• This record comes from PubMed

Behavioral, neural and ultrastructural alterations in a graded-dose 6-OHDA mouse model of early-stage Parkinson's disease

. 2023 Nov 09 ; 13 (1) : 19478. [epub] 20231109

Language English Country England, Great Britain Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Links

PubMed 37945922
PubMed Central PMC10636184
DOI 10.1038/s41598-023-46576-0
PII: 10.1038/s41598-023-46576-0
Knihovny.cz E-resources

Studying animal models furthers our understanding of Parkinson's disease (PD) pathophysiology by providing tools to investigate detailed molecular, cellular and circuit functions. Different versions of the neurotoxin-based 6-hydroxydopamine (6-OHDA) model of PD have been widely used in rats. However, these models typically assess the result of extensive and definitive dopaminergic lesions that reflect a late stage of PD, leading to a paucity of studies and a consequential gap of knowledge regarding initial stages, in which early interventions would be possible. Additionally, the better availability of genetic tools increasingly shifts the focus of research from rats to mice, but few mouse PD models are available yet. To address these, we characterize here the behavioral, neuronal and ultrastructural features of a graded-dose unilateral, single-injection, striatal 6-OHDA model in mice, focusing on early-stage changes within the first two weeks of lesion induction. We observed early onset, dose-dependent impairments of overall locomotion without substantial deterioration of motor coordination. In accordance, histological evaluation demonstrated a partial, dose-dependent loss of dopaminergic neurons of substantia nigra pars compacta (SNc). Furthermore, electron microscopic analysis revealed degenerative ultrastructural changes in SNc dopaminergic neurons. Our results show that mild ultrastructural and cellular degradation of dopaminergic neurons of the SNc can lead to certain motor deficits shortly after unilateral striatal lesions, suggesting that a unilateral dose-dependent intrastriatal 6-OHDA lesion protocol can serve as a successful model of the early stages of Parkinson's disease in mice.

See more in PubMed

Obeso JA, et al. Past, present, and future of Parkinson’s disease: A special essay on the 200th Anniversary of the Shaking Palsy. Mov. Disord. 2017;32:1264–1310. doi: 10.1002/mds.27115. PubMed DOI PMC

Przedborski S. The two-century journey of Parkinson disease research. Nat. Rev. Neurosci. 2017;18:251–259. doi: 10.1038/nrn.2017.25. PubMed DOI

Bloem BR, Okun MS, Klein C. Parkinson’s disease. Lancet. 2021;397:2284–2303. doi: 10.1016/S0140-6736(21)00218-X. PubMed DOI

Jankovic J, Aguilar LG. Current approaches to the treatment of Parkinson’s disease. Neuropsychiatr. Dis. Treat. 2008;4:743–757. doi: 10.2147/NDT.S2006. PubMed DOI PMC

Schapira AHV, Chaudhuri KR, Jenner P. Non-motor features of Parkinson disease. Nat. Rev. Neurosci. 2017;18:435–450. doi: 10.1038/nrn.2017.62. PubMed DOI

Fearnley JM, Lees AJ. Ageing and parkinson’s disease: Substantia nigra regional selectivity. Brain. 1991;114:2283–2301. doi: 10.1093/brain/114.5.2283. PubMed DOI

Ehringer H, Hornykiewicz O. Verteilung Von Noradrenalin Und Dopamin (3-Hydroxytyramin) Im Gehirn Des Menschen Und Ihr Verhalten Bei Erkrankungen Des Extrapyramidalen Systems. Klin. Wochenschr. 1960;38:1236–1239. doi: 10.1007/BF01485901. PubMed DOI

Dawson VL, Dawson TM. Promising disease-modifying therapies for Parkinson’s disease. Sci. Transl. Med. 2019;11:1–4. doi: 10.1126/scitranslmed.aba1659. PubMed DOI

