The Impact of Interventional Weight Loss on Bone Marrow Adipose Tissue in People Living with Obesity and Its Connection to Bone Metabolism

. 2023 Oct 29 ; 15 (21) : . [epub] 20231029

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid37960254

This review focuses on providing physicians with insights into the complex relationship between bone marrow adipose tissue (BMAT) and bone health, in the context of weight loss through caloric restriction or metabolic and bariatric surgery (MBS), in people living with obesity (PwO). We summarize the complex relationship between BMAT and bone health, provide an overview of noninvasive imaging techniques to quantify human BMAT, and discuss clinical studies measuring BMAT in PwO before and after weight loss. The relationship between BMAT and bone is subject to variations based on factors such as age, sex, menopausal status, skeletal sites, nutritional status, and metabolic conditions. The Bone Marrow Adiposity Society (BMAS) recommends standardizing imaging protocols to increase comparability across studies and sites, they have identified both water-fat imaging (WFI) and spectroscopy (1H-MRS) as accepted standards for in vivo quantification of BMAT. Clinical studies measuring BMAT in PwO are limited and have shown contradictory results. However, BMAT tends to be higher in patients with the highest visceral adiposity, and inverse associations between BMAT and bone mineral density (BMD) have been consistently found in PwO. Furthermore, BMAT levels tend to decrease after caloric restriction-induced weight loss. Although weight loss was associated with overall fat loss, a reduction in BMAT did not always follow the changes in fat volume in other tissues. The effects of MBS on BMAT are not consistent among the studies, which is at least partly related to the differences in the study population, skeletal site, and duration of the follow-up. Overall, gastric bypass appears to decrease BMAT, particularly in patients with diabetes and postmenopausal women, whereas sleeve gastrectomy appears to increase BMAT. More research is necessary to evaluate changes in BMAT and its connection to bone metabolism, either in PwO or in cases of weight loss through caloric restriction or MBS, to better understand the role of BMAT in this context and determine the local or systemic factors involved.

Zobrazit více v PubMed

Gadde K.M., Martin C.K., Berthoud H.R., Heymsfield S.B. Obesity: Pathophysiology and Management. J. Am. Coll. Cardiol. 2018;71:69–84. doi: 10.1016/j.jacc.2017.11.011. PubMed DOI PMC

Pasquali R., Casanueva F., Haluzik M., van Hulsteijn L., Ledoux S., Monteiro M.P., Salvador J., Santini F., Toplak H., Dekkers O.M. European Society of Endocrinology Clinical Practice Guideline: Endocrine work-up in obesity. Eur. J. Endocrinol. 2020;182:G1–G32. doi: 10.1530/EJE-19-0893. PubMed DOI

Chang S.H., Stoll C.R., Song J., Varela J.E., Eagon C.J., Colditz G.A. The effectiveness and risks of bariatric surgery: An updated systematic review and meta-analysis, 2003–2012. JAMA Surg. 2014;149:275–287. doi: 10.1001/jamasurg.2013.3654. PubMed DOI PMC

Sjöström L., Peltonen M., Jacobson P., Ahlin S., Andersson-Assarsson J., Anveden Å., Bouchard C., Carlsson B., Karason K., Lönroth H., et al. Association of bariatric surgery with long-term remission of type 2 diabetes and with microvascu-lar and macrovascular complications. JAMA. 2014;311:2297–2304. doi: 10.1001/jama.2014.5988. PubMed DOI

Kadowaki T., Isendahl J.K., Khalid U., Lee S.W., Nishida T., Ogawa W., Tobe K., Yamauchi T., Lim S. Semaglutide once a week in adults with overweight or obesity, with or without type 2 diabetes in an east Asian population (STEP 6): A randomised, double-blind, double-dummy, placebo-controlled, phase 3a trial. Lancet Diabetes Endocrinol. 2022;10:193–206. doi: 10.1016/S2213-8587(22)00008-0. PubMed DOI

Rubino D.M., Grenway F.L., Khalid O., O’Neil P.M., Rosenstock J., Sørrig R., Wadden T.A., Wizert A., Garvey W.T., STEP 8 Investigators Effect of weekly subcutaneous Semaglutide vs daily Liraglutide on body weight in adults with overweight or obesity without diabetes. The Step 8 Randomized Clinical Study. JAMA. 2022;327:138–150. doi: 10.1001/jama.2021.23619. PubMed DOI PMC

Lespessailles E., Paccou J., Javier R.M., Thomas T., Cortet B., GRIO Scientific Committee GRIO Scientific Committee. Obesity, Bariatric Surgery, and Fractures. J. Clin. Endocrinol. Metab. 2019;104:4756–4768. doi: 10.1210/jc.2018-02084. PubMed DOI

