Post-testicular sperm maturation in ancient holostean species
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37957184
PubMed Central
PMC10643692
DOI
10.1038/s41598-023-46900-8
PII: 10.1038/s41598-023-46900-8
Knihovny.cz E-zdroje
- MeSH
- motilita spermií MeSH
- mužské pohlavní orgány MeSH
- ryby anatomie a histologie MeSH
- sperma MeSH
- spermie MeSH
- testis * MeSH
- zrání spermie * MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Fish speciation was accompanied by changes in the urogenital system anatomy. In evolutionarily modern Teleostei, male reproductive tracts are fully separated from the excretory system, while in evolutionarily ancient Chondrostei and Holostei, the excretory and reproductive tracts are not separated. Sturgeon post-testicular sperm maturation (PTSM) occurring as a result of sperm/urine mixing is phenomenologically well described, while, in holosteans, functional intimacy of seminal ducts with kidney ducts and the existence of PTSM still need to be addressed. In Lepisosteus platostomus (Holostei), sperm samples were collected from testes (TS), efferent ducts (EDS), and Wolffian ducts (WDS). While WDS was motile, no motility was found in TS and EDS. The existence of PTSM was checked by in vitro PTSM procedure. After TS and EDS incubation in seminal fluid from WDS, no more than 5% motile spermatozoa were observed in TS, whereas in EDS the motility percentage was up to 75%. Experimental dyeing of urogenital ducts in gars and sturgeons revealed some differences in the interconnection between sperm ducts and kidneys. It is concluded that post-testicular sperm maturation occurs in gars and suggests that infraclass Holostei occupies an intermediate evolutionary position between Teleostei and Chondrostei in the anatomical arrangement of the urogenital system.
Zobrazit více v PubMed
Dacheux JL, Dacheux F. New insights into epididymal function in relation to sperm maturation. Reproduction. 2014;147:R27–R42. doi: 10.1530/REP-13-0420. PubMed DOI
Dzyuba V, et al. Fish sperm biology in relation to urogenital system structure. Theriogenology. 2019;132:153–163. doi: 10.1016/j.theriogenology.2019.04.020. PubMed DOI
Dzyuba B, et al. In vitro sperm maturation in starlet, Acipenser ruthenus. Reprod. Biol. 2014;14:160–163. doi: 10.1016/j.repbio.2014.01.003. PubMed DOI
Dzyuba B, et al. Sperm maturation in sturgeon (Actinopterygii, Acipenseriformes): A review. Theriogenology. 2017;97:134–138. doi: 10.1016/j.theriogenology.2017.04.034. PubMed DOI
Dzyuba V, et al. The antioxidant system of sterlet seminal fluid in testes and Wolffian ducts. Fish Physiol. Biochem. 2014;40:1731–1739. doi: 10.1007/s10695-014-9963-2. PubMed DOI
Dzyuba V, et al. Characterization of proteolytic and anti-proteolytic activity involvement in sterlet spermatozoon maturation. Fish Physiol. Biochem. 2016;42:1755–1766. doi: 10.1007/s10695-016-0255-x. PubMed DOI
Bondarenko O, Dzyuba B, Rodina M, Cosson J. Role of Ca2+ in the IVM of spermatozoa from the sterlet Acipenser ruthenus. Reprod. Fertil. Dev. 2017;29:1319–1328. doi: 10.1071/RD16145. PubMed DOI
Fedorov P, et al. Quantification of adenosine triphosphate, adenosine diphosphate, and creatine phosphate in sterlet Acipenser ruthenus spermatozoa during maturation. J. Anim. Sci. 2015;93:5214–5221. doi: 10.2527/jas2015-9144. PubMed DOI
Balfour FM, Parker WN. III. On the structure and development of Lepidosteus. Proc. R. Soc. Lond. 1882;33:112–119. doi: 10.1098/rspl.1881.0076. DOI
Balfour FM, Parker WN. VII. On the structure and development of Lepidosteus. Philos. Trans. R. Soc. Lond. 1882;173:359–442. doi: 10.1098/rstl.1882.0008. DOI
Blüm, V. Comparative anatomy of the urogenital system in Vertebrate reproduction: a textbook (Blüm, V.) 43–74 (Springer, 1986).
Lahnsteiner, F. & Patzner, R. A. Male reproductive system: spermatic duct and accessory organs of the testis in Reproductive biology and phylogeny of fishes (agnathans and bony fishes): phylogeny, reproductive system, viviparity, spermatozoa (ed. Jamieson, B. G. M.) 143–186 (Science Publishers, 2009).
