Novel Approaches for Elongation of Fish Oils into Very-Long-Chain Polyunsaturated Fatty Acids and Their Enzymatic Interesterification into Glycerolipids

. 2023 Nov 22 ; 71 (46) : 17909-17923. [epub] 20231110

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37947776

Elongation of the Very-Long-Chain Fatty Acids-4 (ELOVL4) enzyme that is expressed in neuronal tissues, sperm, and testes mediates biosynthesis of very-long-chain polyunsaturated fatty acids (VLC-PUFAs) from dietary long chain PUFAs (LC-PUFAs). The VLC-PUFAs are critical for neuronal and reproductive function. Therefore, mutations in ELOVL4 that affect VLC-PUFA biosynthesis contribute to retinal degenerative diseases including Autosomal Dominant Stargardt-like Macular Dystrophy (STGD3). Recent studies have also shown not only a depletion of retinal VLC-PUFAs with normal aging but also a more significant loss of VLC-PUFAs in donor eyes of patients with age-related macular degeneration (AMD). However, currently, there are no natural sources of VLC-PUFAs to be evaluated as dietary supplements for the attenuation of retinal degeneration in animal models of STGD3. Here, we report the development of a novel chemical approach for elongation of eicosapentaenoic (C20:5 n-3) and docosahexaenoic (C22:6 n-3) acids from fish oils by 6 carbon atoms to make a unique group of VLC-PUFAs, namely all-cis-hexacosa-11,14,17,20,23-pentaenoic acids (C26:5 n-3) and all-cis-octacosa-10,13,16,19,22,25-hexaenoic acids (C28:6 n-3). The three-step elongation approach that we report herein resulted in a good overall yield of up to 20.2%. This more sustainable approach also resulted in improved functional group compatibility and minimal impact on the geometrical integrity of the all-cis double bond system of the VLC-PUFAs. In addition, we also successfully used commercial deep-sea fish oil concentrate as an inexpensive material for the C6 elongation of fish oil LC-PUFAs into VLC-PUFAs, which resulted in the making of gram scales of VLC-PUFAs with an even higher isolation yield of 31.0%. The quality of fish oils and the content of oxidized lipids were key since both strongly affected the activity of the PEPPSI-IPr catalyst and ultimately the yield of coupling reactions. Downstream enzymatic interesterification was used for the first time to prepare structured glycerolipids enriched with VLC-PUFAs that could be evaluated in vivo to determine absorption and transport to target tissues relative to those of the free fatty acid forms. It turned out that in the synthesis of structured triacylglycerols and glycerophospholipids with VLC-PUFAs, the polarity of the immobilized lipase carrier and its humidity were essential.

Zobrazit více v PubMed

Tinoco J. Dietary requirements and functions of α-linolenic acid in animals. Prog. Lipid Res. 1982, 21, 1–45. 10.1016/0163-7827(82)90015-7. PubMed DOI

Liput K. P.; Lepczyński A.; Ogłuszka M.; Nawrocka A.; Poławska E.; Grzesiak A.; Ślaska B.; Pareek Ch.S.; Czarnik U.; Pierzchała M. Effects of Dietary n-3 and n-6 Polyunsaturated Fatty Acids in Inflammation and Cancerogenesis. Int. J. Mol. Sci. 2021, 22 (13), 6965.10.3390/ijms22136965. PubMed DOI PMC

Bazan N. G.; Allan G. Signal transduction and gene expression in the eye: a contemporary view of the pro-inflammatory, anti-inflammatory and modulatory roles of prostaglandins and other bioactive lipids. Surv. Ophthalmol. 1997, 41 (Suppl 2), S23–S34. 10.1016/S0039-6257(97)80004-5. PubMed DOI

Schmidt E. B.; Varming K.; Ernst E.; Madsen P.; Dyerberg J. Dose-Response Studies on the Effect of n-3 Polyunsaturated Fatty Acids on Lipids and Haemostasis. Thromb. Haemost. 1990, 63 (01), 001–005. 10.1055/s-0038-1645675. PubMed DOI

Benolken R. M.; Anderson R. E.; Wheeler T. G. Membrane Fatty Acids Associated with the Electrical Response in Visual Excitation. Science 1973, 182 (4118), 1253–1254. 10.1126/science.182.4118.1253. PubMed DOI

Wheeler T. G.; Benolken R. M.; Anderson R. E. Visual Membranes: Specificity of Fatty Acid Precursors for the Electrical Response to Illumination. Science 1975, 188 (4195), 1312–1314. 10.1126/science.1145197. PubMed DOI

