Current status of the applications of conditioned media derived from mesenchymal stem cells for regenerative medicine
Jazyk angličtina Země Česko Médium print
Typ dokumentu přehledy, časopisecké články
PubMed
37888967
PubMed Central
PMC10669946
DOI
10.33549/physiolres.935186
PII: 935186
Knihovny.cz E-zdroje
- MeSH
- buněčná a tkáňová terapie MeSH
- hojení ran MeSH
- kultivační média speciální MeSH
- mezenchymální kmenové buňky * fyziologie MeSH
- regenerativní lékařství * MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- kultivační média speciální MeSH
Recently published studies suggest that the paracrine substances released by mesenchymal stem cells (MSCs) are the primary motive behind the therapeutic action reported in these cells. Pre-clinical and clinical research on MSCs has produced promising outcomes. Furthermore, these cells are generally safe for therapeutic use and may be extracted from a variety of anatomical regions. Recent research has indicated, however, that transplanted cells do not live long and that the advantages of MSC treatment may be attributable to the large diversity of bioactive substances they create, which play a crucial role in the control of essential physiological processes. Secretome derivatives, such as conditioned media or exosomes, may provide significant benefits over cells in terms of manufacture, preservation, handling, longevity of the product, and potential as a ready-to-use biologic product. Despite their immunophenotypic similarities, the secretome of MSCs appears to vary greatly depending on the host's age and the niches in which the cells live. The secretome's effect on multiple biological processes such as angiogenesis, neurogenesis, tissue repair, immunomodulation, wound healing, anti-fibrotic, and anti-tumor for tissue maintenance and regeneration has been discovered. Defining the secretome of cultured cultivated MSC populations by conditioned media analysis will allow us to assess its potential as a novel treatment approach. This review will concentrate on accumulating data from pre-clinical and clinical trials pointing to the therapeutic value of the conditioned medium. At last, the necessity of characterizing the conditioned medium for determining its potential for cell-free treatment therapy will be emphasized in this study.
Zobrazit více v PubMed
Daley GQ. Stem cells and the evolving notion of cellular identity. Philos Trans R Soc B Biol Sci. 2015:370. doi: 10.1098/rstb.2014.0376. PubMed DOI PMC
Dulak J, Szade K, Szade A, Nowak W, Józkowicz A. Adult stem cells: Hopes and hypes of regenerative medicine. Acta Biochim Pol. 2015;62:329–337. doi: 10.18388/abp.2015_1023. PubMed DOI
Tonetti MS, Jepsen S, Jin L, Otomo-Corgel J. Impact of the Global Burden of Periodontal Diseases on Health, Nutrition and Wellbeing of Mankind: a Call for Global Action Maurizio. J Clin Periodontol. 2017;38:42–49. doi: 10.1111/ijlh.12426. PubMed DOI
Adler CJ, Dobney K, Weyrich LS, et al. Sequencing ancient calcified dental plaque shows changes in oral microbiota with dietary shifts of the Neolithic and Industrial revolutions. Nat Genet. 2013;45:450–455. doi: 10.1038/ng.2536. PubMed DOI PMC
