Comprehensive Genomic Profiling in Predictive Testing of Cancer
Jazyk angličtina Země Česko Médium print
Typ dokumentu časopisecké články
PubMed
37888970
PubMed Central
PMC10669951
DOI
10.33549/physiolres.935154
PII: 935154
Knihovny.cz E-zdroje
- MeSH
- genomika MeSH
- individualizovaná medicína MeSH
- lidé MeSH
- nádory * diagnóza genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Despite the rapid progress in the field of personalized medicine and the efforts to apply specific treatment strategies to patients based on the presence of pathogenic variants in one, two, or three genes, patient response to the treatment in terms of positive benefit and overall survival remains heterogeneous. However, advances in sequencing and bioinformatics technologies have facilitated the simultaneous examination of somatic variants in tens to thousands of genes in tumor tissue, enabling the determination of personalized management based on the patient's comprehensive genomic profile (CGP). CGP has the potential to enhance clinical decision-making and personalize innovative treatments for individual patients, by providing oncologists with a more comprehensive molecular characterization of tumors. This study aimed to highlight the utility of CGP in routine clinical practice. Here we present three patient cases with various advanced cancer indicated for CGP analysis using a combination of SOPHiA Solid Tumor Solution (STS, 42 genes) for DNA and SOPHiA RNAtarget Oncology Solution (ROS, 45 genes and 17 gene fusions with any random partners) for RNA. We were able to identify actionable genomic alterations in all three cases, thereby presenting valuable information for future management of these patients. This approach has the potential to transform clinical practice and greatly improve patient outcomes in the field of oncology.
Zobrazit více v PubMed
Di Sanzo M, Cipolloni L, Borro M, La Russa R, Santurro A, Scopetti M, Simmaco M, et al. Clinical Applications of Personalized Medicine: A New Paradigm and Challenge. Curr Pharm Biotechnol. 2017;18:194–203. doi: 10.2174/1389201018666170224105600. PubMed DOI
Goetz LH, Schork NJ. Personalized medicine: motivation, challenges, and progress. Fertil Steril. 2018;109:952–963. doi: 10.1016/j.fertnstert.2018.05.006. PubMed DOI PMC
Gambardella V, Tarazona N, Cejalvo JM, Lombardi P, Huerta M, Roselló S, Fleitas T, et al. Personalized Medicine: Recent Progress in Cancer Therapy. Cancers (Basel) 2020;12:1009. doi: 10.3390/cancers12041009. PubMed DOI PMC
Malone ER, Oliva M, Sabatini PJB, Stockley TL, Siu LL. Molecular profiling for precision cancer therapies. Genome Med. 2020;12:8. doi: 10.1186/s13073-019-0703-1. PubMed DOI PMC
Thomas DM, Hackett JM, Plestina S. Unlocking Access to Broad Molecular Profiling: Benefits, Barriers, and Policy Solutions. Public Health Genomics. 2021;25:70–79. doi: 10.1159/000520000. PubMed DOI
Chang L, Chang M, Chang HM, Chang F. Microsatellite instability: A predictive biomarker for cancer immunotherapy. Appl Immunohistochem Mol Morphol. 2018;26:e15–e21. doi: 10.1097/PAI.0000000000000575. PubMed DOI
Sha D, Jin Z, Budczies J, Kluck K, Stenzinger A, Sinicrope FA. Tumor mutational burden as a predictive biomarker in solid tumors. Cancer Discov. 2020;10:1808–1825. doi: 10.1158/2159-8290.CD-20-0522. PubMed DOI PMC
