Differences in Faecal Nutritional Components in Three Species of Saharan Gazelles on Standard Diets in Relation to Species, Age and Sex
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZU (2018:A_20_18)
Faculty of Forestry and Wood Sciences
CZU (FTZ-IGA-20233103)
Faculty of Tropical AgriSciences
PubMed
37958163
PubMed Central
PMC10650564
DOI
10.3390/ani13213408
PII: ani13213408
Knihovny.cz E-zdroje
- Klíčová slova
- body size, digestive efficiency, feeding ecology, fibre, nitrogen,
- Publikační typ
- časopisecké články MeSH
Various environmental, individual, and species-specific factors may affect digestive efficiency in wild ruminants. The study of faecal nutritional components is a commonly used technique to understand these effects, assuming that faecal nitrogen and fibre contents reflect the diet's nutritional quality and digestibility. Recent studies have highlighted the relatively high influence of factors like sex, age, weight or body condition on digestive efficiency. This manuscript is focused on the inter-specific variability in faecal nutritional components under the same feeding regime, using three captive populations of closely related gazelles as model species. Faecal samples from 193 individuals were analysed through Near InfraRed Spectroscopy. Species, sex and age influence on faecal nitrogen and fibres (ADF and NDF) were investigated. We found inter-specific differences in the faecal content of the three studied nutritional components. Cuvier's gazelle showed lower faecal nitrogen content, suggesting lower digestive efficiency than dorcas and dama gazelles. Sex and age also had a moderate effect, especially in faecal nitrogen, but these effects were not constant across the three studied species. On the contrary, faecal fibres were highly constant (i.e., dependent on diet quality). These results confirm that individual factors affecting faecal nutritional components are also species-specific.
Zobrazit více v PubMed
Čupić S., García A.J., Holá M., Ceacero F. Evaluation of factors inducing variability of faecal nutrients in captive red deer under variable demands. Sci. Rep. 2021;11:2349. doi: 10.1038/s41598-021-81908-y. PubMed DOI PMC
Leslie D.M.J., Bowyer R.T., Jenks J.A. Facts from feces: Nitrogen still measures up as a nutritional index for mammalian herbivores. J. Wildl. Manag. 2008;72:1420–1433. doi: 10.2193/2007-404. DOI
Leslie D.M., Starkey E.E. Fecal indices to dietary quality of cervids in old-growth forests. J. Wildl. Manag. 1985;9:142–146. doi: 10.2307/3801860. DOI
Tolleson D.R., Angerer J.P. The application of near infrared spectroscopy to predict faecal nitrogen and phosphorus in multiple ruminant herbivore species. Rangel. J. 2020;42:415–423. doi: 10.1071/RJ20071. DOI
Schuba J., Südekum K.H., Pfeffer E., Jayanegara A. Excretion of faecal, urinary urea and urinary non-urea nitrogen by four ruminant species as influenced by dietary nitrogen intake: A meta-analysis. Livest. Sci. 2017;198:82–88. doi: 10.1016/j.livsci.2017.01.017. DOI
Gálvez-Cerón A., Gassó D., López-Olvera J.R., Mentaberre G., Bartolomé J., Marco I., Ferrer D., Rossi L., Garel M., Lavín S., et al. Gastrointestinal nematodes and dietary fibre: Two factors to consider when using FN for wildlife nutrition monitoring. Ecol. Indic. 2015;52:161–169. doi: 10.1016/j.ecolind.2014.11.020. DOI
Corlatti L. Anonymous fecal sampling and NIRS studies of diet quality: Problem or opportunity? Ecol. Evol. 2020;10:6089–6096. doi: 10.1002/ece3.6354. PubMed DOI PMC
Čupić S., Ježek M., Ceacero F. Are they both the same shit? Winter faeces of roe and red deer show no difference in nutritional components. J. For. Sci. 2023;69:114–123. doi: 10.17221/19/2023-JFS. DOI
Beudels R.C., Devillers P., Cuzin F. Gazella cuvieri Cuvier’s Gazelle. In: Kingdon J., Hoffmann M., editors. Mammals of Africa: Volume VI: Pigs, Hippopotamuses, Chevrotain, Giraffes, Deer and Bovids. 2nd ed. Volume 3. Bloomsbury Publishing; London, UK: 2013. pp. 349–352.
