Noun imageability and the processing of sensory-based information
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
PubMed
37953293
PubMed Central
PMC11445977
DOI
10.1177/17470218231216304
Knihovny.cz E-zdroje
- Klíčová slova
- Imageability, mental imagery, semantic representation, word processing,
- MeSH
- dospělí MeSH
- imaginace * fyziologie MeSH
- lidé MeSH
- mladý dospělý MeSH
- reakční čas * fyziologie MeSH
- sémantika MeSH
- slovní zásoba MeSH
- světelná stimulace MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
The aim of this study was to test whether the availability of internal imagery elicited by words is related to ratings of word imageability. Participants are presented with target words and, after a delay allowing for processing of the word, answer questions regarding the size or weight of the word referents. Target words differ with respect to imageability. Results show faster responses to questions for high imageability words than for low imageability words. The type of question (size/weight) modulates reaction times suggesting a dominance of the visual domain over the physical-experience domain in concept representation. Results hold across two different languages (Czech/German). These findings provide further insights into the representations underlying word meaning and the role of word imageability in language acquisition and processing.
Institute for German as a Foreign Language Philology Heidelberg University Heidelberg Germany
Institute of Psychology Academy of Sciences of the Czech Republic Prague Czech Republic
Zobrazit více v PubMed
Barr D. J., Levy R., Scheepers C., Tily H. J. (2013). Random effects structure for confirmatory hypothesis testing: Keep it maximal. Journal of Memory and Language, 68(3), 255–278. 10.1016/j.jml.2012.11.001 PubMed DOI PMC
Bates D. M., ächler M., Bolker B., Walker S. (2015). Fitting linear mixed-effects models using {lme4}. Journal of Statistical Software, 67(1), 1–48. 10.18637/jss.v067.i01 DOI
Bergmann J., Genç E., Kohler A., Singer W., Pearson J. (2016). Smaller primary visual cortex is associated with stronger, but less precise mental imagery. Cerebral Cortex, 26(9), 3838–3850. 10.1093/CERCOR/BHV186 PubMed DOI
Bock K. J., Warren R. K. (1985). Conceptual accessibility and syntactic structure in sentence formulation. Cognition, 21(1), 47–67. 10.1016/0010-0277(85)90023-X PubMed DOI
Bonner M. F., Vesely L., Price C., Anderson C., Richmond L., Farag C., Avants B., Grossman M. (2009). Reversal of the concreteness effect in semantic dementia. Cognitive Neuropsychology, 26(6), 568–579. PubMed PMC
Box G. E. P., Cox D. R. (1964). An analysis of transformations. Journal of the Royal Statistical Society: Series B (Methodological), 26(2), 211–243. 10.1111/j.2517-6161.1964.tb00553.x DOI
Breedin S. D., Saffran E. M., Coslett H. B. (1994). Reversal of the concreteness effect in a patient with semantic dementia. Cognitive Neuropsychology, 11(6), 617–660.
Brysbaert M., Warriner A. B., Kuperman V. (2014). Concreteness ratings for 40 thousand generally known English word lemmas. Behavior Research Methods, 46(3), 904–911. 10.3758/s13428-013-0403-5 PubMed DOI
Bucur M., Papagno C. (2021). An ALE meta-analytical review of the neural correlates of abstract and concrete words. Scientific Reports, 11(1), 1–24. 10.1038/s41598-021-94506-9 PubMed DOI PMC
Butler R., Patterson K., Woollams A. M. (2012). In search of meaning: Semantic effects on past-tense inflection. Quarterly Journal of Experimental Psychology, 65(8), 1633–1656. PubMed
Connell L., Lynott D. (2012). Strength of perceptual experience predicts word processing performance better than concreteness or imageability. Cognition, 125(3), 452–465. PubMed
Cortese M. J., McCarty D. P., Schock J. (2015). A mega recognition memory study of 2897 disyllabic words. Quarterly Journal of Experimental Psychology, 68(8), 1489–1501. 10.1080/17470218.2014.945096 PubMed DOI
Crutch S. J., Warrington E. K. (2005). Abstract and concrete concepts have structurally different representational frameworks. Brain, 128(3), 615–627. PubMed
de Groot A. M. (1989). Representational aspects of word imageability and word frequency as assessed through word association. Journal of Experimental Psychology: Learning, Memory, and Cognition, 15(5), 824–845.
Della Rosa P. A., Catricalà E., Vigliocco G., Cappa S. F. (2010). Beyond the abstract—Concrete dichotomy: Mode of acquisition, concreteness, imageability, familiarity, age of acquisition, context availability, and abstractness norms for a set of 417 Italian words. Behavior Research Methods, 42(4), 1042–1048. 10.3758/BRM.42.4.1042 PubMed DOI
Dijkstra N., Fleming S. (2021). Fundamental constraints on distinguishing reality from imagination. Psyarxiv. 10.31234/OSF.IO/BW872 DOI
Fox J., Weisberg S. (2019). An {R} companion to applied regression (3rd ed.). SAGE.