Carlson S. E.; Colombo J. Docosahexaenoic Acid and Arachidonic Acid Nutrition in Early Development. Adv. Pediatr. 2016, 63, 453–471. 10.1016/j.yapd.2016.04.011. PubMed DOI PMC

Campoy C.; Escolano-Margarit M. V.; Anjos T.; Szajewska H.; Uauy R. Omega 3 fatty acids on child growth, visual acuity and neurodevelopment. Br. J. Nutr. 2012, 107 (S2), S85–S106. 10.1017/S0007114512001493. PubMed DOI

Aveldaño M. I. A Novel Group of Very Long Chain Polyenoic Fatty Acids in Dipolyunsaturated Phosphatidylcholines from Vertebrate retina. J. Biol. Chem. 1987, 262 (3), 1172–1179. 10.1016/S0021-9258(19)75767-6. PubMed DOI

Aveldaño M. I.; Sprecher H. Very Long Chain (C24 to C36) Polyenoic Fatty Acids of the n - 3 and n - 6 Series in Dipolyunsaturated Phosphatidylcholines from Bovine Retina. J. Biol. Chem. 1987, 262 (3), 1180–1186. 10.1016/S0021-9258(19)75768-8. PubMed DOI

Berdeaux O.; Juaneda P.; Martine L.; Cabaret S.; Bretillon L.; Acar N. Identification and quantification of phosphatidylcholines containing very-long-chain polyunsaturated fatty acid in bovine and human retina using liquid chromatography/tandem mass spectrometry. J. Chromatogr. A 2010, 1217, 7738–7748. 10.1016/j.chroma.2010.10.039. PubMed DOI

Poulos A.; Johnson D. W.; Beckman K.; White I. G.; Easton C. Occurrence of unusual molecular species of sphingomyelin containing 28–34-carbon polyenoic fatty acids in ram spermatozoa. Biochem. J. 1987, 248, 961–964. 10.1042/bj2480961. PubMed DOI PMC

Agbaga M.-P.; Brush R. S.; Mandal M. N. A.; Henry K.; Elliott M. H.; Anderson R. E. Role of Stargardt-3 macular dystrophy protein (ELOVL4) in the biosynthesis of very long chain fatty acids. Proc. Natl. Acad. Sci. U.S.A. 2008, 105 (35), 12843–12848. 10.1073/pnas.0802607105. PubMed DOI PMC

Edwards A. O.; Donoso L. A.; Ritter R. A Novel Gene for Autosomal Dominant Stargardt-like Macular Dystrophy with Homology to the SUR4 Protein Family. Invest. Ophthalmol. Vis. Sci. 2001, 42 (11), 2652–2663. PubMed

Zhang K.; Kniazeva M.; Han M.; Li W.; Yu Z.; Yang Z.; Li Y.; Metzker M. L.; Allikmets R.; Zack D. J.; Kakuk L. E.; Lagali P. S.; Wong P. W.; MacDonald I. M.; Sieving P. A.; Figueroa D. J.; Austin Ch.P.; Gould R. J.; Ayyagari R.; Petrukhin K. A 5-bp deletion in ELOVL4 is associated with two related forms of autosomal dominant macular dystrophy. Nat. Genet. 2001, 27, 89–93. 10.1038/83817. PubMed DOI

Bernstein P. S.; Tammur J.; Singh N.; Hutchinson A.; Dixon M.; Pappas Ch.M.; Zabriskie N. A.; Zhang K.; Petrukhin K.; Leppert M.; Allikmets R. Diverse Macular Dystrophy Phenotype Caused by a Novel Complex Mutation in the ELOVL4 gene. Invest. Ophthalmol. Vis. Sci. 2001, 42 (13), 3331–3336. PubMed

Hopiavuori B. R.; Anderson R. E.; Agbaga M.-P. ELOVL4: Very long-chain fatty acids serve an eclectic role in mammalian health and function. Prog. Retinal Eye Res. 2019, 69, 137–158. 10.1016/j.preteyeres.2018.10.004. PubMed DOI PMC

Hopiavuori B. R.; Deák F.; Wilkerson J. L.; Brush R. S.; Rocha-Hopiavuori N. A.; Hopiavuori A. R.; Ozan K. G.; Sullivan M. T.; Wren J. D.; Georgescu C.; Szweda L.; Awasthi V.; Towner R.; Sherry D. M.; Anderson R. E.; Agbaga M.-P. Homozygous Expression of Mutant ELOVL4 Leads to Seizures and Death in a Novel Animal Model of Very Long-Chain Fatty Acid Deficiency. Mol. Neurobiol. 2018, 55, 1795–1813. 10.1007/s12035-017-0824-8. PubMed DOI PMC

