Behavioral, neural and ultrastructural alterations in a graded-dose 6-OHDA mouse model of early-stage Parkinson's disease
Language English Country England, Great Britain Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
37945922
PubMed Central
PMC10636184
DOI
10.1038/s41598-023-46576-0
PII: 10.1038/s41598-023-46576-0
Knihovny.cz E-resources
- MeSH
- Dopamine metabolism MeSH
- Dopaminergic Neurons metabolism MeSH
- Rats MeSH
- Disease Models, Animal MeSH
- Mice MeSH
- Oxidopamine pharmacology MeSH
- Parkinson Disease * etiology pathology MeSH
- Pars Compacta metabolism MeSH
- Substantia Nigra metabolism MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Dopamine MeSH
- Oxidopamine MeSH
Studying animal models furthers our understanding of Parkinson's disease (PD) pathophysiology by providing tools to investigate detailed molecular, cellular and circuit functions. Different versions of the neurotoxin-based 6-hydroxydopamine (6-OHDA) model of PD have been widely used in rats. However, these models typically assess the result of extensive and definitive dopaminergic lesions that reflect a late stage of PD, leading to a paucity of studies and a consequential gap of knowledge regarding initial stages, in which early interventions would be possible. Additionally, the better availability of genetic tools increasingly shifts the focus of research from rats to mice, but few mouse PD models are available yet. To address these, we characterize here the behavioral, neuronal and ultrastructural features of a graded-dose unilateral, single-injection, striatal 6-OHDA model in mice, focusing on early-stage changes within the first two weeks of lesion induction. We observed early onset, dose-dependent impairments of overall locomotion without substantial deterioration of motor coordination. In accordance, histological evaluation demonstrated a partial, dose-dependent loss of dopaminergic neurons of substantia nigra pars compacta (SNc). Furthermore, electron microscopic analysis revealed degenerative ultrastructural changes in SNc dopaminergic neurons. Our results show that mild ultrastructural and cellular degradation of dopaminergic neurons of the SNc can lead to certain motor deficits shortly after unilateral striatal lesions, suggesting that a unilateral dose-dependent intrastriatal 6-OHDA lesion protocol can serve as a successful model of the early stages of Parkinson's disease in mice.
Institut de Neurosciences de la Timone CNRS UMR 7289 Aix Marseille Université Marseille France
Institut de Neurosciences Des Systèmes INSERM UMR S 1106 Aix Marseille Université Marseille France
Institute of Cognitive Neuroscience and Psychology Eotvos Lorand Research Network Budapest Hungary
Institute of Experimental Medicine Lendület Laboratory of Systems Neuroscience Budapest Hungary
International Clinical Research Center St Anne's University Hospital Brno Czech Republic
János Szentágothai Doctoral School of Neurosciences Semmelweis University Budapest Hungary
See more in PubMed
Obeso JA, et al. Past, present, and future of Parkinson’s disease: A special essay on the 200th Anniversary of the Shaking Palsy. Mov. Disord. 2017;32:1264–1310. doi: 10.1002/mds.27115. PubMed DOI PMC