Braak H, Rüb U, Gai WP, Del Tredici K. Idiopathic Parkinson’s disease: Possible routes by which vulnerable neuronal types may be subject to neuroinvasion by an unknown pathogen. J. Neural Transm. 2003;110:517–536. doi: 10.1007/s00702-002-0808-2. PubMed DOI

Fahn S. Description of Parkinson’s disease as a clinical syndrome. New York Acad. Sci. 2003;991:1–14. doi: 10.1111/j.1749-6632.2003.tb07458.x. PubMed DOI

Rodriguez-Oroz MC, et al. Initial clinical manifestations of Parkinson’s disease: Features and pathophysiological mechanisms. Lancet Neurol. 2009;8:1128–1139. doi: 10.1016/S1474-4422(09)70293-5. PubMed DOI

Li J, et al. Alterations of regional homogeneity in the mild and moderate stages of Parkinson’s disease. Front. Aging Neurosci. 2021;13:1–10. doi: 10.3389/fnagi.2021.676899. PubMed DOI PMC

Chen X, Liu M, Wu Z, Cheng H. Topological abnormalities of functional brain network in early-stage Parkinson’s disease patients with mild cognitive impairment. Front. Neurosci. 2020;14:1–7. doi: 10.3389/fnins.2020.616872. PubMed DOI PMC

Drui G, et al. Loss of dopaminergic nigrostriatal neurons accounts for the motivational and affective deficits in Parkinson’s disease. Mol. Psychiatry. 2014;19:358–367. doi: 10.1038/mp.2013.3. PubMed DOI PMC

Favier M, et al. Pramipexole reverses Parkinson’s disease-related motivational deficits in rats. Mov. Disord. 2014;29:912–920. doi: 10.1002/mds.25837. PubMed DOI

Graham SF, et al. Metabolomic profiling of bile acids in an experimental model of prodromal parkinson’s disease. Metabolites. 2018;8:71–80. doi: 10.3390/metabo8040071. PubMed DOI PMC

Mollenhauer B, et al. Longitudinal analyses of cerebrospinal fluid α-Synuclein in prodromal and early Parkinson’s disease. Mov. Disord. 2019;34:1354–1364. doi: 10.1002/mds.27806. PubMed DOI PMC

Mallet D, et al. A metabolic biomarker predicts Parkinson’s disease at the early stages in patients and animal models. J. Clin. Invest. 2022;132:1–16. doi: 10.1172/JCI146400. PubMed DOI PMC

Mahlknecht P, Seppi K, Poewe W. The concept of prodromal Parkinson’s disease. J. Parkinsons. Dis. 2015;5:681–697. doi: 10.3233/JPD-150685. PubMed DOI PMC

Dunnett SB, Lelos M. Behavioral analysis of motor and non-motor symptoms in rodent models of Parkinson’s disease. Prog. Brain Res. 2010;184:35–51. doi: 10.1016/S0079-6123(10)84003-8. PubMed DOI

Hou JGG, Lai EC. Non-motor symptoms of Parkinson’s disease. Int. J. Gerontol. 2007;1:53–64. doi: 10.1016/S1873-9598(08)70024-3. DOI

Chu HY, McIver EL, Kovaleski RF, Atherton JF, Bevan MD. Loss of hyperdirect pathway cortico-subthalamic inputs following degeneration of midbrain dopamine neurons. Neuron. 2017;95:1306–1318. doi: 10.1016/j.neuron.2017.08.038. PubMed DOI PMC

van Wijk BCM. Is broadband gamma activity pathologically synchronized to the beta rhythm in parkinson’s disease? J. Neurosci. 2017;37:9347–9349. doi: 10.1523/JNEUROSCI.2023-17.2017. PubMed DOI PMC

Przedbroski S, et al. Dose-dependent lesions of the dopaminergic nigrostriatal pathway induced by instrastriatal injection of 6-hydroxydopamine. Neuroscience. 1995;67:631–647. doi: 10.1016/0306-4522(95)00066-R. PubMed DOI