Paccou J., Caiazzo R., Lespessailles E., Cortet B. Bariatric Surgery and Osteoporosis. Calcif. Tissue Int. 2022;110:576–591. doi: 10.1007/s00223-020-00798-w. PubMed DOI

Papageorgiou M., Kerschan-Schindl K., Sathyapalan T., Pietschmann P. Is Weight Loss Harmful for Skeletal Health in Obese Older Adults? Gerontology. 2020;66:2–14. doi: 10.1159/000500779. PubMed DOI

Shanbhogue V.V., Støving R.K., Frederiksen K.H., Hanson S., Brixen K., Gram J., Jørgensen N.R., Hansen S. Bone structural changes after gastric bypass surgery evaluated by HR-pQCT: A two-year longitudinal study. Eur. J. Endocrinol. 2017;176:685–693. doi: 10.1530/EJE-17-0014. PubMed DOI PMC

Paccou J., Martignène N., Lespessailles E., Babykina E., Pattou F., Cortet B., Ficheur G. Gastric bypass but not sleeve gastrectomy increases risk of major osteoporotic fracture: French population-based cohort study. J. Bone Miner Res. 2020;35:1415–1423. doi: 10.1002/jbmr.4012. PubMed DOI

Khalid S.I., Omotosho P.A., Spagnoli A., Torquati A. Association of Bariatric Surgery with Risk of Fracture in Patients with Severe Obesity. JAMA Netw. Open. 2020;3:e207419. doi: 10.1001/jamanetworkopen.2020.7419. PubMed DOI PMC

Paccou J., Tsourdi E., Meier C., Palermo A., Pepe J., Body J.-J., Zillikens M.C. Bariatric surgery and skeletal health: A narrative review and position statement for management by the European Calcified Tissue Society (ECTS) Bone. 2021;154:116236. doi: 10.1016/j.bone.2021.116236. PubMed DOI

Villareal D.T., Shah K., Banks M.R., Sinacore D.R., Klein S. Effect of weight loss and exercise therapy on bone metabolism and mass in obese older adults: A one-year randomized controlled trial. J. Clin. Endocrinol. Metab. 2008;93:2181–2187. doi: 10.1210/jc.2007-1473. PubMed DOI PMC

Paccou J., Penel G., Chauveau C., Cortet B., Hardouin P. Marrow adiposity and bone: Review of clinical implications. Bone. 2019;118:8–15. doi: 10.1016/j.bone.2018.02.008. PubMed DOI

Veldhuis-Vlug A.G., Rosen C.J. Clinical implications of bone marrow adiposity. J. Intern. Med. 2018;283:121–139. doi: 10.1111/joim.12718. PubMed DOI PMC

Beekman K.M., Duque G., Corsi A., Tencerova M., Bisschop P.H., Paccou J. Osteoporosis and Bone Marrow Adipose Tissue. Curr. Osteoporos. Rep. 2023;21:45–55. doi: 10.1007/s11914-022-00768-1. PubMed DOI

Li Z., Rosen C.J. The Multifaceted Roles of Bone Marrow Adipocytes in Bone and Hematopoietic Homeostasis. J. Clin. Endocrinol. Metab. 2023:dgad355. doi: 10.1210/clinem/dgad355. PubMed DOI

Paccou J., Hardouin P., Cotten A., Penel G., Cortet B. The Role of Bone Marrow Fat in Skeletal Health: Usefulness and Perspectives for Clinicians. J. Clin. Endocrinol. Metab. 2015;100:3613–3621. doi: 10.1210/jc.2015-2338. PubMed DOI

Cawthorn W.P., Scheller E.L., Learman B.S., Parlee S.D., Simon B.R., Mori H., Ning X., Bree A.J., Schell B., Broome D.T., et al. Bone Marrow Adipose Tissue Is an Endocrine Organ that Contributes to Increased Circulating Adiponectin during Caloric Restriction. Cell Metab. 2014;20:368–375. doi: 10.1016/j.cmet.2014.06.003. PubMed DOI PMC

Paccou J., Badr S., Lombardo D., Khizindar H., Deken V., Ruschke S., Karampinos D.C., Cotten A., Cortet B. Bone Marrow Adiposity and Fragility Fractures in Postmenopausal Women: The ADIMOS Case-Control Study. J. Clin. Endocrinol. Metab. 2023;108:2526–2536. doi: 10.1210/clinem/dgad195. PubMed DOI

Schwartz A.V. Marrow fat and bone: Review of clinical findings. Front. Endocrinol. 2015;6:40. doi: 10.3389/fendo.2015.00040. PubMed DOI PMC

Woods G.N., Ewing S.K., Schafer A.L., Gudnason V., Sigurdsson S., Lang T., Hue T.F., Kado D.M., Vittinghoff E., Rosen C., et al. Saturated and Unsaturated Bone Marrow Lipids Have Distinct Effects on Bone Density and Fracture Risk in Older Adults. J. Bone Miner. Res. 2022;37:700–710. doi: 10.1002/jbmr.4504. PubMed DOI PMC