Przedborski S. The two-century journey of Parkinson disease research. Nat. Rev. Neurosci. 2017;18:251–259. doi: 10.1038/nrn.2017.25. PubMed DOI
Bloem BR, Okun MS, Klein C. Parkinson’s disease. Lancet. 2021;397:2284–2303. doi: 10.1016/S0140-6736(21)00218-X. PubMed DOI
Jankovic J, Aguilar LG. Current approaches to the treatment of Parkinson’s disease. Neuropsychiatr. Dis. Treat. 2008;4:743–757. doi: 10.2147/NDT.S2006. PubMed DOI PMC
Schapira AHV, Chaudhuri KR, Jenner P. Non-motor features of Parkinson disease. Nat. Rev. Neurosci. 2017;18:435–450. doi: 10.1038/nrn.2017.62. PubMed DOI
Fearnley JM, Lees AJ. Ageing and parkinson’s disease: Substantia nigra regional selectivity. Brain. 1991;114:2283–2301. doi: 10.1093/brain/114.5.2283. PubMed DOI
Ehringer H, Hornykiewicz O. Verteilung Von Noradrenalin Und Dopamin (3-Hydroxytyramin) Im Gehirn Des Menschen Und Ihr Verhalten Bei Erkrankungen Des Extrapyramidalen Systems. Klin. Wochenschr. 1960;38:1236–1239. doi: 10.1007/BF01485901. PubMed DOI
Dawson VL, Dawson TM. Promising disease-modifying therapies for Parkinson’s disease. Sci. Transl. Med. 2019;11:1–4. doi: 10.1126/scitranslmed.aba1659. PubMed DOI
Braak H, Rüb U, Gai WP, Del Tredici K. Idiopathic Parkinson’s disease: Possible routes by which vulnerable neuronal types may be subject to neuroinvasion by an unknown pathogen. J. Neural Transm. 2003;110:517–536. doi: 10.1007/s00702-002-0808-2. PubMed DOI
Fahn S. Description of Parkinson’s disease as a clinical syndrome. New York Acad. Sci. 2003;991:1–14. doi: 10.1111/j.1749-6632.2003.tb07458.x. PubMed DOI
Rodriguez-Oroz MC, et al. Initial clinical manifestations of Parkinson’s disease: Features and pathophysiological mechanisms. Lancet Neurol. 2009;8:1128–1139. doi: 10.1016/S1474-4422(09)70293-5. PubMed DOI
Li J, et al. Alterations of regional homogeneity in the mild and moderate stages of Parkinson’s disease. Front. Aging Neurosci. 2021;13:1–10. doi: 10.3389/fnagi.2021.676899. PubMed DOI PMC
Chen X, Liu M, Wu Z, Cheng H. Topological abnormalities of functional brain network in early-stage Parkinson’s disease patients with mild cognitive impairment. Front. Neurosci. 2020;14:1–7. doi: 10.3389/fnins.2020.616872. PubMed DOI PMC
Drui G, et al. Loss of dopaminergic nigrostriatal neurons accounts for the motivational and affective deficits in Parkinson’s disease. Mol. Psychiatry. 2014;19:358–367. doi: 10.1038/mp.2013.3. PubMed DOI PMC
Favier M, et al. Pramipexole reverses Parkinson’s disease-related motivational deficits in rats. Mov. Disord. 2014;29:912–920. doi: 10.1002/mds.25837. PubMed DOI
Graham SF, et al. Metabolomic profiling of bile acids in an experimental model of prodromal parkinson’s disease. Metabolites. 2018;8:71–80. doi: 10.3390/metabo8040071. PubMed DOI PMC
Mollenhauer B, et al. Longitudinal analyses of cerebrospinal fluid α-Synuclein in prodromal and early Parkinson’s disease. Mov. Disord. 2019;34:1354–1364. doi: 10.1002/mds.27806. PubMed DOI PMC
Mallet D, et al. A metabolic biomarker predicts Parkinson’s disease at the early stages in patients and animal models. J. Clin. Invest. 2022;132:1–16. doi: 10.1172/JCI146400. PubMed DOI PMC
Mahlknecht P, Seppi K, Poewe W. The concept of prodromal Parkinson’s disease. J. Parkinsons. Dis. 2015;5:681–697. doi: 10.3233/JPD-150685. PubMed DOI PMC