Park SE, Song KI, Kim H, Chung S, Youn I. Graded 6-OHDA-induced dopamine depletion in the nigrostriatal pathway evokes progressive pathological neuronal activities in the subthalamic nucleus of a hemi-parkinsonian mouse. Behav. Brain Res. 2018;344:42–47. doi: 10.1016/j.bbr.2018.02.014. PubMed DOI

Iarkov A, Barreto GE, Grizzell JA, Echeverria V. Strategies for the treatment of Parkinson’s disease: Beyond dopamine. Front. Aging Neurosci. 2020;12:1–20. doi: 10.3389/fnagi.2020.00004. PubMed DOI PMC

Cenci MA, Lundblad M. Ratings of L-DOPA-induced dyskinesia in the unilateral 6-OHDA lesion model of parkinson’s disease in rats and mice. Curr. Protoc. Neurosci. 2007;41:1–23. doi: 10.1002/0471142301.ns0925s41. PubMed DOI

Steiner H, Kitai ST. Unilateral striatal dopamine depletion: Time-dependent effects on cortical function and behavioural correlates. Eur. J. Neurosci. 2001;14:1390–1404. doi: 10.1046/j.0953-816x.2001.01756.x. PubMed DOI

Tadaiesky MT, Dombrowski PA. Emotinal, cognitive and neurochemical alterations in a premotor stage model of Parkinson’s disease. Neuroscience. 2008;156:830–840. doi: 10.1016/j.neuroscience.2008.08.035. PubMed DOI

Campos FL, et al. Rodent models of Parkinson’s disease: Beyond the motor symptomatology. Front. Behav. Neurosci. 2013;7:1–11. doi: 10.3389/fnbeh.2013.00175. PubMed DOI PMC

Soler R, Fullhase C, Santos CA. Suppression of bladder overactivity by adenosine A 2A receptor antagonist in a rat model of Parkinson's disease. J. Urol. 2010;183:1–2.

Yoshimura N, Kuno S, Chancellor MB, de Groat WC, Seki S. Dopaminergic mechanisms underlying bladder hyperactivity in rats with a unilateral 6-hydroxydopamine (6-OHDA) lesion of the nigrostriatal pathway. Br. J. Pharmacol. 2003;139:1425–1432. doi: 10.1038/sj.bjp.0705388. PubMed DOI PMC

Karasawa H, et al. New ghrelin agonist, HM01 alleviates constipation and L-dopa-delayed gastric emptying in 6-hydroxydopamine rat model of Parkinson’s disease. Neurogastroenterol. Motil. 2014;26:1771–1782. doi: 10.1111/nmo.12459. PubMed DOI PMC

Paxinos G, Watson C. Chemoarchitectonic Atlas of the Mouse Brain. Academic Press; 2010.

Paxinos G, Franklin KBJ. The Mouse Brain in Stereotaxic Coordinates. Elsevier; 2003.

Franklin MA, Keith BJ, Paxinos G. The Mouse Brain in Stereotaxic Coordinates. Elsevier; 2008.

Gulyás M, Bencsik N, Pusztai S, Liliom H, Schlett K. AnimalTracker: An ImageJ-based tracking API to create a customized behaviour analyser program. Neuroinformatics. 2016;14:479–481. doi: 10.1007/s12021-016-9303-z. PubMed DOI

Mátyás F, et al. Identification of the sites of 2-arachidonoylglycerol synthesis and action imply retrograde endocannabinoid signaling at both GABAergic and glutamatergic synapses in the ventral tegmental area. Neuropharmacology. 2008;54:95–107. doi: 10.1016/j.neuropharm.2007.05.028. PubMed DOI PMC

Bartho P, et al. Cortical control of Zona incerta. J. Neurosci. 2007;27:1670–1681. doi: 10.1523/JNEUROSCI.3768-06.2007. PubMed DOI PMC

