Novel Approaches for Elongation of Fish Oils into Very-Long-Chain Polyunsaturated Fatty Acids and Their Enzymatic Interesterification into Glycerolipids
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
37947776
PubMed Central
PMC10682991
DOI
10.1021/acs.jafc.3c05355
Knihovny.cz E-zdroje
- Klíčová slova
- ELOVL4, docosahexaenoic acid, eicosapentaenoic acid, enzymatic interesterification, fish oil concentrate, green chemistry, lipases, very-long-chain polyunsaturated fatty acids,
- MeSH
- lidé MeSH
- makulární degenerace vrozené MeSH
- mastné kyseliny analýza MeSH
- membránové proteiny * genetika MeSH
- nenasycené mastné kyseliny chemie MeSH
- retina MeSH
- rybí oleje * analýza MeSH
- sperma MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- mastné kyseliny MeSH
- membránové proteiny * MeSH
- nenasycené mastné kyseliny MeSH
- rybí oleje * MeSH
Elongation of the Very-Long-Chain Fatty Acids-4 (ELOVL4) enzyme that is expressed in neuronal tissues, sperm, and testes mediates biosynthesis of very-long-chain polyunsaturated fatty acids (VLC-PUFAs) from dietary long chain PUFAs (LC-PUFAs). The VLC-PUFAs are critical for neuronal and reproductive function. Therefore, mutations in ELOVL4 that affect VLC-PUFA biosynthesis contribute to retinal degenerative diseases including Autosomal Dominant Stargardt-like Macular Dystrophy (STGD3). Recent studies have also shown not only a depletion of retinal VLC-PUFAs with normal aging but also a more significant loss of VLC-PUFAs in donor eyes of patients with age-related macular degeneration (AMD). However, currently, there are no natural sources of VLC-PUFAs to be evaluated as dietary supplements for the attenuation of retinal degeneration in animal models of STGD3. Here, we report the development of a novel chemical approach for elongation of eicosapentaenoic (C20:5 n-3) and docosahexaenoic (C22:6 n-3) acids from fish oils by 6 carbon atoms to make a unique group of VLC-PUFAs, namely all-cis-hexacosa-11,14,17,20,23-pentaenoic acids (C26:5 n-3) and all-cis-octacosa-10,13,16,19,22,25-hexaenoic acids (C28:6 n-3). The three-step elongation approach that we report herein resulted in a good overall yield of up to 20.2%. This more sustainable approach also resulted in improved functional group compatibility and minimal impact on the geometrical integrity of the all-cis double bond system of the VLC-PUFAs. In addition, we also successfully used commercial deep-sea fish oil concentrate as an inexpensive material for the C6 elongation of fish oil LC-PUFAs into VLC-PUFAs, which resulted in the making of gram scales of VLC-PUFAs with an even higher isolation yield of 31.0%. The quality of fish oils and the content of oxidized lipids were key since both strongly affected the activity of the PEPPSI-IPr catalyst and ultimately the yield of coupling reactions. Downstream enzymatic interesterification was used for the first time to prepare structured glycerolipids enriched with VLC-PUFAs that could be evaluated in vivo to determine absorption and transport to target tissues relative to those of the free fatty acid forms. It turned out that in the synthesis of structured triacylglycerols and glycerophospholipids with VLC-PUFAs, the polarity of the immobilized lipase carrier and its humidity were essential.