Vasireddy V.; Uchida Y.; Salem Jr N.; Kim S. Y.; Mandal M. N. A.; Reddy G. B.; Bodepudi R.; Alderson N. L.; Brown J. C.; Hama H.; Dlugosz A.; Elias P. M.; Holleran W. M.; Ayyagari R. Loss of functional ELOVL4 depletes very long-chain fatty acids (≥C28) and the unique ω-O-acylceramides in skin leading to neonatal death. Hum. Mol. Genet. 2007, 16 (5), 471–482. 10.1093/hmg/ddl480. PubMed DOI PMC

McMahon A.; Lu H.; Butovich I. A. A Role for ELOVL4 in the Mouse Meibomian Gland and Sebocyte Cell Biology. Invest. Ophthalmol. Vis. Sci. 2014, 55, 2832–2840. 10.1167/iovs.13-13335. PubMed DOI PMC

Sherry D. M.; Hopiavuori B. R.; Stiles M. A.; Rahman N. S.; Ozan K. G.; Deák F.; Agbaga M.-P.; Anderson R. E. Distribution of ELOVL4 in the Developing and Adult Mouse Brain. Front. Neuroanat. 2017, 11, 38.10.3389/fnana.2017.00038. PubMed DOI PMC

Hopiavuori B. R.; Agbaga M.-P.; Brush R. S.; Sullivan M. T.; Sonntag W. E.; Anderson R. E. Regional changes in CNS and retinal glycerophospholipid profile with age: a molecular blueprint. J. Lipid Res. 2017, 58, 668–680. 10.1194/jlr.M070714. PubMed DOI PMC

Mandal M. N. A.; Ambasudhan R.; Wong P. W.; Gage P. J.; Sieving P. A.; Ayyagari R. Characterization of mouse orthologue of ELOVL4: genomic organization and spatial and temporal expression. Genomics 2004, 83, 626–635. 10.1016/j.ygeno.2003.09.020. PubMed DOI

Scott B. L.; Bazan N. G. Membrane docosahexaenoate is supplied to the developing brain and retina by the liver. Proc. Natl. Acad. Sci. U.S.A. 1989, 86 (8), 2903–2907. 10.1073/pnas.86.8.2903. PubMed DOI PMC

Jakobsson A.; Westerberg R.; Jacobsson A. Fatty acid elongases in mammals: Their regulation and roles in metabolism. Prog. Lipid Res. 2006, 45, 237–249. 10.1016/j.plipres.2006.01.004. PubMed DOI

Valenzuela R.; Metherel A. H.; Gisbani G.; Smith M. E.; Chouinard-Watkins R.; Klievik B. J.; Videla L. A.; Bazinet R. P. Protein concentrations and activities of fatty acid desaturase and elongase enzymes in liver, brain, testicle, and kidney from mice: Substrate dependency. BioFactors 2023, 1–12. 10.1002/biof.1992. PubMed DOI

Craig L. B.; Brush R. S.; Sullivan M. T.; Zavy M. T.; Agbaga M.-P.; Anderson R. E. Decreased very long chain polyunsaturated fatty acids in sperm correlates with sperm quantity and quality. J. Assist. Reprod. Genet. 2019, 36, 1379–1385. 10.1007/s10815-019-01464-3. PubMed DOI PMC

Agbaga M.-P.; Mandal M. N. A.; Anderson R. E. Retinal very long-chain PUFAs: new insights from studies on ELOVL4 protein. J. Lipid Res. 2010, 51, 1624–1642. 10.1194/jlr.R005025. PubMed DOI PMC

Yu M.; Benham A.; Logan S.; Brush R. S.; Mandal M. N. A.; Anderson R. E.; Agbaga M.-P. ELOVL4 protein preferentially elongates 20:5n3 to very long chain PUFAs over 20:4n6 and 22:6n3. J. Lipid Res. 2012, 53 (3), 494–504. 10.1194/jlr.M021386. PubMed DOI PMC

Choi R.; Gorusupudi A.; Bernstein P. S. Long-term follow-up of autosomal dominant Stargardt macular dystrophy (STGD3) subjects enrolled in a fish oil supplement interventional trial. Ophthalmic Genet. 2018, 39 (3), 307–313. 10.1080/13816810.2018.1430240. PubMed DOI PMC