Barthó P, et al. Ongoing network state controls the length of sleep spindles via inhibitory activity. Neuron. 2014;82:1367–1379. doi: 10.1016/j.neuron.2014.04.046. PubMed DOI PMC

Bokor H, et al. Selective GABAergic control of higher-order thalamic relays. Neuron. 2005;45:929–940. doi: 10.1016/j.neuron.2005.01.048. PubMed DOI

Slezia A, et al. Phase advancement and nucleus-specific timing of thalamocortical activity during slow cortical oscillation. J. Neurosci. 2011;31:607–617. doi: 10.1523/JNEUROSCI.3375-10.2011. PubMed DOI PMC

Proctor CM, et al. Electrophoretic drug delivery for seizure control. Sci. Adv. 2018;4:1–8. doi: 10.1126/sciadv.aau1291. PubMed DOI PMC

Slezia A, Proctor CM, Kaszas A, Malliaras GG, Williamson A. Electrophoretic delivery of γ-aminobutyric acid (GABA) into epileptic focus prevents seizures in mice. J. Vis. Exp. 2019;147:1–9. PubMed

Kaszas A, et al. Two-photon GCaMP6f imaging of infrared neural stimulation evoked calcium signals in mouse cortical neurons in vivo. Sci. Rep. 2021;11:1–18. doi: 10.1038/s41598-021-89163-x. PubMed DOI PMC

Varga V, et al. The presence of pacemaker HCN channels identifies theta rhythmic GABAergic neurons in the medial septum. J. Physiol. 2008;586:3893–3915. doi: 10.1113/jphysiol.2008.155242. PubMed DOI PMC

Rice MW, Roberts RC, Melendez-Ferro M, Perez-Costas E. Mapping dopaminergic deficiencies in the substantia nigra/ventral tegmental area in schizophrenia. Brain Struct. Funct. 2016;221:185–201. doi: 10.1007/s00429-014-0901-y. PubMed DOI PMC

Melendez-Ferro M, Rice MW, Roberts RC, Perez-Costas E. An accurate method for the quantification of cytochrome C oxidase in tissue sections. J. Neurosci. Methods. 2013;214:156–162. doi: 10.1016/j.jneumeth.2013.01.010. PubMed DOI PMC

Park JH, et al. Alpha-synuclein-induced mitochondrial dysfunction is mediated via a sirtuin 3-dependent pathway. Mol. Neurodegener. 2020;15:1–19. doi: 10.1186/s13024-019-0349-x. PubMed DOI PMC

Perier C, Vila M. Mitochondrial biology and Parkinson’s disease. Cold Spring Harb. Perspect. Med. 2012;2:1–19. doi: 10.1101/cshperspect.a009332. PubMed DOI PMC

Öztürk Z, O’Kane CJ, Pérez-Moreno JJ. Axonal endoplasmic reticulum dynamics and its roles in neurodegeneration. Front. Neurosci. 2020;14:1–33. doi: 10.3389/fnins.2020.00048. PubMed DOI PMC

Burté F, Carelli V, Chinnery PF, Yu-Wai-Man P. Disturbed mitochondrial dynamics and neurodegenerative disorders. Nat. Rev. Neurol. 2015;11:11–24. doi: 10.1038/nrneurol.2014.228. PubMed DOI

Park J-S, Davis RL, Sue CM. Mitochondrial dysfunction in Parkinson’s disease: New mechanistic insights and therapeutic perspectives. Curr. Neurol. Neurosci. Rep. 2018;18:21. doi: 10.1007/s11910-018-0829-3. PubMed DOI PMC

Fahn S. The history of dopamine and levodopa in the treatment of Parkinson’s disease. Mov. Disord. 2008;23:S497–S508. doi: 10.1002/mds.22028. PubMed DOI

Agid Y. Parkinson’ s disease: Pathophysiology. Lancet. 1991;337:1321–1324. doi: 10.1016/0140-6736(91)92989-F. PubMed DOI