Horwitz EM, Le Blanc K, Dominici M, et al. Clarification of the nomenclature for MSC: The International Society for Cellular Therapy position statement. Cytotherapy. 2005;7:393–395. doi: 10.1080/14653240500319234. PubMed DOI
Galipeau J, Krampera M, Barrett J, et al. International Society for Cellular Therapy perspective on immune functional assays for mesenchymal stromal cells as potency release criterion for advanced phase clinical trials. Cytotherapy. 2016;18(2):151–159. doi: 10.1016/j.jcyt.2015.11.008. PubMed DOI PMC
Nakamura Y, Wang X, Xu C, et al. Xenotransplantation of Long-Term-Cultured Swine Bone Marrow-Derived Mesenchymal Stem Cells. Stem Cells. 2007;25:612–620. doi: 10.1634/stemcells.2006-0168. PubMed DOI
Von Bahr L, Batsis I, Moll G, et al. Analysis of tissues following mesenchymal stromal cell therapy in humans indicates limited long-term engraftment and no ectopic tissue formation. Stem Cells. 2012;30:1575–1578. doi: 10.1002/stem.1118. PubMed DOI
Madrigal M, Rao KS, Riordan NH. A review of therapeutic effects of mesenchymal stem cell secretions and induction of secretory modification by different culture methods. J Transl Med. 2014;12:1–14. doi: 10.1186/s12967-014-0260-8. PubMed DOI PMC
Alessio N, Özcan S, Tatsumi K, et al. The secretome of MUSE cells contains factors that may play a role in regulation of stemness, apoptosis and immunomodulation. Cell Cycle. 2017;16:33–44. doi: 10.1080/15384101.2016.1211215. PubMed DOI PMC
Kološa K, Motaln H, Herold-Mende C, Koršič M, Lah TT. Paracrine effects of mesenchymal stem cells induce senescence and differentiation of glioblastoma stem-like cells. Cell Transplant. 2015;24:631–644. doi: 10.3727/096368915X687787. PubMed DOI
Maguire G. Stem cell therapy without the cells. Commun Integr Biol. 2013;6:1–3. doi: 10.4161/cib.26631. PubMed DOI PMC
Osugi M, Katagiri W, Yoshimi R, Inukai T, Hibi H, Ueda M. Conditioned media from mesenchymal stem cells enhanced bone regeneration in rat calvarial bone defects. Tissue Eng - Part A. 2012;18:1479–1489. doi: 10.1089/ten.tea.2011.0325. PubMed DOI PMC
Pawitan JA. Prospect of Stem Cell Conditioned Medium in Regenerative Medicine. Biomed Res Int. 2014;2014:7–9. doi: 10.1155/2014/965849. PubMed DOI PMC
Ratajczak MZ, Kucia M, Jadczyk T, et al. Pivotal role of paracrine effects in stem cell therapies in regenerative medicine: Can we translate stem cell-secreted paracrine factors and microvesicles into better therapeutic strategies. Leukemia. 2012;26:1166–1173. doi: 10.1038/leu.2011.389. PubMed DOI
LPK, Kandoi S, Misra R, Vijayalakshmi S, Rajagopal K. Cytokine and Growth Factor Reviews The mesenchymal stem cell secretome: A new paradigm towards cell-free therapeutic mode in regenerative medicine. Cytokine Growth Factor Rev. 2019;46:1–9. doi: 10.1016/j.cytogfr.2019.04.002. PubMed DOI
Kupcova Skalnikova H. Proteomic techniques for characterisation of mesenchymal stem cell secretome. Biochimie. 2013;95:2196–2211. doi: 10.1016/j.biochi.2013.07.015. PubMed DOI
Chuang TJ, Lin KC, Chio CC, Wang CC, Chang CP, Kuo JR. Effects of secretome obtained from normoxia-preconditioned human mesenchymal stem cells in traumatic brain injury rats. J Trauma Acute Care Surg. 2012;73:1161–1167. doi: 10.1097/TA.0b013e318265d128. PubMed DOI