Zobrazit více v PubMed
Tinoco J. Dietary requirements and functions of α-linolenic acid in animals. Prog. Lipid Res. 1982, 21, 1–45. 10.1016/0163-7827(82)90015-7. PubMed DOI
Liput K. P.; Lepczyński A.; Ogłuszka M.; Nawrocka A.; Poławska E.; Grzesiak A.; Ślaska B.; Pareek Ch.S.; Czarnik U.; Pierzchała M. Effects of Dietary n-3 and n-6 Polyunsaturated Fatty Acids in Inflammation and Cancerogenesis. Int. J. Mol. Sci. 2021, 22 (13), 6965.10.3390/ijms22136965. PubMed DOI PMC
Bazan N. G.; Allan G. Signal transduction and gene expression in the eye: a contemporary view of the pro-inflammatory, anti-inflammatory and modulatory roles of prostaglandins and other bioactive lipids. Surv. Ophthalmol. 1997, 41 (Suppl 2), S23–S34. 10.1016/S0039-6257(97)80004-5. PubMed DOI
Schmidt E. B.; Varming K.; Ernst E.; Madsen P.; Dyerberg J. Dose-Response Studies on the Effect of n-3 Polyunsaturated Fatty Acids on Lipids and Haemostasis. Thromb. Haemost. 1990, 63 (01), 001–005. 10.1055/s-0038-1645675. PubMed DOI
Benolken R. M.; Anderson R. E.; Wheeler T. G. Membrane Fatty Acids Associated with the Electrical Response in Visual Excitation. Science 1973, 182 (4118), 1253–1254. 10.1126/science.182.4118.1253. PubMed DOI
Wheeler T. G.; Benolken R. M.; Anderson R. E. Visual Membranes: Specificity of Fatty Acid Precursors for the Electrical Response to Illumination. Science 1975, 188 (4195), 1312–1314. 10.1126/science.1145197. PubMed DOI
Carlson S. E.; Colombo J. Docosahexaenoic Acid and Arachidonic Acid Nutrition in Early Development. Adv. Pediatr. 2016, 63, 453–471. 10.1016/j.yapd.2016.04.011. PubMed DOI PMC
Campoy C.; Escolano-Margarit M. V.; Anjos T.; Szajewska H.; Uauy R. Omega 3 fatty acids on child growth, visual acuity and neurodevelopment. Br. J. Nutr. 2012, 107 (S2), S85–S106. 10.1017/S0007114512001493. PubMed DOI
Aveldaño M. I. A Novel Group of Very Long Chain Polyenoic Fatty Acids in Dipolyunsaturated Phosphatidylcholines from Vertebrate retina. J. Biol. Chem. 1987, 262 (3), 1172–1179. 10.1016/S0021-9258(19)75767-6. PubMed DOI
Aveldaño M. I.; Sprecher H. Very Long Chain (C24 to C36) Polyenoic Fatty Acids of the n - 3 and n - 6 Series in Dipolyunsaturated Phosphatidylcholines from Bovine Retina. J. Biol. Chem. 1987, 262 (3), 1180–1186. 10.1016/S0021-9258(19)75768-8. PubMed DOI
Berdeaux O.; Juaneda P.; Martine L.; Cabaret S.; Bretillon L.; Acar N. Identification and quantification of phosphatidylcholines containing very-long-chain polyunsaturated fatty acid in bovine and human retina using liquid chromatography/tandem mass spectrometry. J. Chromatogr. A 2010, 1217, 7738–7748. 10.1016/j.chroma.2010.10.039. PubMed DOI
Poulos A.; Johnson D. W.; Beckman K.; White I. G.; Easton C. Occurrence of unusual molecular species of sphingomyelin containing 28–34-carbon polyenoic fatty acids in ram spermatozoa. Biochem. J. 1987, 248, 961–964. 10.1042/bj2480961. PubMed DOI PMC