Penault-Llorca F, Kerr KM, Garrido P, Thunnissen E, Dequeker E, Normanno N, Patton S, et al. Expert opinion on NSCLC small specimen biomarker testing - Part 1: Tissue collection and management. Virchows Arch. 2022;481:335–350. doi: 10.1007/s00428-022-03343-2. PubMed DOI PMC
Ross JS, Sokol ES, Moch H, Mileshkin L, Baciarello G, Losa F, Beringer A, et al. Comprehensive Genomic Profiling of Carcinoma of Unknown Primary Origin: Retrospective Molecular Classification Considering the CUPISCO Study Design. Oncologist. 2021;26:e394. doi: 10.1002/onco.13597. PubMed DOI PMC
Ross JS, Ali SM, Fasan O, Block J, Pal S, Elvin JA, Schrock A, et al. ALK Fusions in a wide variety of tumor types respond to anti-ALK targeted therapy. Oncologist. 2017;22:1444–1450. doi: 10.1634/theoncologist.2016-0488. PubMed DOI PMC
Mosele F, Remon J, Mateo J, Westphalen CB, Barlesi F, Lolkema MP, Normanno N, et al. Recommendations for the use of next-generation sequencing (NGS) for patients with metastatic cancers: a report from the ESMO Precision Medicine Working Group. Ann Oncol. 2020;31:1491–1505. doi: 10.1016/j.annonc.2020.07.014. PubMed DOI
Chakravarty D, Johnson A, Sklar J, Lindeman NI, Moore K, Ganesan S, Lovly C, et al. Somatic genomic testing in patients with metastatic or advanced cancer: ASCO provisional clinical opinion. J Clin Oncol. 2022;40:1231–1258. doi: 10.1200/JCO.21.02767. PubMed DOI
den Dunnen JT, Dalgleish R, Maglott DR, Hart RK, Greenblatt MS, McGowan-Jordan J, Roux A, et al. HGVS recommendations for the description of sequence variants: 2016 update. Hum Mutat. 2016;37:564–569. doi: 10.1002/humu.22981. PubMed DOI
Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, Grody W, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17:405–424. doi: 10.1038/gim.2015.30. PubMed DOI PMC
Li MM, Datto M, Duncavage EJ, Kulkarni S, Lindeman NI, Roy S, Tsimberidou A, et al. Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J Mol Diagn. 2017;19:4–23. doi: 10.1016/j.jmoldx.2016.10.002. PubMed DOI PMC
Panebianco F, Nikitski AV, Nikiforova MN, Nikiforov YE. Spectrum of TERT promoter mutations and mechanisms of activation in thyroid cancer. Cancer Med. 2019;8:5831–5839. doi: 10.1002/cam4.2467. PubMed DOI PMC
Wan S, Liu X, Hua W, Xi M, Zhou Y, Wan Y. The role of telomerase reverse transcriptase (TERT) promoter mutations in prognosis in bladder cancer. Bioengineered. 2021;12:1495–1504. doi: 10.1080/21655979.2021.1915725. PubMed DOI PMC
Powter B, Jeffreys SA, Sareen H, Cooper A, Brungs D, Po J, et al. Human TERT promoter mutations as a prognostic biomarker in glioma. J Cancer Res Clin Oncol. 2021;147:1007–1017. doi: 10.1007/s00432-021-03536-3. PubMed DOI PMC
Eckel-Passow JE, Lachance DH, Molinaro AM, Walsh KM, Decker PA, Sicotte H, Pekmezci M, et al. Glioma Groups Based on 1p/19q, IDH, and TERT Promoter Mutations in Tumors. N Engl J Med. 2015;372:2499–2508. doi: 10.1056/NEJMoa1407279. PubMed DOI PMC
Arita H, Yamasaki K, Matsushita Y, Nakamura T, Shimokawa A, Takami H, Tanaka S, et al. A combination of TERT promoter mutation and MGMT methylation status predicts clinically relevant subgroups of newly diagnosed glioblastomas. Acta Neuropathol Commun. 2016;4:79. doi: 10.1186/s40478-016-0351-2. PubMed DOI PMC