Pfeiffer CA. The anatomy and blood supply of the urogenital system of Lepidosteus platystomus Rafinesque. J. Morphol. 1933;54:459–475. doi: 10.1002/jmor.1050540304. DOI
Mendoza Alfaro R, González CA, Ferrara AM. Gar biology and culture: status and prospects. Aquac. Res. 2008;39:748–763. doi: 10.1111/j.1365-2109.2008.01927.x. DOI
Orlando EF, Binczik GA, Thomas P, Guillette LJ. Reproductive seasonality of the male Florida gar, Lepisosteus platyrhincus. Gen. Comp. Endocrinol. 2003;131:365–371. doi: 10.1016/S0016-6480(03)00036-4. PubMed DOI
Smylie M, Shervette V, McDonough C. Age, growth, and reproduction in two coastal populations of longnose gars. Trans. Am. Fish. Soc. 2016;145:120–135. doi: 10.1080/00028487.2015.1111256. DOI
Jaroszewska M, Dabrowski K, Rodríguez G. Development of testis and digestive tract in longnose gar (Lepisosteus osseus) at the onset of exogenous feeding of larvae and in juveniles. Aquac. Res. 2010;41:1486–1497. doi: 10.1111/j.1365-2109.2009.02442.x. DOI
Afzelius BA. Fine structure of the garfish spermatozoon. J. Ultrastruct. Res. 1978;64:309–314. doi: 10.1016/S0022-5320(78)90039-4. PubMed DOI
Aguilera C, Mendoza R, Rodríguez G, Márquez G. Morphological description of alligator gar and tropical gar larvae, with an emphasis on growth indicators. Trans. Am. Fish. Soc. 2002;131:899–909. doi: 10.1577/1548-8659(2002)131<0899:MDOAGA>2.0.CO;2. DOI
Dean B. The early development of Gar-pike and Sturgeon. J. Morphol. 1895;11:1–62. doi: 10.1002/jmor.1050110102. DOI
Long WL, Ballard WW. Normal embryonic stages of the Longnose Gar, Lepisosteus osseus. BMC Dev. Biol. 2001;1:6. doi: 10.1186/1471-213X-1-6. PubMed DOI PMC
Matthews WJ, Shelton WL, Marsh-Matthews E. First-year growth of longnose gar (Lepisosteus osseus) from zygote to autumn juvenile. Southwest. Nat. 2012;57:335–337. doi: 10.1894/0038-4909-57.3.338. DOI
Braasch I, et al. A new model army: Emerging fish models to study the genomics of vertebrate Evo-Devo. J. Exp. Zool. B Mol. Dev. Evol. 2015;24:316–341. doi: 10.1002/jez.b.22589. PubMed DOI PMC
Braasch I, et al. The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons. Nat. Genet. 2016;48:427–437. doi: 10.1038/ng.3526. PubMed DOI PMC
Symonová R, et al. Genome compositional organization in gars shows more similarities to mammals than to other ray-finned fish. J. Exp. Zool. B Mol. Dev. Evol. 2017;328:607–619. doi: 10.1002/jez.b.22719. PubMed DOI
Buckmeier, D. Life history and status of alligator gar Atractosteus spatula, with recommendations for management. Technical report. Heart of the Hills Fisheries Science Center, Texas Parks and Wildlife Department (2008).
Echelle AA, Riggs CD. Aspects of the early life history of gars (Lepisosteus) in lake Texoma. Trans. Am. Fish. Soc. 1972;101:106–112. doi: 10.1577/1548-8659(1972)101<106:AOTELH>2.0.CO;2. DOI
Holloway A. Notes on the life history and management of the shortnose and longnose gars in Florida waters. J. Wildl. Manag. 1954;18:438–449. doi: 10.2307/3797079. DOI
Mendoza R, Aguilera C, Rodríguez G, González M, Castro R. Morphophysiological studies on alligator gar (Atractosteus spatula) larval development as a basis for their culture and repopulation of their natural habitats. Rev. Fish Biol. Fish. 2002;12:133–142. doi: 10.1023/A:1025047914814. DOI
Alavi, S. M. H., Cosson, J. J., Coward, K. & Rafiee, G. (eds.) Fish spermatology (Alpha Science International Ltd., 2008).
Ferrara AM, Irwin ER. A standardized procedure for internal sex identification in Lepisosteidae. N. Am. J. Fish. Manag. 2001;21:956–961. doi: 10.1577/1548-8675(2001)021<0956:ASPFIS>2.0.CO;2. DOI
Herrera F, Boryshpolets S, Mraz J, Knowles J, Bondarenko O. Pikeperch (Sander lucioperca) spermatozoa motility and volume regulation under different osmotic and ionic conditions. Fish Physiol. Biochem. 2022;48:899–910. doi: 10.1007/s10695-022-01086-0. PubMed DOI
Kholodnyy V, et al. Does the rainbow trout ovarian fluid promote the spermatozoon on its way to the egg? Int. J. Mol. Sci. 2021;22:9519. doi: 10.3390/ijms22179519. PubMed DOI PMC
Kholodnyy V, et al. Common carp spermatozoa performance is significantly affected by ovarian fluid. Aquaculture. 2022;554:738148. doi: 10.1016/j.aquaculture.2022.738148. DOI
Rahi D, Dzyuba B, Xin M, Cheng Y, Dzyuba V. Energy pathways associated with sustained spermatozoon motility in the endangered Siberian sturgeon Acipenser baerii. J. Fish Biol. 2020;97:435–443. doi: 10.1111/jfb.14382. PubMed DOI
Ramón M, Martínez-Pastor F. Implementation of novel statistical procedures and other advanced approaches to improve analysis of CASA data. Reprod. Fertil. Dev. 2018;30:860–866. doi: 10.1071/RD17479. PubMed DOI
Martínez-Pastor F, Tizado EJ, Garde JJ, Anel L, de Paz P. Statistical series: Opportunities and challenges of sperm motility subpopulation analysis. Theriogenology. 2011;75:783–795. doi: 10.1016/j.theriogenology.2010.11.034. PubMed DOI
Martínez-Pastor F. What is the importance of sperm subpopulations? Anim. Reprod. Sci. 2022;246:106844. doi: 10.1016/j.anireprosci.2021.106844. PubMed DOI
Wrobel KH, Jouma S. Morphology, development and comparative anatomical evaluation of the testicular excretory pathway in Acipenser. Ann. Anat. 2004;186:99–113. doi: 10.1016/S0940-9602(04)80020-7. PubMed DOI
Wei J, Carroll RJ, Harden KK, Wu G. Comparisons of treatment means when factors do not interact in two-factorial studies. Amino Acids. 2012;42:2031–2035. doi: 10.1007/s00726-011-0924-0. PubMed DOI PMC