Agbaga M.-P.; Brush R. S.; Mandal M. N. A.; Henry K.; Elliott M. H.; Anderson R. E. Role of Stargardt-3 macular dystrophy protein (ELOVL4) in the biosynthesis of very long chain fatty acids. Proc. Natl. Acad. Sci. U.S.A. 2008, 105 (35), 12843–12848. 10.1073/pnas.0802607105. PubMed DOI PMC
Edwards A. O.; Donoso L. A.; Ritter R. A Novel Gene for Autosomal Dominant Stargardt-like Macular Dystrophy with Homology to the SUR4 Protein Family. Invest. Ophthalmol. Vis. Sci. 2001, 42 (11), 2652–2663. PubMed
Zhang K.; Kniazeva M.; Han M.; Li W.; Yu Z.; Yang Z.; Li Y.; Metzker M. L.; Allikmets R.; Zack D. J.; Kakuk L. E.; Lagali P. S.; Wong P. W.; MacDonald I. M.; Sieving P. A.; Figueroa D. J.; Austin Ch.P.; Gould R. J.; Ayyagari R.; Petrukhin K. A 5-bp deletion in ELOVL4 is associated with two related forms of autosomal dominant macular dystrophy. Nat. Genet. 2001, 27, 89–93. 10.1038/83817. PubMed DOI
Bernstein P. S.; Tammur J.; Singh N.; Hutchinson A.; Dixon M.; Pappas Ch.M.; Zabriskie N. A.; Zhang K.; Petrukhin K.; Leppert M.; Allikmets R. Diverse Macular Dystrophy Phenotype Caused by a Novel Complex Mutation in the ELOVL4 gene. Invest. Ophthalmol. Vis. Sci. 2001, 42 (13), 3331–3336. PubMed
Hopiavuori B. R.; Anderson R. E.; Agbaga M.-P. ELOVL4: Very long-chain fatty acids serve an eclectic role in mammalian health and function. Prog. Retinal Eye Res. 2019, 69, 137–158. 10.1016/j.preteyeres.2018.10.004. PubMed DOI PMC
Hopiavuori B. R.; Deák F.; Wilkerson J. L.; Brush R. S.; Rocha-Hopiavuori N. A.; Hopiavuori A. R.; Ozan K. G.; Sullivan M. T.; Wren J. D.; Georgescu C.; Szweda L.; Awasthi V.; Towner R.; Sherry D. M.; Anderson R. E.; Agbaga M.-P. Homozygous Expression of Mutant ELOVL4 Leads to Seizures and Death in a Novel Animal Model of Very Long-Chain Fatty Acid Deficiency. Mol. Neurobiol. 2018, 55, 1795–1813. 10.1007/s12035-017-0824-8. PubMed DOI PMC
Vasireddy V.; Uchida Y.; Salem Jr N.; Kim S. Y.; Mandal M. N. A.; Reddy G. B.; Bodepudi R.; Alderson N. L.; Brown J. C.; Hama H.; Dlugosz A.; Elias P. M.; Holleran W. M.; Ayyagari R. Loss of functional ELOVL4 depletes very long-chain fatty acids (≥C28) and the unique ω-O-acylceramides in skin leading to neonatal death. Hum. Mol. Genet. 2007, 16 (5), 471–482. 10.1093/hmg/ddl480. PubMed DOI PMC
McMahon A.; Lu H.; Butovich I. A. A Role for ELOVL4 in the Mouse Meibomian Gland and Sebocyte Cell Biology. Invest. Ophthalmol. Vis. Sci. 2014, 55, 2832–2840. 10.1167/iovs.13-13335. PubMed DOI PMC
Sherry D. M.; Hopiavuori B. R.; Stiles M. A.; Rahman N. S.; Ozan K. G.; Deák F.; Agbaga M.-P.; Anderson R. E. Distribution of ELOVL4 in the Developing and Adult Mouse Brain. Front. Neuroanat. 2017, 11, 38.10.3389/fnana.2017.00038. PubMed DOI PMC
Hopiavuori B. R.; Agbaga M.-P.; Brush R. S.; Sullivan M. T.; Sonntag W. E.; Anderson R. E. Regional changes in CNS and retinal glycerophospholipid profile with age: a molecular blueprint. J. Lipid Res. 2017, 58, 668–680. 10.1194/jlr.M070714. PubMed DOI PMC