Eiró N, Sendon-Lago J, Seoane S, et al. Potential therapeutic effect of the secretome from human uterine cervical stem cells against both cancer and stromal cells compared with adipose tissue stem cells. Oncotarget. 2014;5:10692–10708. doi: 10.18632/oncotarget.2530. PubMed DOI PMC
Assoni A, Coatti G, Valadares MC, et al. Different Donors Mesenchymal Stromal Cells Secretomes Reveal Heterogeneous Profile of Relevance for Therapeutic Use. Stem Cells Dev. 2017;26:206–214. doi: 10.1089/scd.2016.0218. PubMed DOI
Vieira NM, Zucconi E, Bueno CR, et al. Human Multipotent Mesenchymal Stromal Cells from Distinct Sources Show Different In Vivo Potential to Differentiate into Muscle Cells When Injected in Dystrophic Mice. Stem Cell Rev Reports. 2010;6:560–566. doi: 10.1007/s12015-010-9187-5. PubMed DOI
Pires AO, Mendes-Pinheiro B, Teixeira FG, et al. Unveiling the Differences of Secretome of Human Bone Marrow Mesenchymal Stem Cells, Adipose Tissue derived Stem Cells and Human Umbilical Cord Perivascular Cells: A Proteomic Analysis. Stem Cells Dev. 2016;1:1–37. doi: 10.1089/scd.2016.0048. PubMed DOI
Lavoie JR, Rosu-Myles M. Uncovering the secretes of mesenchymal stem cells. Biochimie. 2013;95:2212–2221. doi: 10.1016/j.biochi.2013.06.017. PubMed DOI
Dabrowski FA, Burdzinska A, Kulesza A, et al. Comparison of the paracrine activity of mesenchymal stem cells derived from human umbilical cord, amniotic membrane and adipose tissue. J Obstet Gynaecol Res. 2017;43:1758–1768. doi: 10.1111/jog.13432. PubMed DOI
Rocha B, Calamia V, Blanco FJ, Ruiz-Romero C. Identification of factors produced and secreted by mesenchymal stromal cells with the SILAC method. Methods Mol Biol. 2016;1416:551–565. doi: 10.1007/978-1-4939-3584-0_33. PubMed DOI
Riis S, Stensballe A, Emmersen J, et al. Mass spectrometry analysis of adipose-derived stem cells reveals a significant effect of hypoxia on pathways regulating extracellular matrix. Stem Cell Res Ther. 2016;7:1–14. doi: 10.1186/s13287-016-0310-7. PubMed DOI PMC
Ashiba K, Terunuma A, Terunuma H, et al. Immortalized mesenchymal stem cells producing conditioned medium in a large scale for therapeutic usage. Inflamm Regen. 2015;35:057–060. doi: 10.2492/inflammregen.35.057. DOI
Panchalingam KM, Jung S, Rosenberg L, Behie LA. Bioprocessing strategies for the large-scale production of human mesenchymal stem cells: A review Mesenchymal Stem/Stromal Cells - An update. Stem Cell Res Ther. 2015;6:1–10. doi: 10.1186/s13287-015-0228-5. PubMed DOI PMC
Teixeira FG, Panchalingam KM, Assunção-Silva R, et al. Modulation of the Mesenchymal Stem Cell Secretome Using Computer-Controlled Bioreactors: Impact on Neuronal Cell Proliferation, Survival and Differentiation. Sci Rep. 2016;6:1–14. doi: 10.1038/srep27791. PubMed DOI PMC
Leeman KT, Pessina P, Lee J, Kim CF. Mesenchymal stem cells increase alveolar differentiation in lung progenitor organoid cultures. Sci Rep. 2019:1–10. doi: 10.1038/s41598-019-42819-1. PubMed DOI PMC
Takeuchi R, Katagiri W, Endo S, Kobayashi T. Exosomes from conditioned media of bone marrow-derived mesenchymal stem cells promote bone regeneration by enhancing angiogenesis. 2019:1–19. doi: 10.1371/journal.pone.0225472. PubMed DOI PMC
DeGregorio C, Contador D, Díaz D, et al. Human adipose-derived mesenchymal stem cell-conditioned medium ameliorates polyneuropathy and foot ulceration in diabetic BKS db/db mice. 2020;0:1–21. doi: 10.1186/s13287-020-01680-0. PubMed DOI PMC