Dunnett SB, Lelos M. Behavioral analysis of motor and non-motor symptoms in rodent models of Parkinson’s disease. Prog. Brain Res. 2010;184:35–51. doi: 10.1016/S0079-6123(10)84003-8. PubMed DOI
Hou JGG, Lai EC. Non-motor symptoms of Parkinson’s disease. Int. J. Gerontol. 2007;1:53–64. doi: 10.1016/S1873-9598(08)70024-3. DOI
Chu HY, McIver EL, Kovaleski RF, Atherton JF, Bevan MD. Loss of hyperdirect pathway cortico-subthalamic inputs following degeneration of midbrain dopamine neurons. Neuron. 2017;95:1306–1318. doi: 10.1016/j.neuron.2017.08.038. PubMed DOI PMC
van Wijk BCM. Is broadband gamma activity pathologically synchronized to the beta rhythm in parkinson’s disease? J. Neurosci. 2017;37:9347–9349. doi: 10.1523/JNEUROSCI.2023-17.2017. PubMed DOI PMC
Przedbroski S, et al. Dose-dependent lesions of the dopaminergic nigrostriatal pathway induced by instrastriatal injection of 6-hydroxydopamine. Neuroscience. 1995;67:631–647. doi: 10.1016/0306-4522(95)00066-R. PubMed DOI
Park SE, Song KI, Kim H, Chung S, Youn I. Graded 6-OHDA-induced dopamine depletion in the nigrostriatal pathway evokes progressive pathological neuronal activities in the subthalamic nucleus of a hemi-parkinsonian mouse. Behav. Brain Res. 2018;344:42–47. doi: 10.1016/j.bbr.2018.02.014. PubMed DOI
Iarkov A, Barreto GE, Grizzell JA, Echeverria V. Strategies for the treatment of Parkinson’s disease: Beyond dopamine. Front. Aging Neurosci. 2020;12:1–20. doi: 10.3389/fnagi.2020.00004. PubMed DOI PMC
Cenci MA, Lundblad M. Ratings of L-DOPA-induced dyskinesia in the unilateral 6-OHDA lesion model of parkinson’s disease in rats and mice. Curr. Protoc. Neurosci. 2007;41:1–23. doi: 10.1002/0471142301.ns0925s41. PubMed DOI
Steiner H, Kitai ST. Unilateral striatal dopamine depletion: Time-dependent effects on cortical function and behavioural correlates. Eur. J. Neurosci. 2001;14:1390–1404. doi: 10.1046/j.0953-816x.2001.01756.x. PubMed DOI
Tadaiesky MT, Dombrowski PA. Emotinal, cognitive and neurochemical alterations in a premotor stage model of Parkinson’s disease. Neuroscience. 2008;156:830–840. doi: 10.1016/j.neuroscience.2008.08.035. PubMed DOI
Campos FL, et al. Rodent models of Parkinson’s disease: Beyond the motor symptomatology. Front. Behav. Neurosci. 2013;7:1–11. doi: 10.3389/fnbeh.2013.00175. PubMed DOI PMC
Soler R, Fullhase C, Santos CA. Suppression of bladder overactivity by adenosine A 2A receptor antagonist in a rat model of Parkinson's disease. J. Urol. 2010;183:1–2.
Yoshimura N, Kuno S, Chancellor MB, de Groat WC, Seki S. Dopaminergic mechanisms underlying bladder hyperactivity in rats with a unilateral 6-hydroxydopamine (6-OHDA) lesion of the nigrostriatal pathway. Br. J. Pharmacol. 2003;139:1425–1432. doi: 10.1038/sj.bjp.0705388. PubMed DOI PMC
Karasawa H, et al. New ghrelin agonist, HM01 alleviates constipation and L-dopa-delayed gastric emptying in 6-hydroxydopamine rat model of Parkinson’s disease. Neurogastroenterol. Motil. 2014;26:1771–1782. doi: 10.1111/nmo.12459. PubMed DOI PMC
Paxinos G, Watson C. Chemoarchitectonic Atlas of the Mouse Brain. Academic Press; 2010.
Paxinos G, Franklin KBJ. The Mouse Brain in Stereotaxic Coordinates. Elsevier; 2003.
Franklin MA, Keith BJ, Paxinos G. The Mouse Brain in Stereotaxic Coordinates. Elsevier; 2008.
