6(10):819-828. doi:10.1016/j.trecan.2020.05.007 PubMed DOI
ClinicalTrials.gov
NCT01356290