Grandy T. H., Lindenberger U., Schmiedek F. (2020). Vampires and nurses are rated differently by younger and older adults: Age-comparative norms of imageability and emotionality for about 2500 German nouns. Behavior Research Methods, 52(3), 980–989. PubMed PMC
Hoffman P., Lambon Ralph M. A. (2011). Reverse concreteness effects are not a typical feature of semantic dementia: Evidence for the hub-and-spoke model of conceptual representation. Cerebral Cortex, 21(9), 2103–2112. PubMed
Holcomb P. J., Grainger J. (2006). On the time course of visual word recognition: An event-related potential investigation using masked repetition priming. Journal of Cognitive Neuroscience, 18(10), 1631–1643. 10.1162/JOCN.2006.18.10.1631 PubMed DOI PMC
Keogh R., Pearson J. (2014). The sensory strength of voluntary visual imagery predicts visual working memory capacity. Journal of Vision, 14(12), Article 7. 10.1167/14.12.7 PubMed DOI
Khanna M. M., Cortese M. J. (2021). How well imageability, concreteness, perceptual strength, and action strength predict recognition memory, lexical decision, and reading aloud performance. Memory, 29(5), 622–636. 10.1080/09658211.2021.1924789 PubMed DOI
Kosslyn S. M. (1973). Scanning visual images: Some structural implications. Perception & Psychophysics, 14(1), 90–94.
Kosslyn S. M. (1975). Information representation in visual images. Cognitive Psychology, 7(3), 341–370.
Kosslyn S. M., Ball T. M., Reiser B. J. (1978). Visual images preserve metric spatial information: Evidence from studies of image scanning. Journal of Experimental Psychology: Human Perception and Performance, 4(1), 47–60. PubMed
Kosslyn S. M., Thompson W. L., Ganis G. (2006). The case for mental imagery. In The case for mental imagery. Oxford University Press. 10.1093/ACPROF:OSO/9780195179088.001.0001 DOI
Kousta S.-T., Vigliocco G., Vinson D. P., Andrews M., Del Campo E. (2011). The representation of abstract words: Why emotion matters. Journal of Experimental Psychology: General, 140(1), 14–34. PubMed
Kroll J. F., Merves J. S. (1986). Lexical access for concrete and abstract words. Journal of Experimental Psychology: Learning, Memory, and Cognition, 12(1), 92–107.
Laszlo S., Federmeier K. D. (2014). Never seem to find the time: Evaluating the physiological time course of visual word recognition with regression analysis of single-item event-related potentials. Language, Cognition and Neuroscience, 29(5), 642–661. 10.1080/01690965.2013.866259 PubMed DOI PMC
Loiselle M., Rouleau I., Nguyen D. K., Dubeau F., Macoir J., Whatmough C., Lepore F., Joubert S. (2012). Comprehension of concrete and abstract words in patients with selective anterior temporal lobe resection and in patients with selective amygdalo-hippocampectomy. Neuropsychologia, 50(5), 630–639. PubMed
Łuniewska M., Wodniecka Z., Miller C. A., Smolík F., Butcher M., Chondrogianni V., Hreich E. K., Messarra C. A., Razak R., Treffers-Daller J., Yap N. T., Abboud L., Talebi A., Gureghian M., Tuller L., Haman E. (2019). Age of acquisition of 299 words in seven languages: American English, Czech, Gaelic, Lebanese Arabic, Malay, Persian and Western Armenian. PLOS ONE, 14(8), Article e0220611. PubMed PMC
MacDonald M. C. (2013). How language production shapes language form and comprehension. Frontiers in Psychology, 4, Article 226. 10.3389/fpsyg.2013.00226 PubMed DOI PMC
Masterson J., Druks J., Gallienne D. (2008). Object and action picture naming in three-and five-year-old children. Journal of Child Language, 35(2), 373–402. PubMed
Morrison C. M., Chappell T. D., Ellis A. W. (1997). Age of acquisition norms for a large set of object names and their relation to adult estimates and other variables. The Quarterly Journal of Experimental Psychology Section A, 50(3), 528–559.
Moseley P., Smailes D., Ellison A., Fernyhough C. (2016). The effect of auditory verbal imagery on signal detection in hallucination-prone individuals. Cognition, 146, 206–216. 10.1016/J.COGNITION.2015.09.015 PubMed DOI PMC
Paivio A. (1967). Paired-associate learning and free recall of nouns as a function of concreteness, specificity, imagery, and meaningfulness. Psychological Reports, 20(1), 239–245. PubMed
Paivio A. (1969). Mental imagery in associative learning and memory. Psychological Review, 76(3), 241–263.
Paivio A. (1971). Imagery and language. In Segal S. J. (Ed.), Imagery: Current cognitive approaches (pp. 7–32). Elsevier.
Paivio A. (2013). Dual coding theory, word abstractness, and emotion: A critical review of Kousta et al. (2011). Journal of Experimental Psychology: General, 142(1), 282–7. PubMed
Paivio A. (2014). Mind and its evolution: A dual coding theoretical approach. Psychology Press.