Mandal M. N. A.; Ambasudhan R.; Wong P. W.; Gage P. J.; Sieving P. A.; Ayyagari R. Characterization of mouse orthologue of ELOVL4: genomic organization and spatial and temporal expression. Genomics 2004, 83, 626–635. 10.1016/j.ygeno.2003.09.020. PubMed DOI
Scott B. L.; Bazan N. G. Membrane docosahexaenoate is supplied to the developing brain and retina by the liver. Proc. Natl. Acad. Sci. U.S.A. 1989, 86 (8), 2903–2907. 10.1073/pnas.86.8.2903. PubMed DOI PMC
Jakobsson A.; Westerberg R.; Jacobsson A. Fatty acid elongases in mammals: Their regulation and roles in metabolism. Prog. Lipid Res. 2006, 45, 237–249. 10.1016/j.plipres.2006.01.004. PubMed DOI
Valenzuela R.; Metherel A. H.; Gisbani G.; Smith M. E.; Chouinard-Watkins R.; Klievik B. J.; Videla L. A.; Bazinet R. P. Protein concentrations and activities of fatty acid desaturase and elongase enzymes in liver, brain, testicle, and kidney from mice: Substrate dependency. BioFactors 2023, 1–12. 10.1002/biof.1992. PubMed DOI
Craig L. B.; Brush R. S.; Sullivan M. T.; Zavy M. T.; Agbaga M.-P.; Anderson R. E. Decreased very long chain polyunsaturated fatty acids in sperm correlates with sperm quantity and quality. J. Assist. Reprod. Genet. 2019, 36, 1379–1385. 10.1007/s10815-019-01464-3. PubMed DOI PMC
Agbaga M.-P.; Mandal M. N. A.; Anderson R. E. Retinal very long-chain PUFAs: new insights from studies on ELOVL4 protein. J. Lipid Res. 2010, 51, 1624–1642. 10.1194/jlr.R005025. PubMed DOI PMC
Yu M.; Benham A.; Logan S.; Brush R. S.; Mandal M. N. A.; Anderson R. E.; Agbaga M.-P. ELOVL4 protein preferentially elongates 20:5n3 to very long chain PUFAs over 20:4n6 and 22:6n3. J. Lipid Res. 2012, 53 (3), 494–504. 10.1194/jlr.M021386. PubMed DOI PMC
Choi R.; Gorusupudi A.; Bernstein P. S. Long-term follow-up of autosomal dominant Stargardt macular dystrophy (STGD3) subjects enrolled in a fish oil supplement interventional trial. Ophthalmic Genet. 2018, 39 (3), 307–313. 10.1080/13816810.2018.1430240. PubMed DOI PMC
Lutein + Zeaxanthin and Omega-3 Fatty Acids for Age-Related Macular Degeneration: The Age-Related Eye Disease Study 2 (AREDS2) Randomized Clinical Trial. JAMA 2013, 309 (19), 2005–2015. 10.1001/jama.2013.4997. PubMed DOI
Gorusupudi A.; Rallabandi R.; Li B.; Arunkumar R.; Blount J. D.; Rognon G. T.; Chang F.-Y.; Wade A.; Lucas S.; Conboy J. C.; Rainier J. D.; Bernstein P. S. Retinal bioavailability and functional effects of a synthetic very-long-chain polyunsaturated fatty acid in mice. Proc. Natl. Acad. Sci. U.S.A. 2021, 118, e201773911810.1073/pnas.2017739118. PubMed DOI PMC
Liu A.; Chang J.; Lin Y.; Shen Z.; Bernstein P. S. Long-chain and very long-chain polyunsaturated fatty acids in ocular aging and age-related macular degeneration. J. Lipid Res. 2010, 51 (11), 3217–3229. 10.1194/jlr.M007518. PubMed DOI PMC