Bernheimer H, Birkmayer W, Hornykiewicz O, Jellinger K, Seitelberger F. Brain dopamine and the syndromes of Parkinson and Huntington Clinical, morphological and neurochemical correlations. J. Neurol. Sci. 1973;20:415–455. doi: 10.1016/0022-510X(73)90175-5. PubMed DOI

Riederer P, Wuketich S. Time course of nigrostriatal degeneration in Parkinson’s disease—A detailed study of influential factors in human brain amine analysis. J. Neural Transm. 1976;38:277–301. doi: 10.1007/BF01249445. PubMed DOI

Schapira AHV, Olanow CW, Greenamyre JT, Bezard E. Slowing of neurodegeneration in Parkinson’s disease and Huntington’s disease: Future therapeutic perspectives. Lancet. 2014;384:545–555. doi: 10.1016/S0140-6736(14)61010-2. PubMed DOI

French IT, Muthusamy KA. A review of sleep and its disorders in patients with Parkinson’s disease in relation to various brain structures. Front. Aging Neurosci. 2016;8:1–20. doi: 10.3389/fnagi.2016.00114. PubMed DOI PMC

Titova N, Chaudhuri KR. Personalized medicine and nonmotor symptoms in Parkinson’s disease. Int. Rev. Neurobiol. 2017;134:1257–1281. doi: 10.1016/bs.irn.2017.05.015. PubMed DOI

Johnson ME, Stecher B, Labrie V, Brundin L, Brundin P. Triggers, facilitators, and aggravators: Redefining Parkinson’s disease pathogenesis. Trends Neurosci. 2019;42:4–13. doi: 10.1016/j.tins.2018.09.007. PubMed DOI PMC

Albin RL, Young AB, Penney JB. The functional anatomy of basal ganglia disorders. Trends Neurosci. 1989;12:366–375. doi: 10.1016/0166-2236(89)90074-X. PubMed DOI

Ugrumov MV, et al. Modeling of presymptomatic and symptomatic stages of Parkinsonism in mice. Neuroscience. 2011;181:175–188. doi: 10.1016/j.neuroscience.2011.03.007. PubMed DOI

Schapira AHV. Neurobiology and treatment of Parkinson’s disease. Trends Pharmacol. Sci. 2009;30:41–47. doi: 10.1016/j.tips.2008.10.005. PubMed DOI

Bové J, Perier C. Neurotoxin-based models of Parkinson’s disease. Neuroscience. 2012;211:51–76. doi: 10.1016/j.neuroscience.2011.10.057. PubMed DOI

Carnicella S, et al. Implication of dopamine D3 receptor activation in the reversion of Parkinson’s disease-related motivational deficits. Transl. Psychiatry. 2014;4:e401–e408. doi: 10.1038/tp.2014.43. PubMed DOI PMC

Solari N, Bonito-Oliva A, Fisone G, Brambilla R. Understanding cognitive deficits in Parkinson’s disease: Lessons from preclinical animal models. Learn. Mem. 2013;20:592–600. doi: 10.1101/lm.032029.113. PubMed DOI

Faull RLM, Laverty R. Changes in dopamine levels in the corpus striatum following lesions in the substantia nigra. Exp. Neurol. 1969;23:332–340. doi: 10.1016/0014-4886(69)90081-8. PubMed DOI

Lee CS, Sauer H, Björklund A. Dopaminergic neuronal degeneration and motor impairments following axon terminal lesion by intrastriatal 6-hydroxydopamine in the rat. Neuroscience. 1996;72:641–653. doi: 10.1016/0306-4522(95)00571-4. PubMed DOI

Kirik D, Rosenblad C, Björklund A. Characterization of behavioral and neurodegenerative changes following partial lesions of the nigrostriatal dopamine system induced by intrastriatal 6-hydroxydopamine in the rat. Exp. Neurol. 1998;152:259–277. doi: 10.1006/exnr.1998.6848. PubMed DOI