Lutein + Zeaxanthin and Omega-3 Fatty Acids for Age-Related Macular Degeneration: The Age-Related Eye Disease Study 2 (AREDS2) Randomized Clinical Trial. JAMA 2013, 309 (19), 2005–2015. 10.1001/jama.2013.4997. PubMed DOI

Gorusupudi A.; Rallabandi R.; Li B.; Arunkumar R.; Blount J. D.; Rognon G. T.; Chang F.-Y.; Wade A.; Lucas S.; Conboy J. C.; Rainier J. D.; Bernstein P. S. Retinal bioavailability and functional effects of a synthetic very-long-chain polyunsaturated fatty acid in mice. Proc. Natl. Acad. Sci. U.S.A. 2021, 118, e201773911810.1073/pnas.2017739118. PubMed DOI PMC

Liu A.; Chang J.; Lin Y.; Shen Z.; Bernstein P. S. Long-chain and very long-chain polyunsaturated fatty acids in ocular aging and age-related macular degeneration. J. Lipid Res. 2010, 51 (11), 3217–3229. 10.1194/jlr.M007518. PubMed DOI PMC

Gordon W. C.; Kautzmann M.-A. I.; Jun B.; Cothern M. L.; Fang Z.; Bazan N. G. Rod-specific downregulation of omega-3 very-long-chain polyunsaturated fatty acid pathway in age-related macular degeneration. Exp. Eye Res. 2023, 235, 109639.10.1016/j.exer.2023.109639. PubMed DOI PMC

Bazan N. G. Docosanoids and elovanoids from omega-3 fatty acids are pro-homeostatic modulators of inflammatory responses, cell damage and neuroprotection. Mol. Aspects Med. 2018, 64, 18–33. 10.1016/j.mam.2018.09.003. PubMed DOI PMC

Echeverría F.; Valenzuela R.; Hernandez-Rodas M. C.; Valenzuela A. Docosahexaenoic acid (DHA), a fundamental fatty acid for the brain: New dietary sources. Prostaglandins Leukot. Essent. Fatty Acids 2017, 124, 1–10. 10.1016/j.plefa.2017.08.001. PubMed DOI

Valenzuela R.; Ortiz M.; Hernández-Rodas M. C.; Echeverría F.; Videla L. A. Targeting n-3 Polyunsaturated Fatty Acids in Non-Alcoholic Fatty Liver Disease. Curr. Med. Chem. 2020, 27 (31), 5250–5272. 10.2174/0929867326666190410121716. PubMed DOI

Sambra V.; Echeverria F.; Valenzuela A.; Chouinard-Watkins R.; Valenzuela R. Docosahexaenoic and Arachidonic Acids as Neuroprotective Nutrients throughout the Life Cycle. Nutrients 2021, 13 (3), 986.10.3390/nu13030986. PubMed DOI PMC

Agostini M.; Melino G.; Habeb B.; Calandria J. M.; Bazan N. G. Targeting lipid metabolism in cancer: neuroblastoma. Cancer Metastasis Rev. 2022, 41 (2), 255–260. 10.1007/s10555-022-10040-8. PubMed DOI PMC

Organ M. G.; Avola S.; Dubovyk I.; Hadei N.; Kantchev E. A. B.; ÓBrien C. J.; Valente C. A User-friendly, all-purpose Pd-NHC (NHC = N-heterocyclic carbene) precatalyst for the Negishi reaction: a step towards a universal cross-coupling catalyst. Chem.—Eur. J. 2006, 12, 4749–4755. 10.1002/chem.200600206. PubMed DOI

Tungen J. E.; Aursnes M.; Dalli J.; Arnardottir H.; Serhan C. N.; Hansen T. V. Total synthesis of the anti-inflammatory and pro-resolving lipid mediator MaR1n-3 DPA utilizing an sp3-sp3 Negishi cross-coupling reaction. Chem.—Eur. J. 2014, 20, 14575–14578. 10.1002/chem.201404721. PubMed DOI PMC

Destaillats F.; Angers P. One-step methodology for the synthesis of FA picolinyl esters from intact lipids. J. Am. Oil Chem. Soc. 2002, 79, 253–256. 10.1007/s11746-002-0469-7. DOI

Svetashev V. I. Mild method for preparation of 4,4-dimethyloxazoline derivatives of polyunsaturated fatty acids for GC-MS. Lipids 2011, 46, 463–467. 10.1007/s11745-011-3550-4. PubMed DOI