Gordon W. C.; Kautzmann M.-A. I.; Jun B.; Cothern M. L.; Fang Z.; Bazan N. G. Rod-specific downregulation of omega-3 very-long-chain polyunsaturated fatty acid pathway in age-related macular degeneration. Exp. Eye Res. 2023, 235, 109639.10.1016/j.exer.2023.109639. PubMed DOI PMC
Bazan N. G. Docosanoids and elovanoids from omega-3 fatty acids are pro-homeostatic modulators of inflammatory responses, cell damage and neuroprotection. Mol. Aspects Med. 2018, 64, 18–33. 10.1016/j.mam.2018.09.003. PubMed DOI PMC
Echeverría F.; Valenzuela R.; Hernandez-Rodas M. C.; Valenzuela A. Docosahexaenoic acid (DHA), a fundamental fatty acid for the brain: New dietary sources. Prostaglandins Leukot. Essent. Fatty Acids 2017, 124, 1–10. 10.1016/j.plefa.2017.08.001. PubMed DOI
Valenzuela R.; Ortiz M.; Hernández-Rodas M. C.; Echeverría F.; Videla L. A. Targeting n-3 Polyunsaturated Fatty Acids in Non-Alcoholic Fatty Liver Disease. Curr. Med. Chem. 2020, 27 (31), 5250–5272. 10.2174/0929867326666190410121716. PubMed DOI
Sambra V.; Echeverria F.; Valenzuela A.; Chouinard-Watkins R.; Valenzuela R. Docosahexaenoic and Arachidonic Acids as Neuroprotective Nutrients throughout the Life Cycle. Nutrients 2021, 13 (3), 986.10.3390/nu13030986. PubMed DOI PMC
Agostini M.; Melino G.; Habeb B.; Calandria J. M.; Bazan N. G. Targeting lipid metabolism in cancer: neuroblastoma. Cancer Metastasis Rev. 2022, 41 (2), 255–260. 10.1007/s10555-022-10040-8. PubMed DOI PMC
Organ M. G.; Avola S.; Dubovyk I.; Hadei N.; Kantchev E. A. B.; ÓBrien C. J.; Valente C. A User-friendly, all-purpose Pd-NHC (NHC = N-heterocyclic carbene) precatalyst for the Negishi reaction: a step towards a universal cross-coupling catalyst. Chem.—Eur. J. 2006, 12, 4749–4755. 10.1002/chem.200600206. PubMed DOI
Tungen J. E.; Aursnes M.; Dalli J.; Arnardottir H.; Serhan C. N.; Hansen T. V. Total synthesis of the anti-inflammatory and pro-resolving lipid mediator MaR1n-3 DPA utilizing an sp3-sp3 Negishi cross-coupling reaction. Chem.—Eur. J. 2014, 20, 14575–14578. 10.1002/chem.201404721. PubMed DOI PMC
Destaillats F.; Angers P. One-step methodology for the synthesis of FA picolinyl esters from intact lipids. J. Am. Oil Chem. Soc. 2002, 79, 253–256. 10.1007/s11746-002-0469-7. DOI
Svetashev V. I. Mild method for preparation of 4,4-dimethyloxazoline derivatives of polyunsaturated fatty acids for GC-MS. Lipids 2011, 46, 463–467. 10.1007/s11745-011-3550-4. PubMed DOI
Dragoun M.; Klausová K.; Šimicová P.; Honzíková T.; Stejskal J.; Navrátilová K.; Hajšlová J.; Bárta J.; Bártová V.; Jarošová M.; Bjelková M.; Filip V.; Kyselka J. Formation of Previously Undescribed Δ7-Phytosterol Oxidation Products and Tocopherylquinone Adducts in Pumpkin Seed Oil during Roasting, Screw-Pressing, and Simulated Culinary Processing at Elevated Temperatures. J. Agric. Food Chem. 2022, 70, 11689–11703. 10.1021/acs.jafc.2c03292. PubMed DOI