Gulyás M, Bencsik N, Pusztai S, Liliom H, Schlett K. AnimalTracker: An ImageJ-based tracking API to create a customized behaviour analyser program. Neuroinformatics. 2016;14:479–481. doi: 10.1007/s12021-016-9303-z. PubMed DOI
Mátyás F, et al. Identification of the sites of 2-arachidonoylglycerol synthesis and action imply retrograde endocannabinoid signaling at both GABAergic and glutamatergic synapses in the ventral tegmental area. Neuropharmacology. 2008;54:95–107. doi: 10.1016/j.neuropharm.2007.05.028. PubMed DOI PMC
Bartho P, et al. Cortical control of Zona incerta. J. Neurosci. 2007;27:1670–1681. doi: 10.1523/JNEUROSCI.3768-06.2007. PubMed DOI PMC
Barthó P, et al. Ongoing network state controls the length of sleep spindles via inhibitory activity. Neuron. 2014;82:1367–1379. doi: 10.1016/j.neuron.2014.04.046. PubMed DOI PMC
Bokor H, et al. Selective GABAergic control of higher-order thalamic relays. Neuron. 2005;45:929–940. doi: 10.1016/j.neuron.2005.01.048. PubMed DOI
Slezia A, et al. Phase advancement and nucleus-specific timing of thalamocortical activity during slow cortical oscillation. J. Neurosci. 2011;31:607–617. doi: 10.1523/JNEUROSCI.3375-10.2011. PubMed DOI PMC
Proctor CM, et al. Electrophoretic drug delivery for seizure control. Sci. Adv. 2018;4:1–8. doi: 10.1126/sciadv.aau1291. PubMed DOI PMC
Slezia A, Proctor CM, Kaszas A, Malliaras GG, Williamson A. Electrophoretic delivery of γ-aminobutyric acid (GABA) into epileptic focus prevents seizures in mice. J. Vis. Exp. 2019;147:1–9. PubMed
Kaszas A, et al. Two-photon GCaMP6f imaging of infrared neural stimulation evoked calcium signals in mouse cortical neurons in vivo. Sci. Rep. 2021;11:1–18. doi: 10.1038/s41598-021-89163-x. PubMed DOI PMC
Varga V, et al. The presence of pacemaker HCN channels identifies theta rhythmic GABAergic neurons in the medial septum. J. Physiol. 2008;586:3893–3915. doi: 10.1113/jphysiol.2008.155242. PubMed DOI PMC
Rice MW, Roberts RC, Melendez-Ferro M, Perez-Costas E. Mapping dopaminergic deficiencies in the substantia nigra/ventral tegmental area in schizophrenia. Brain Struct. Funct. 2016;221:185–201. doi: 10.1007/s00429-014-0901-y. PubMed DOI PMC
Melendez-Ferro M, Rice MW, Roberts RC, Perez-Costas E. An accurate method for the quantification of cytochrome C oxidase in tissue sections. J. Neurosci. Methods. 2013;214:156–162. doi: 10.1016/j.jneumeth.2013.01.010. PubMed DOI PMC
Park JH, et al. Alpha-synuclein-induced mitochondrial dysfunction is mediated via a sirtuin 3-dependent pathway. Mol. Neurodegener. 2020;15:1–19. doi: 10.1186/s13024-019-0349-x. PubMed DOI PMC
Perier C, Vila M. Mitochondrial biology and Parkinson’s disease. Cold Spring Harb. Perspect. Med. 2012;2:1–19. doi: 10.1101/cshperspect.a009332. PubMed DOI PMC
Öztürk Z, O’Kane CJ, Pérez-Moreno JJ. Axonal endoplasmic reticulum dynamics and its roles in neurodegeneration. Front. Neurosci. 2020;14:1–33. doi: 10.3389/fnins.2020.00048. PubMed DOI PMC
Burté F, Carelli V, Chinnery PF, Yu-Wai-Man P. Disturbed mitochondrial dynamics and neurodegenerative disorders. Nat. Rev. Neurol. 2015;11:11–24. doi: 10.1038/nrneurol.2014.228. PubMed DOI