Di Stefano AL, Picca A, Saragoussi E, Bielle F, Ducray F, Villa C, Eoli M, et al. Clinical, molecular, and radiomic profile of gliomas with FGFR3-TACC3 fusions. Neuro Oncol. 2020;22:1614–1624. doi: 10.1093/neuonc/noaa121. PubMed DOI PMC
Powles T, Bellmunt J, Comperat E, De Santis M, Huddart R, Loriot Y, Necchi A, et al. Bladder cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann Oncol. 2022;33:244–258. doi: 10.1016/j.annonc.2021.11.012. PubMed DOI
McDonald MF, Athukuri P, Anand A, Gopakumar S, Jalali A, Patel AJ, Rao G, et al. Varied histomorphology and clinical outcomes of FGFR3-TACC3 fusion gliomas. Neurosurg Focus. 2022;53:E16. doi: 10.3171/2022.9.FOCUS22420. PubMed DOI
Costa R, Carneiro BA, Taxter T, Tavora FA, Kalyan A, Pai SA, Chae Y, et al. FGFR3-TACC3 fusion in solid tumors: mini review. Oncotarget. 2016;7:55924–55938. doi: 10.18632/oncotarget.10482. PubMed DOI PMC
Bouaoun L, Sonkin D, Ardin M, Hollstein M, Byrnes G, Zavadil J, Olivier M. TP53 Variations in Human Cancers: New Lessons from the IARC TP53 Database and Genomics Data. Hum Mutat. 2016;37:865–876. doi: 10.1002/humu.23035. PubMed DOI
Shajani-Yi Z, de Abreu FB, Peterson JD, Tsongalis GJ. Frequency of somatic TP53 mutations in combination with known pathogenic mutations in colon adenocarcinoma, non-small cell lung carcinoma, and gliomas as identified by next-generation sequencing. Neoplasia. 2018;20:256–262. doi: 10.1016/j.neo.2017.12.005. PubMed DOI PMC
Wong KK, Izaguirre DI, Kwan SY, King ER, Deavers MT, Sood AK, Mok S, et al. Poor survival with wild-type TP53 ovarian cancer? Gynecol Oncol. 2013;130:565–569. doi: 10.1016/j.ygyno.2013.06.016. PubMed DOI PMC
Ghezelayagh TS, Pennington KP, Norquist BM, Khasnavis N, Radke MR, Kilgore MR, Garcia R, et al. Characterizing TP53 mutations in ovarian carcinomas with and without concurrent BRCA1 or BRCA2 mutations. Gynecol Oncol. 2021;160:786–792. doi: 10.1016/j.ygyno.2020.12.007. PubMed DOI PMC
Mandelker D, Donoghue M, Talukdar S, Bandlamudi C, Srinivasan P, Vivek M, Jezdic S, et al. Germline-focussed analysis of tumour-only sequencing: recommendations from the ESMO Precision Medicine Working Group. Ann Oncol. 2019;30:1221–1231. doi: 10.1093/annonc/mdz136. PubMed DOI PMC
Wang WL, Nero C, Pappo A, Lev D, Lazar AJ, López-Terrada D. CTNNB1 genotyping and APC screening in pediatric desmoid tumors: a proposed algorithm. Pediatr Dev Pathol. 2012;15:361–367. doi: 10.2350/11-07-1064-OA.1. PubMed DOI
Lazar AJF, Tuvin D, Hajibashi S, Habeeb S, Bolshakov S, Mayordomo-Aranda E, Warneke C, et al. Specific Mutations in the β-Catenin Gene (CTNNB1) Correlate with Local Recurrence in Sporadic Desmoid Tumors. Am J Pathol. 2008;173:1518. doi: 10.2353/ajpath.2008.080475. PubMed DOI PMC
Riedel RF, Agulnik M. Evolving strategies for management of desmoid tumor. Cancer. 2022;128:3027–3040. doi: 10.1002/cncr.34332. PubMed DOI PMC
Mir O, Honoré C, Chamseddine AN, Dômont J, Dumont SN, Cavalcanti A, Faron M, et al. Long-term Outcomes of Oral Vinorelbine in Advanced, Progressive Desmoid Fibromatosis and Influence of CTNNB1 Mutational Status. Clin Cancer Res. 2020;26:6277–6283. doi: 10.1158/1078-0432.CCR-20-1847. PubMed DOI