Scholte P. Nanger dama Dama Gazelle. In: Kingdon J., Hoffmann M., editors. Mammals of Africa VI: Pigs, Hippopotamuses, Chevrotain, Giraffes, Deer and Bovids. 2nd ed. Volume 6. Bloomsbury Publishing; London, UK: 2013. pp. 382–387.
Scholte P., Hashim I.M. Gazella dorcas Dorcas Gazelle. In: Kingdon J., Hoffmann M., editors. Mammals of Africa VI: Pigs, Hippopotamuses, Chevrotain, Giraffes, Deer and Bovids. 2nd ed. Volume 6. Bloomsbury Publishing; London, UK: 2013. pp. 340–346.
Clauss M., Hummel J. The digestive performance of mammalian herbivores: Why big may not be that much better. Mammal Rev. 2005;35:174–187. doi: 10.1111/j.1365-2907.2005.00062.x. DOI
Clauss M., Steuer P., Muller D.W.H., Codron D., Hummel J. Herbivory and Body Size: Allometries of Diet Quality and Gastrointestinal Physiology, and Implications for Herbivore Ecology and Dinosaur Gigantism. PLoS ONE. 2013;8:e68714. doi: 10.1371/journal.pone.0068714. PubMed DOI PMC
Hopcraft J.G.C., Olff H., Sinclair A.R. Herbivores, resources and risks: Alternating regulation along primary environmental gradients in savannas. Trends Ecol. Evol. 2010;25:119–128. doi: 10.1016/j.tree.2009.08.001. PubMed DOI
Clauss M. No evidence for different metabolism in domestic mammals. Nat. Ecol. Evol. 2019;3:322. doi: 10.1038/s41559-019-0817-2. PubMed DOI
IUCN SSC Antelope Specialist Group Gazella cuvieri. 2016. The IUCN Red List of Threatened Species 2016: e.T8967A50186003. DOI
IUCN SSC Antelope Specialist Group Nanger dama. 2016. The IUCN Red List of Threatened Species 2016: e.T8968A50186128. DOI
IUCN SSC Antelope Specialist Group Gazella dorcas. 2017. The IUCN Red List of Threatened Species 2017: e.T8969A50186334. DOI
Grettenberger J.F., Newby J.E. Niger. Global survey and regional action plans. Antelopes. 1986;3:14–22.
Le Houérou H.N. La variabilité de la pluviosité annuelle dans quelques régions arides du monde; ses conséquences écologiques. Les Hommes face aux Sécheresses: Nordeste Brésilien et Sahel Africain. Trav. Mémoires. 1989;42:127–137.
Monfort S.L., Newby J., Wacher T., Tubiana J., Moksia D. Sahelo-Saharan Interest Group Wildlife Surveys. Part 1: Central and Western Chad (September–October 2001) Zoological Society of London; London, UK: 2004. Conservation Report No. 1.
Cuzin F. Propositions Pour le Plan de Gestion du Parc National du Bas Draa. Ministère des Eaux et Forêts/GTZ; Abidjan, Ivory Coast: 1998. p. 73.
Cuzin F. Doctoral Dissertation. Montpellier University; Montpellier, France: 2003. Les Grands Mammifères du Maroc Méridional (Haut Atlas, Anti Atlas et Sahara): Distribution, Écologie et Conservation.