Park J-S, Davis RL, Sue CM. Mitochondrial dysfunction in Parkinson’s disease: New mechanistic insights and therapeutic perspectives. Curr. Neurol. Neurosci. Rep. 2018;18:21. doi: 10.1007/s11910-018-0829-3. PubMed DOI PMC
Fahn S. The history of dopamine and levodopa in the treatment of Parkinson’s disease. Mov. Disord. 2008;23:S497–S508. doi: 10.1002/mds.22028. PubMed DOI
Agid Y. Parkinson’ s disease: Pathophysiology. Lancet. 1991;337:1321–1324. doi: 10.1016/0140-6736(91)92989-F. PubMed DOI
Bernheimer H, Birkmayer W, Hornykiewicz O, Jellinger K, Seitelberger F. Brain dopamine and the syndromes of Parkinson and Huntington Clinical, morphological and neurochemical correlations. J. Neurol. Sci. 1973;20:415–455. doi: 10.1016/0022-510X(73)90175-5. PubMed DOI
Riederer P, Wuketich S. Time course of nigrostriatal degeneration in Parkinson’s disease—A detailed study of influential factors in human brain amine analysis. J. Neural Transm. 1976;38:277–301. doi: 10.1007/BF01249445. PubMed DOI
Schapira AHV, Olanow CW, Greenamyre JT, Bezard E. Slowing of neurodegeneration in Parkinson’s disease and Huntington’s disease: Future therapeutic perspectives. Lancet. 2014;384:545–555. doi: 10.1016/S0140-6736(14)61010-2. PubMed DOI
French IT, Muthusamy KA. A review of sleep and its disorders in patients with Parkinson’s disease in relation to various brain structures. Front. Aging Neurosci. 2016;8:1–20. doi: 10.3389/fnagi.2016.00114. PubMed DOI PMC
Titova N, Chaudhuri KR. Personalized medicine and nonmotor symptoms in Parkinson’s disease. Int. Rev. Neurobiol. 2017;134:1257–1281. doi: 10.1016/bs.irn.2017.05.015. PubMed DOI
Johnson ME, Stecher B, Labrie V, Brundin L, Brundin P. Triggers, facilitators, and aggravators: Redefining Parkinson’s disease pathogenesis. Trends Neurosci. 2019;42:4–13. doi: 10.1016/j.tins.2018.09.007. PubMed DOI PMC
Albin RL, Young AB, Penney JB. The functional anatomy of basal ganglia disorders. Trends Neurosci. 1989;12:366–375. doi: 10.1016/0166-2236(89)90074-X. PubMed DOI
Ugrumov MV, et al. Modeling of presymptomatic and symptomatic stages of Parkinsonism in mice. Neuroscience. 2011;181:175–188. doi: 10.1016/j.neuroscience.2011.03.007. PubMed DOI
Schapira AHV. Neurobiology and treatment of Parkinson’s disease. Trends Pharmacol. Sci. 2009;30:41–47. doi: 10.1016/j.tips.2008.10.005. PubMed DOI
Bové J, Perier C. Neurotoxin-based models of Parkinson’s disease. Neuroscience. 2012;211:51–76. doi: 10.1016/j.neuroscience.2011.10.057. PubMed DOI
Carnicella S, et al. Implication of dopamine D3 receptor activation in the reversion of Parkinson’s disease-related motivational deficits. Transl. Psychiatry. 2014;4:e401–e408. doi: 10.1038/tp.2014.43. PubMed DOI PMC
Solari N, Bonito-Oliva A, Fisone G, Brambilla R. Understanding cognitive deficits in Parkinson’s disease: Lessons from preclinical animal models. Learn. Mem. 2013;20:592–600. doi: 10.1101/lm.032029.113. PubMed DOI
Faull RLM, Laverty R. Changes in dopamine levels in the corpus striatum following lesions in the substantia nigra. Exp. Neurol. 1969;23:332–340. doi: 10.1016/0014-4886(69)90081-8. PubMed DOI
Lee CS, Sauer H, Björklund A. Dopaminergic neuronal degeneration and motor impairments following axon terminal lesion by intrastriatal 6-hydroxydopamine in the rat. Neuroscience. 1996;72:641–653. doi: 10.1016/0306-4522(95)00571-4. PubMed DOI