Dragoun M.; Klausová K.; Šimicová P.; Honzíková T.; Stejskal J.; Navrátilová K.; Hajšlová J.; Bárta J.; Bártová V.; Jarošová M.; Bjelková M.; Filip V.; Kyselka J. Formation of Previously Undescribed Δ7-Phytosterol Oxidation Products and Tocopherylquinone Adducts in Pumpkin Seed Oil during Roasting, Screw-Pressing, and Simulated Culinary Processing at Elevated Temperatures. J. Agric. Food Chem. 2022, 70, 11689–11703. 10.1021/acs.jafc.2c03292. PubMed DOI

Haraldsson G. G.; Hoskuldsson P. A.; Sigurdsson S. T.; Thorsteinsson F.; Gudbjarnason S. The preparation of triglycerides highly enriched with ω-3 polyunsaturated fatty acids via lipase catalyzed interesterification. Tetrahedron Lett. 1989, 30 (13), 1671–1674. 10.1016/S0040-4039(00)99550-9. DOI

Noel M.; Combes D. Effects of temperature and pressure on Rhizomucor miehei lipase stability. J. Biotechnol. 2003, 102, 23–32. 10.1016/S0168-1656(02)00359-0. PubMed DOI

D’Arrigo P.; Servi S. Synthesis of Lysophospholipids. Molecules 2010, 15, 1354–1377. 10.3390/molecules15031354. PubMed DOI PMC

Li X.; Chen J.-F.; Yang B.; Li D.-M.; Wang Y.-H.; Wang W.-F. Production of Structured Phosphatidylcholine with High Content of DHA/EPA by Immobilized Phospholipase A1-Catalyzed Transesterification. Int. J. Mol. Sci. 2014, 15, 15244–15258. 10.3390/ijms150915244. PubMed DOI PMC

Wade A.; Rallabandi R.; Lucas S.; Oberg C.; Gorusupudi A.; Bernstein P. S.; Rainier J. D. The synthesis of the very long chain polyunsaturated fatty acid (VLC-PUFA) 32:6 n-3. Org. Biomol. Chem. 2021, 19, 5563–5566. 10.1039/D1OB00491C. PubMed DOI

Sheldon R. A. Metrics of Green Chemistry and Sustainability: Past, Present, and Future. ACS Sustainable Chem. Eng. 2018, 6, 32–48. 10.1021/acssuschemeng.7b03505. DOI

Gorusupudi A.; Liu A.; Hageman G. S.; Bernstein P. S. Associations of human retinal very long-chain polyunsaturated fatty acids with dietary lipid biomarkers. J. Lipid Res. 2016, 57, 499–508. 10.1194/jlr.P065540. PubMed DOI PMC

Hamilton J. T. G.; Christie W. W. Mechanisms for ion formation during the electron impact-mass spectrometry of picolinyl ester and 4,4-dimethyloxazoline derivatives of fatty acids. Chem. Phys. Lipids 2000, 105, 93–104. 10.1016/S0009-3084(99)00133-4. PubMed DOI

Dobson G.; Christie W. W. Spectroscopy and spectrometry of lipids — Part 2. Eur. J. Lipid Sci. Technol. 2002, 104, 36–43. 10.1002/1438-9312(200201)104:1<36::AID-EJLT36>3.0.CO;2-3. DOI

Magnusson C. D.; Haraldsson G. G. Activation of n-3 polyunsaturated fatty acids as oxime esters: a novel approach for their exclusive incorporation into the primary alcoholic positions of the glycerol moiety by lipase. Chem. Phys. Lipids 2012, 165, 712–720. 10.1016/j.chemphyslip.2012.07.005. PubMed DOI

Kalpio M.; Magnússon J. D.; Gudmundsson H. G.; Linderborg K. M.; Kallio H.; Haraldsson G. G.; Yang B. Synthesis and enantiospecific analysis of enantiostructured triacylglycerols containing n-3 polyunsaturated fatty acids. Chem. Phys. Lipids 2020, 231, 104937.10.1016/j.chemphyslip.2020.104937. PubMed DOI

Haraldsson G. G.; Thorarensen A. Preparation of phospholipids highly enriched with n-3 polyunsaturated fatty acids by lipase. J. Am. Oil Chem. Soc. 1999, 76, 1143–1149. 10.1007/s11746-999-0087-2. DOI

Haraldsson G. G.; Gudmundsson B.Ö.; Almarsson Ö. The synthesis of homogeneous triglycerides of eicosapentaenoic acid and docosahexaenoic acid by lipase. Tetrahedron 1995, 51 (3), 941–952. 10.1016/0040-4020(94)00983-2. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...