Paivio A., Walsh M., Bons T. (1994). Concreteness effects on memory: When and why? Journal of Experimental Psychology: Learning, Memory, and Cognition, 20(5), 1196–1204.
Patterson K., Nestor P. J., Rogers T. T. (2007). Where do you know what you know? The representation of semantic knowledge in the human brain. Nature Reviews Neuroscience, 8(12), 976–987. PubMed
Peirce J., Gray J. R., Simpson S., MacAskill M. H., öchenberger R., Sogo H., Kastman E., Lindeløv J. K. (2019). PsychoPy2: Experiments in behavior made easy. Behavior Research Methods, 51(1), 195–203. PubMed PMC
Perky C. W. (1910). An experimental study of imagination. The American Journal of Psychology, 21(3), 422–452. 10.2307/1413350 DOI
Pinker S., Choate P. A., Finke R. A. (1984). Mental extrapolation in patterns constructed from memory. Memory & Cognition, 12(3), 207–218. PubMed
Pobric G., Jefferies E., Ralph M. A. L. (2010). Category-specific versus category-general semantic impairment induced by transcranial magnetic stimulation. Current Biology, 20(10), 964–968. PubMed PMC
Prado E. L., Ullman M. T. (2009). Can imageability help us draw the line between storage and composition? Journal of Experimental Psychology: Learning, Memory, and Cognition, 35(4), 849–866. PubMed
R Core Team. (2020). R: A language and environment for statistical computing.
Reed S. K., Hock H. S., Lockhead G. R. (1983). Tacit knowledge and the effect of pattern configuration on mental scanning. Memory & Cognition, 11(2), 137–143. PubMed
Reilly J., Peelle J. E. (2008). Effects of semantic impairment on language processing in semantic dementia. Seminars in Speech and Language, 29(1), 32–43. PubMed
Reilly J., Peelle J. E., Garcia A., Crutch S. J. (2016). Linking somatic and symbolic representation in semantic memory: The dynamic multilevel reactivation framework. Psychonomic Bulletin & Review, 23(4), 1002–1014. PubMed PMC
Schwanenflugel P. J. (1991). Why are abstract concepts hard to understand. The Psychology of Word Meanings, 11, 223–250.
Schwanenflugel P. J., Shoben E. J. (1983). Differential context effects in the comprehension of abstract and concrete verbal materials. Journal of Experimental Psychology: Learning, Memory, and Cognition, 9(1), 82–102.
Scott G. G., Keitel A., Becirspahic M., Yao B., Sereno S. C. (2019). The Glasgow norms: Ratings of 5,500 words on nine scales. Behavior Research Methods, 51(3), 1258–1270. PubMed PMC
Segal S. J., Fusella V. (1970). Influence of imaged pictures and sounds on detection of visual and auditory signals. Journal of Experimental Psychology, 83(3 Pt. 1), 458–464. PubMed
Sirigu A., Duhamel J.-R., Poncet M. (1991). The role of sensorimotor experience in object recognition: A case of multimodal agnosia. Brain, 114(6), 2555–2573. PubMed
Smolík F. (2014). Noun imageability facilitates the acquisition of plurals: Survival analysis of plural emergence in children. Journal of Psycholinguistic Research, 43(4), 335–350. PubMed
Smolík F. (2019). Imageability and neighborhood density facilitate the age of word acquisition in Czech. Journal of Speech, Language, and Hearing Research, 62(5), 1403–1415. 10.1044/2018_JSLHR-L-18-0242 PubMed DOI
Smolík F., Kříž A. (2015). The power of imageability: How the acquisition of inflected forms is facilitated in highly imageable verbs and nouns in Czech children. First Language, 35(6), 446–465.
Strain E., Patterson K., Seidenberg M. S. (1995). Semantic effects in single-word naming. Journal of Experimental Psychology: Learning, Memory, and Cognition, 21(5), 1140–1154. 10.1037/0278-7393.21.5.1140 PubMed DOI
Venables W. N., Ripley B. D. (2002). Modern applied statistics with S (4th ed.). Springer.
Vigliocco G., Meteyard L., Andrews M., Kousta S. (2009). Toward a theory of semantic representation. Language and Cognition, 1(2), 219–247.
Villena-González M. L., ópez V., Rodríguez E. (2016). Orienting attention to visual or verbal/auditory imagery differentially impairs the processing of visual stimuli. NeuroImage, 132, 71–78. 10.1016/j.neuroimage.2016.02.013 PubMed DOI
Wickham H. (2011). The split-apply-combine strategy for data analysis. Journal of Statistical Software, 40(1), 1–29.
Wickham H. (2016). ggplot2: Elegant graphics for data analysis. Springer.
Wilke C. O. (2020). cowplot: Streamlined Plot Theme and Plot Annotations for “ggplot2.” https://cran.r-project.org/web/packages/cowplot/index.html