Kirik D, Rosenblad C, Björklund A. Characterization of behavioral and neurodegenerative changes following partial lesions of the nigrostriatal dopamine system induced by intrastriatal 6-hydroxydopamine in the rat. Exp. Neurol. 1998;152:259–277. doi: 10.1006/exnr.1998.6848. PubMed DOI
Bez F, Francardo V, Cenci MA. Dramatic differences in susceptibility to l-DOPA-induced dyskinesia between mice that are aged before or after a nigrostriatal dopamine lesion. Neurobiol. Dis. 2016;94:213–225. doi: 10.1016/j.nbd.2016.06.005. PubMed DOI
Francardo V, Cenci MA. Investigating the molecular mechanisms of L-DOPA-induced dyskinesia in the mouse. Parkinsonism Relat. Disord. 2014;20:S20–S22. doi: 10.1016/S1353-8020(13)70008-7. PubMed DOI
Lundblad M, Picconi B, Lindgren H, Cenci MA. A model of L-DOPA-induced dyskinesia in 6-hydroxydopamine lesioned mice: Relation to motor and cellular parameters of nigrostriatal function. Neurobiol. Dis. 2004;16:110–123. doi: 10.1016/j.nbd.2004.01.007. PubMed DOI
Bido S, et al. Differential involvement of Ras-GRF1 and Ras-GRF2 in L-DOPA-induced dyskinesia. Ann. Clin. Transl. Neurol. 2015;2:662–678. doi: 10.1002/acn3.202. PubMed DOI PMC
Iancu R, Mohapel P, Brundin P, Paul G. Behavioral characterization of a unilateral 6-OHDA-lesion model of Parkinson’s disease in mice. Behav. Brain Res. 2005;162:1–10. doi: 10.1016/j.bbr.2005.02.023. PubMed DOI
Carvalho MM, et al. Behavioral characterization of the 6-hydroxidopamine model of Parkinson’ s disease and pharmacological rescuing of non-motor deficits. Mol. Neurodegener. 2013;8:1–11. doi: 10.1186/1750-1326-8-14. PubMed DOI PMC
Mendes-Pinheiro B, et al. Unilateral intrastriatal 6-hydroxydopamine lesion in mice: A closer look into non-motor phenotype and glial response. Int. J. Mol. Sci. 2021;22:11530. doi: 10.3390/ijms222111530. PubMed DOI PMC
Su RJ, et al. Time-course behavioral features are correlated with Parkinson’s disease-associated pathology in a 6-hydroxydopamine hemiparkinsonian rat model. Mol. Med. Rep. 2018;17:3356–3363. PubMed PMC
Stephen Fink J, Smith GP. Mesolimbicocortical dopamine terminal fields are necessary for normal locomotor and investigatory exploration in rats. Brain Res. 1980;199:359–384. doi: 10.1016/0006-8993(80)90695-2. PubMed DOI
Arber S, Costa RM. Networking brainstem and basal ganglia circuits for movement. Nat. Rev. Neurosci. 2022;23:342–360. doi: 10.1038/s41583-022-00581-w. PubMed DOI
Guatteo E, Berretta N, Monda V, Ledonne A, Mercuri NB. Pathophysiological features of nigral dopaminergic neurons in animal models of Parkinson’s disease. Int. J. Mol. Sci. 2022;23:4508. doi: 10.3390/ijms23094508. PubMed DOI PMC
Surmeier DJ. Determinants of dopaminergic neuron loss in Parkinson’s disease. FEBS J. 2018;285:3657–3668. doi: 10.1111/febs.14607. PubMed DOI PMC
Seidl SE, Potashkin JA. The promise of neuroprotective agents in Parkinson’s disease. Front. Neurol. 2011;2:1–19. doi: 10.3389/fneur.2011.00068. PubMed DOI PMC
Erekat NS. Apoptosis and its Role in Parkinson’s Disease. Exon Publications; 2018. PubMed
Van Nuenen BFL, et al. Mapping preclinical compensation in Parkinson’s disease: An imaging genomics approach. Mov. Disord. 2009;24:703–710. PubMed