Yang M, Cui Y, Song J, et al. Mesenchymal stem cell-conditioned medium improved mitochondrial function and alleviated inflammation and apoptosis in non-alcoholic fatty liver disease by regulating SIRT1. Biochem Biophys Res Commun. 2021;546:74–82. doi: 10.1016/j.bbrc.2021.01.098. PubMed DOI
Dorronsoro A, Santiago FE, Grassi D, et al. Mesenchymal stem cell- - derived extracellular vesicles reduce senescence and extend health span in mouse models of aging. 2021:1–14. doi: 10.1111/acel.13337. PubMed DOI PMC
Sun X, Li K, Zha R, et al. Preventing tumor progression to the bone by induced tumor-suppressing. MSCs. 2021:11. doi: 10.7150/thno.58779. PubMed DOI PMC
Harrell CR, Miloradovic D, Sadikot R, et al. Molecular and cellular mechanisms responsible for beneficial effects of mesenchymal stem cell-derived product “Exo-d-MAPPS” in attenuation of chronic airway inflammation. 2020:2020. doi: 10.1155/2020/3153891. PubMed DOI PMC
Zhang Z, Huang S, Wu S, et al. Medicine Clearance of apoptotic cells by mesenchymal stem cells contributes to immunosuppression via PGE2. EBioMedicine. 2019;45:341–350. doi: 10.1016/j.ebiom.2019.06.016. PubMed DOI PMC
Oh HA, Kwak J, Kim BJ, et al. Migration inhibitory factor in conditioned medium from human umbilical cord blood-derived mesenchymal stromal cells stimulates hair growth. 2020 doi: 10.3390/cells9061344. PubMed DOI PMC
Dahbour S, Jamali F, Alhattab D, et al. Mesenchymal stem cells and conditioned media in the treatment of multiple sclerosis patients: Clinical, ophthalmological and radiological assessments of safety and efficacy. 2017:866–874. doi: 10.1111/cns.12759. PubMed DOI PMC
Lee JH, Bhang DH, Beede A, et al. Lung stem cell differentiation in mice directed by endothelial cells via a BMP4-NFATc1-thrombospondin-1 axis. Cell. 2014;156:440–455. doi: 10.1016/j.cell.2013.12.039. PubMed DOI PMC
Liu L, Gao J, Yuan Y, Chang Q, Liao Y, Lu F. Hypoxia preconditioned human adipose derived mesenchymal stem cells enhance angiogenic potential via secretion of increased VEGF and bFGF. Cell Biol Int. 2013;37:551–560. doi: 10.1002/cbin.10097. PubMed DOI
Yu SP, Wei Z, Wei L. Preconditioning strategy in stem cell transplantation therapy. Transl Stroke Res. 2013;4:76–88. doi: 10.1007/s12975-012-0251-0. PubMed DOI PMC
Oses C, Olivares B, Ezquer M, et al. Preconditioning of adipose tissue-derived mesenchymal stem cells with deferoxamine increases the production of pro-angiogenic, neuroprotective and anti-inflammatory factors: Potential application in the treatment of diabetic neuropathy. PLoS One. 2017;12:1–22. doi: 10.1371/journal.pone.0178011. PubMed DOI PMC
Boucek P. Advanced diabetic neuropathy: a point of no return? Rev Diabet Stud. 2006;3:143–143. doi: 10.1900/RDS.2006.3.143. PubMed DOI PMC
Howland MA. Risks of parenteral deferoxamine for acute iron poisoning. Clin Toxicol. 1996;34:491–497. doi: 10.3109/15563659609028006. PubMed DOI
Pathania D, Millard M, Neamati N. Opportunities in discovery and delivery of anticancer drugs targeting mitochondria and cancer cell metabolism. Adv Drug Deliv Rev. 2009;61:1250–1275. doi: 10.1016/j.addr.2009.05.010. PubMed DOI