Haraldsson G. G.; Hoskuldsson P. A.; Sigurdsson S. T.; Thorsteinsson F.; Gudbjarnason S. The preparation of triglycerides highly enriched with ω-3 polyunsaturated fatty acids via lipase catalyzed interesterification. Tetrahedron Lett. 1989, 30 (13), 1671–1674. 10.1016/S0040-4039(00)99550-9. DOI
Noel M.; Combes D. Effects of temperature and pressure on Rhizomucor miehei lipase stability. J. Biotechnol. 2003, 102, 23–32. 10.1016/S0168-1656(02)00359-0. PubMed DOI
D’Arrigo P.; Servi S. Synthesis of Lysophospholipids. Molecules 2010, 15, 1354–1377. 10.3390/molecules15031354. PubMed DOI PMC
Li X.; Chen J.-F.; Yang B.; Li D.-M.; Wang Y.-H.; Wang W.-F. Production of Structured Phosphatidylcholine with High Content of DHA/EPA by Immobilized Phospholipase A1-Catalyzed Transesterification. Int. J. Mol. Sci. 2014, 15, 15244–15258. 10.3390/ijms150915244. PubMed DOI PMC
Wade A.; Rallabandi R.; Lucas S.; Oberg C.; Gorusupudi A.; Bernstein P. S.; Rainier J. D. The synthesis of the very long chain polyunsaturated fatty acid (VLC-PUFA) 32:6 n-3. Org. Biomol. Chem. 2021, 19, 5563–5566. 10.1039/D1OB00491C. PubMed DOI
Sheldon R. A. Metrics of Green Chemistry and Sustainability: Past, Present, and Future. ACS Sustainable Chem. Eng. 2018, 6, 32–48. 10.1021/acssuschemeng.7b03505. DOI
Gorusupudi A.; Liu A.; Hageman G. S.; Bernstein P. S. Associations of human retinal very long-chain polyunsaturated fatty acids with dietary lipid biomarkers. J. Lipid Res. 2016, 57, 499–508. 10.1194/jlr.P065540. PubMed DOI PMC
Hamilton J. T. G.; Christie W. W. Mechanisms for ion formation during the electron impact-mass spectrometry of picolinyl ester and 4,4-dimethyloxazoline derivatives of fatty acids. Chem. Phys. Lipids 2000, 105, 93–104. 10.1016/S0009-3084(99)00133-4. PubMed DOI
Dobson G.; Christie W. W. Spectroscopy and spectrometry of lipids — Part 2. Eur. J. Lipid Sci. Technol. 2002, 104, 36–43. 10.1002/1438-9312(200201)104:1<36::AID-EJLT36>3.0.CO;2-3. DOI
Magnusson C. D.; Haraldsson G. G. Activation of n-3 polyunsaturated fatty acids as oxime esters: a novel approach for their exclusive incorporation into the primary alcoholic positions of the glycerol moiety by lipase. Chem. Phys. Lipids 2012, 165, 712–720. 10.1016/j.chemphyslip.2012.07.005. PubMed DOI
Kalpio M.; Magnússon J. D.; Gudmundsson H. G.; Linderborg K. M.; Kallio H.; Haraldsson G. G.; Yang B. Synthesis and enantiospecific analysis of enantiostructured triacylglycerols containing n-3 polyunsaturated fatty acids. Chem. Phys. Lipids 2020, 231, 104937.10.1016/j.chemphyslip.2020.104937. PubMed DOI
Haraldsson G. G.; Thorarensen A. Preparation of phospholipids highly enriched with n-3 polyunsaturated fatty acids by lipase. J. Am. Oil Chem. Soc. 1999, 76, 1143–1149. 10.1007/s11746-999-0087-2. DOI
Haraldsson G. G.; Gudmundsson B.Ö.; Almarsson Ö. The synthesis of homogeneous triglycerides of eicosapentaenoic acid and docosahexaenoic acid by lipase. Tetrahedron 1995, 51 (3), 941–952. 10.1016/0040-4020(94)00983-2. DOI