Bezard E, Gross CE, Brotchie JM. Presymptomatic compensation in Parkinson’s disease is not dopamine-mediated. Trends Neurosci. 2003;26:215–221. doi: 10.1016/S0166-2236(03)00038-9. PubMed DOI
Cramb KML, Beccano-kelly D, Wade-martins R, Cragg SJ. Impaired dopamine release in Parkinson’ s disease. Brain. 2023;1:1–16. PubMed PMC
Stoessl AJ. Positron emission tomography in premotor Parkinson’ s disease. Parkinsonism Relat. Disord. 2007;13:421–424. doi: 10.1016/S1353-8020(08)70041-5. PubMed DOI
Hilker R, et al. Positron emission tomographic analysis of the nigrostriatal dopaminergic system in familial parkinsonism associated with mutations in the Parkin gene. Ann. Neurol. 2001;49:367–376. doi: 10.1002/ana.74. PubMed DOI
Sun F, et al. Next-generation GRAB sensors for monitoring dopaminergic activity in vivo. Nat. Methods. 2020;17:1156–1166. doi: 10.1038/s41592-020-00981-9. PubMed DOI PMC
Roberts BM, et al. GABA uptake transporters support dopamine release in dorsal striatum with maladaptive downregulation in a parkinsonism model. Nat. Commun. 2020;11:1–17. doi: 10.1038/s41467-020-18247-5. PubMed DOI PMC
Sheng Z, Cai Q. Mitochondrial transport in neurons. Nat. Rev. Neurosci. 2012;13:77–93. doi: 10.1038/nrn3156. PubMed DOI PMC
Keating DJ. Mitochondrial dysfunction, oxidative stress, regulation of exocytosis and their relevance to neurodegenerative diseases. J. Neurochem. 2008;104:298–305. doi: 10.1111/j.1471-4159.2007.04997.x. PubMed DOI
German CL, Baladi MG, McFadden LM, Hanson GR, Fleckenstein AE. Regulation of the dopamine and vesicular monoamine transporters: Pharmacological targets and implications for disease. Pharmacol. Rev. 2015;67:1005–1024. doi: 10.1124/pr.114.010397. PubMed DOI PMC
Gomez-lazaro M, et al. 6-Hydroxydopamine activates the mitochondrial apoptosis pathway through p38 MAPK-mediated, p53-independent activation of Bax and PUMA. J. Neurochem. 2008;104:1599–1612. doi: 10.1111/j.1471-4159.2007.05115.x. PubMed DOI
Cheng H, Ulane CM, Burke RE. Clinical progression in Parkinson disease and the neurobiology of axons. Ann. Neurol. 2010;67:715–725. doi: 10.1002/ana.21995. PubMed DOI PMC
Tagliaferro P, Burke RE. Retrograde axonal degeneration in Parkinson disease. J. Parkinsons. Dis. 2016;6:1–15. doi: 10.3233/JPD-150769. PubMed DOI PMC
Ureshino RP, et al. Effects of aging in the striatum and substantia nigra of a Parkinson’ s disease animal model. Toxicol. Pathol. 2018;46:348–358. doi: 10.1177/0192623318767065. PubMed DOI
Boix J, von Hieber D, Connor B. Gait analysis for early detection of motor symptoms in the 6-ohda rat model of Parkinson’s disease. Front. Behav. Neurosci. 2018;12:1–15. doi: 10.3389/fnbeh.2018.00039. PubMed DOI PMC
Parker JG, et al. Diametric neural ensemble dynamics in parkinsonian and dyskinetic states. Nature. 2018;557:177–182. doi: 10.1038/s41586-018-0090-6. PubMed DOI PMC
Moghaddam HS, Zare-Shahabadi A, Rahmani F, Rezaei N. Neurotransmission systems in Parkinson’s disease. Rev. Neurosci. 2017;28:509–536. doi: 10.1515/revneuro-2016-0068. PubMed DOI
Giguère N, Nanni SB, Trudeau LE. On cell loss and selective vulnerability of neuronal populations in Parkinson’s disease. Front. Neurol. 2018;9:1–22. doi: 10.3389/fneur.2018.00455. PubMed DOI PMC