Bez F, Francardo V, Cenci MA. Dramatic differences in susceptibility to l-DOPA-induced dyskinesia between mice that are aged before or after a nigrostriatal dopamine lesion. Neurobiol. Dis. 2016;94:213–225. doi: 10.1016/j.nbd.2016.06.005. PubMed DOI

Francardo V, Cenci MA. Investigating the molecular mechanisms of L-DOPA-induced dyskinesia in the mouse. Parkinsonism Relat. Disord. 2014;20:S20–S22. doi: 10.1016/S1353-8020(13)70008-7. PubMed DOI

Lundblad M, Picconi B, Lindgren H, Cenci MA. A model of L-DOPA-induced dyskinesia in 6-hydroxydopamine lesioned mice: Relation to motor and cellular parameters of nigrostriatal function. Neurobiol. Dis. 2004;16:110–123. doi: 10.1016/j.nbd.2004.01.007. PubMed DOI

Bido S, et al. Differential involvement of Ras-GRF1 and Ras-GRF2 in L-DOPA-induced dyskinesia. Ann. Clin. Transl. Neurol. 2015;2:662–678. doi: 10.1002/acn3.202. PubMed DOI PMC

Iancu R, Mohapel P, Brundin P, Paul G. Behavioral characterization of a unilateral 6-OHDA-lesion model of Parkinson’s disease in mice. Behav. Brain Res. 2005;162:1–10. doi: 10.1016/j.bbr.2005.02.023. PubMed DOI

Carvalho MM, et al. Behavioral characterization of the 6-hydroxidopamine model of Parkinson’ s disease and pharmacological rescuing of non-motor deficits. Mol. Neurodegener. 2013;8:1–11. doi: 10.1186/1750-1326-8-14. PubMed DOI PMC

Mendes-Pinheiro B, et al. Unilateral intrastriatal 6-hydroxydopamine lesion in mice: A closer look into non-motor phenotype and glial response. Int. J. Mol. Sci. 2021;22:11530. doi: 10.3390/ijms222111530. PubMed DOI PMC

Su RJ, et al. Time-course behavioral features are correlated with Parkinson’s disease-associated pathology in a 6-hydroxydopamine hemiparkinsonian rat model. Mol. Med. Rep. 2018;17:3356–3363. PubMed PMC

Stephen Fink J, Smith GP. Mesolimbicocortical dopamine terminal fields are necessary for normal locomotor and investigatory exploration in rats. Brain Res. 1980;199:359–384. doi: 10.1016/0006-8993(80)90695-2. PubMed DOI

Arber S, Costa RM. Networking brainstem and basal ganglia circuits for movement. Nat. Rev. Neurosci. 2022;23:342–360. doi: 10.1038/s41583-022-00581-w. PubMed DOI

Guatteo E, Berretta N, Monda V, Ledonne A, Mercuri NB. Pathophysiological features of nigral dopaminergic neurons in animal models of Parkinson’s disease. Int. J. Mol. Sci. 2022;23:4508. doi: 10.3390/ijms23094508. PubMed DOI PMC

Surmeier DJ. Determinants of dopaminergic neuron loss in Parkinson’s disease. FEBS J. 2018;285:3657–3668. doi: 10.1111/febs.14607. PubMed DOI PMC

Seidl SE, Potashkin JA. The promise of neuroprotective agents in Parkinson’s disease. Front. Neurol. 2011;2:1–19. doi: 10.3389/fneur.2011.00068. PubMed DOI PMC

Erekat NS. Apoptosis and its Role in Parkinson’s Disease. Exon Publications; 2018. PubMed

Van Nuenen BFL, et al. Mapping preclinical compensation in Parkinson’s disease: An imaging genomics approach. Mov. Disord. 2009;24:703–710. PubMed

Bezard E, Gross CE, Brotchie JM. Presymptomatic compensation in Parkinson’s disease is not dopamine-mediated. Trends Neurosci. 2003;26:215–221. doi: 10.1016/S0166-2236(03)00038-9. PubMed DOI