Gil-Sánchez J.M., Herrera-Sánchez F.J., Álvarez B., Arredondo A., Bautista J., Cancio I., Castillo S., Díaz-Portero M.A., de Lucas J., McCain E., et al. Evaluating methods for surveying the Endangered Cuvier’s gazelle Gazella cuvieri in arid landscapes. Oryx. 2017;51:648–655. doi: 10.1017/S0030605316000430. DOI
Cassinello J. Inbreeding depression on reproductive performance and survival in captive gazelles of great conservation value. Biol. Conserv. 2005;122:453–464. doi: 10.1016/j.biocon.2004.09.006. DOI
Carlisle D.B., Ghobrial L.I. Food and water requirements of dorcas gazelle in the Sudan. Mammalia. 1968;32:570–576. doi: 10.1515/mamm.1968.32.4.570. DOI
Newby J.E. FAO/UNDP; N´Djamena, Chad: 1974. The Ecological Resources of Oudi Rimé-Ouadi Achim Faunal Reserve, Chad.
Osborn D.J., Helmy I. The Contemporary Land Mammals of Egypt (Including Sinai) Field Museum of Natural History; Chicago, IL, USA: 1980.
Grettenberger J. Ecology of the dorcas gazelle in northern Niger. Mammalia. 1987;51:527–536. doi: 10.1515/mamm.1987.51.4.527. DOI
Dixon R., Coates D. Near infrared spectroscopy of faeces to evaluate the nutrition and physiology of herbivores. J. Near Infrared Spectrosc. 2009;17:822. doi: 10.1255/jnirs.822. DOI
Ceacero F., Garcia A.J., Landete-Castillejos T., Bartošová J., Bartoš L., Gallego L. Benefits for dominant red deer hinds under a competitive feeding system: Food access behavior, diet and nutrient selection. PLoS ONE. 2012;7:e32780. doi: 10.1371/journal.pone.0032780. PubMed DOI PMC
Moreno E., Espeso G. Cuvier’s Gazelle Gazella cuvieri International Studbook: Managing and Husbandry Guidelines. Ayuntamiento de Roquetas de Mar; Almería, Spain: 2008.
Foley W.J., McIlwee A., Lawler I., Aragones L., Woolnough A.P., Berding N. Ecological applications of near infrared reflectance spectroscopy—A tool for rapid, cost-effective prediction of the composition of plant and animal tissues and aspects of animal performance. Oecologia. 1998;116:293–305. doi: 10.1007/s004420050591. PubMed DOI
AOAC . Official Method of Analysis. 18th ed. Association of Official Analytical Chemists; Washington, DC, USA: 2005.
Holá M., Ježek M., Kušta T., Červený J. Evaluation of winter food quality and its variability for red deer in forest environment: Overwintering enclosures vs. free-ranging areas. Cent. Eur. For. J. 2016;62:139–145. doi: 10.1515/forj-2016-0018. DOI
Loison A., Gaillard J.M., Pélabon C., Yoccoz N.G. What factors shape sexual size dimorphism in ungulates? Evol. Ecol. Res. 1999;1:611–633.
Pérez-Barbería F.J., Gordon I.J., Pagel M. The origins of sexual dimorphism in body size in ungulates. Evolution. 2002;56:1276–1285. doi: 10.1111/j.0014-3820.2002.tb01438.x. PubMed DOI
Owens F.N., Bergen W.G. Nitrogen metabolism of ruminant animals: Historical perspective, current understanding and future implications. J. Anim. Sci. 1983;57:498–518. PubMed
Hobbs N.T. Fecal indices to dietary quality: A critique. J. Wildl. Manag. 1987;51:317–320. doi: 10.2307/3801008. DOI
Barbehenn R.V., Constabel C.P. Tannins in plant–herbivore interactions. Phytochemistry. 2011;72:1551–1565. doi: 10.1016/j.phytochem.2011.01.040. PubMed DOI
Van Soest P.J. Allometry and ecology of feeding behavior and digestive capacity in herbivores: A review. Zoo Biol. 1996;15:455–479. doi: 10.1002/(SICI)1098-2361(1996)15:5<455::AID-ZOO3>3.0.CO;2-A. DOI
Groves C.P., Leslie D.M., Jr. Family Bovidae (hollow-horned ruminants) In: Wilson D.E., Mittermeier R.A., editors. Handbook of the Mammals of the World. Volume 2. Lynx Edicions; Barcelona, Spain: 2011. pp. 444–779. Hoofed Mammals.