Marchesini G, Brizi M, Bianchi G, Tomassetti S, Bugianesi E, Lenzi M, McCullough AJ, Natale S, Forlani G, Melchionda N. Nonalcoholic fatty liver disease: a feature of the metabolic syndrome. Metab Med Surg. 2014;50:115–132. doi: 10.1201/b17616. PubMed DOI
Lavasani M, Robinson AR, Lu A, et al. Muscle-derived stem/progenitor cell dysfunction limits healthspan and lifespan in a murine progeria model. Nat Commun. 2012;3:608–612. doi: 10.1038/ncomms1611. PubMed DOI PMC
Lee JK, Jin HK, Endo S, Schuchman EH, Carter JE, Bae JS. Intracerebral transplantation of bone marrow-derived mesenchymal stem cells reduces amyloid-beta deposition and rescues memory deficits in Alzheimer’s disease mice by modulation of immune responses. Stem Cells. 2010;28:329–343. doi: 10.1002/stem.277. PubMed DOI
Bermudez MA, Sendon-Lago J, Eiro N, et al. Corneal epithelial wound healing and bactericidal effect of conditioned medium from human uterine cervical stem cells. Investig Ophthalmol Vis Sci. 2015;56:983–992. doi: 10.1167/iovs.14-15859. PubMed DOI
Manassero M, Paquet J, Deschepper M, Viateau V, Retortillo J, Bensidhoum M, Logeart-Avramoglou D, Petite H. Comparison of survival and osteogenic ability of human mesenchymal stem cells in orthotopic and ectopic sites in mice. Tissue Eng Part A. 2016;22:534–544. doi: 10.1089/ten.TEA.2015.0346. PubMed DOI
Giannoni P, Scaglione S, Daga A, Ilengo C, Cilli M, Quarto R. Short-time survival and engraftment of bone marrow stromal cells in an ectopic model of bone regeneration. Tissue Eng - Part A. 2010;16:489–499. doi: 10.1089/ten.tea.2009.0041. PubMed DOI
Becquart P, Cambon-Binder A, Monfoulet LE, et al. Ischemia is the prime but not the only cause of human multipotent stromal cell death in tissue-engineered constructs in vivo. Tissue Eng - Part A. 2012;18:2084–2094. doi: 10.1089/ten.tea.2011.0690. PubMed DOI
Bogatcheva NV, Coleman ME. Conditioned medium of mesenchymal stromal cells: a new class of therapeutics. Biochem. 2019;84:1375–1389. doi: 10.1134/S0006297919110129. PubMed DOI
Nagata M, Iwasaki K, Akazawa K, et al. Conditioned medium from periodontal ligament stem cells enhances periodontal regeneration. Tissue Eng - Part A. 2017;23:367–377. doi: 10.1089/ten.tea.2016.0274. PubMed DOI PMC
Nawaz M, Fatima F, Vallabhaneni KC, et al. Extracellular vesicles: evolving factors in stem cell biology. Stem Cells Int. 2016:2016. doi: 10.1155/2016/1073140. PubMed DOI PMC
Trubiani O, Marconi GD, Pierdomenico SD, Piattelli A, Diomede F, Pizzicannella J. Human oral stem cells, biomaterials and extracellular vesicles: A promising tool in bone tissue repair. Int J Mol Sci. 2019:20. doi: 10.3390/ijms20204987. PubMed DOI PMC
Makridakis M, Roubelakis MG, Vlahou A. Stem cells: Insights into the secretome. Biochim Biophys Acta - Proteins Proteomics. 2013;1834:2380–2384. doi: 10.1016/j.bbapap.2013.01.032. PubMed DOI
Perin EC, Geng YJ, Willerson JT. Adult stem cell therapy in perspective. Circulation. 2003;107:935–938. doi: 10.1161/01.CIR.0000057526.10455.BD. PubMed DOI
Khosravi A, Cutler CM, Kelly MH, et al. Determination of the elimination half-life of fibroblast growth factor-23. J Clin Endocrinol Metab. 2007;92:2374–2377. doi: 10.1210/jc.2006-2865. PubMed DOI
Zhu W, Huang L, Li Y, et al. Mesenchymal stem cell-secreted soluble signaling molecules potentiate tumor growth. Cell Cycle. 2011;10:3198–3207. doi: 10.4161/cc.10.18.17638. PubMed DOI