Cramb KML, Beccano-kelly D, Wade-martins R, Cragg SJ. Impaired dopamine release in Parkinson’ s disease. Brain. 2023;1:1–16. PubMed PMC

Stoessl AJ. Positron emission tomography in premotor Parkinson’ s disease. Parkinsonism Relat. Disord. 2007;13:421–424. doi: 10.1016/S1353-8020(08)70041-5. PubMed DOI

Hilker R, et al. Positron emission tomographic analysis of the nigrostriatal dopaminergic system in familial parkinsonism associated with mutations in the Parkin gene. Ann. Neurol. 2001;49:367–376. doi: 10.1002/ana.74. PubMed DOI

Sun F, et al. Next-generation GRAB sensors for monitoring dopaminergic activity in vivo. Nat. Methods. 2020;17:1156–1166. doi: 10.1038/s41592-020-00981-9. PubMed DOI PMC

Roberts BM, et al. GABA uptake transporters support dopamine release in dorsal striatum with maladaptive downregulation in a parkinsonism model. Nat. Commun. 2020;11:1–17. doi: 10.1038/s41467-020-18247-5. PubMed DOI PMC

Sheng Z, Cai Q. Mitochondrial transport in neurons. Nat. Rev. Neurosci. 2012;13:77–93. doi: 10.1038/nrn3156. PubMed DOI PMC

Keating DJ. Mitochondrial dysfunction, oxidative stress, regulation of exocytosis and their relevance to neurodegenerative diseases. J. Neurochem. 2008;104:298–305. doi: 10.1111/j.1471-4159.2007.04997.x. PubMed DOI

German CL, Baladi MG, McFadden LM, Hanson GR, Fleckenstein AE. Regulation of the dopamine and vesicular monoamine transporters: Pharmacological targets and implications for disease. Pharmacol. Rev. 2015;67:1005–1024. doi: 10.1124/pr.114.010397. PubMed DOI PMC

Gomez-lazaro M, et al. 6-Hydroxydopamine activates the mitochondrial apoptosis pathway through p38 MAPK-mediated, p53-independent activation of Bax and PUMA. J. Neurochem. 2008;104:1599–1612. doi: 10.1111/j.1471-4159.2007.05115.x. PubMed DOI

Cheng H, Ulane CM, Burke RE. Clinical progression in Parkinson disease and the neurobiology of axons. Ann. Neurol. 2010;67:715–725. doi: 10.1002/ana.21995. PubMed DOI PMC

Tagliaferro P, Burke RE. Retrograde axonal degeneration in Parkinson disease. J. Parkinsons. Dis. 2016;6:1–15. doi: 10.3233/JPD-150769. PubMed DOI PMC

Ureshino RP, et al. Effects of aging in the striatum and substantia nigra of a Parkinson’ s disease animal model. Toxicol. Pathol. 2018;46:348–358. doi: 10.1177/0192623318767065. PubMed DOI

Boix J, von Hieber D, Connor B. Gait analysis for early detection of motor symptoms in the 6-ohda rat model of Parkinson’s disease. Front. Behav. Neurosci. 2018;12:1–15. doi: 10.3389/fnbeh.2018.00039. PubMed DOI PMC

Parker JG, et al. Diametric neural ensemble dynamics in parkinsonian and dyskinetic states. Nature. 2018;557:177–182. doi: 10.1038/s41586-018-0090-6. PubMed DOI PMC

Moghaddam HS, Zare-Shahabadi A, Rahmani F, Rezaei N. Neurotransmission systems in Parkinson’s disease. Rev. Neurosci. 2017;28:509–536. doi: 10.1515/revneuro-2016-0068. PubMed DOI

Giguère N, Nanni SB, Trudeau LE. On cell loss and selective vulnerability of neuronal populations in Parkinson’s disease. Front. Neurol. 2018;9:1–22. doi: 10.3389/fneur.2018.00455. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...