Li Z., Bowers E., Zhu J., Yu H., Hardij J., Bagchi D.P., Mori H., Lewis K.T., Granger K., Schill R.L., et al. Lipolysis of bone marrow adipocytes is required to fuel bone and the marrow niche during energy deficits. eLife. 2022;11:e78496. doi: 10.7554/eLife.78496. PubMed DOI PMC

Fazeli P.K., Bredella M.A., Pachon-Peña G., Zhao W., Zhang X., Faje A.T., Resulaj M., Polineni S.P., Holmes T.M., Lee H., et al. The dynamics of human bone marrow adipose tissue in response to feeding and fasting. J. Clin. Investig. 2021;6:138636. doi: 10.1172/jci.insight.138636. PubMed DOI PMC

Craft C.S., Li Z., MacDougald O.A., Scheller E.L. Molecular differences between subtypes of bone marrow adipocytes. Curr. Mol. Biol. Rep. 2018;4:16–23. doi: 10.1007/s40610-018-0087-9. PubMed DOI PMC

Sollmann N., Löffler M.T., Kronthaler S., Böhm C., Dieckmeyer M., Ruschke S., Kirschke J.S., Carballido-Gamio J., Karampinos D.C., Krug R., et al. MRI-Based Quantitative Osteoporosis Imaging at the Spine and Femur. J. Magn. Reson. Imaging. 2021;54:12–35. doi: 10.1002/jmri.27260. PubMed DOI

Beekman K.M., Regenboog M., Nederveen A.J., Bravenboer N., Heijer M.D., Bisschop P.H., Hollak C.E., Akkerman E.M., Maas M. Gender- and Age-Associated Differences in Bone Marrow Adipose Tissue and Bone Marrow Fat Unsaturation Throughout the Skeleton, Quantified Using Chemical Shift Encoding-Based Water–Fat MRI. Front. Endocrinol. 2022;13:815835. doi: 10.3389/fendo.2022.815835. PubMed DOI PMC

Tratwal J., Labella R., Bravenboer N., Kerckhofs G., Douni E., Scheller E.L., Badr S., Karampinos D.C., Beck-Cormier S., Palmisano B., et al. Reporting Guidelines, Review of Methodological Standards, and Challenges Toward Harmonization in Bone Marrow Adiposity Research. Report of the Methodologies Working Group of the International Bone Marrow Adiposity Society. Front. Endocrinol. 2020;11:65. doi: 10.3389/fendo.2020.00065. PubMed DOI PMC

Lecka-Czernik B., Stechschulte L.A., Czernik P.J., Dowling A.R. High bone mass in adult mice with diet-induced obesity results from a combination of initial increase in bone mass followed by attenuation in bone formation; implications for high bone mass and decreased bone quality in obesity. Mol. Cell Endocrinol. 2015;410:35–41. doi: 10.1016/j.mce.2015.01.001. PubMed DOI

Doucette C.R., Horowitz M.C., Berry R., MacDougald O.A., Anunciado-Koza R., Koza R.A., Rosen C.J. A High Fat Diet Increases Bone Marrow Adipose Tissue (MAT) But Does Not Alter Trabecular or Cortical Bone Mass in C57BL/6J Mice. J. Cell Physiol. 2015;230:2032–2037. doi: 10.1002/jcp.24954. PubMed DOI PMC

Scheller E.L., Khoury B., Moller K.L., Wee N.K.Y., Khandaker S., Kozloff K.M., Abrishami S.H., Zamarron B.F., Singer K. Changes in Skeletal Integrity and Marrow Adiposity during High-Fat Diet and after Weight Loss. Front. Endocrinol. 2016;7:102. doi: 10.3389/fendo.2016.00102. PubMed DOI PMC

Devlin M.J., Robbins A., Cosman M.N., Moursi C.A., Cloutier A.M., Louis L., Van Vliet M., Conlon C., Bouxsein M.L. Differential effects of high fat diet and diet-induced obesity on skeletal acquisition in female C57BL/6J vs. FVB/NJ Mice. Bone Rep. 2018;8:204–214. doi: 10.1016/j.bonr.2018.04.003. PubMed DOI PMC

Charles A., Mugisha A., Iconaru L., Baleanu F., Benoit F., Surquin M., Bergmann P., Body J.J. Distribution of Fracture Sites in Postmenopausal Overweight and Obese Women: The FRISBEE Study. Calcif. Tissue Int. 2022;111:29–34. doi: 10.1007/s00223-022-00968-y. PubMed DOI

Piotrowska K., Tarnowski M. Bone Marrow Adipocytes—Role in Physiology and Various Nutritional Conditions in Human and Animal Models. Nutrients. 2021;13:1412. doi: 10.3390/nu13051412. PubMed DOI PMC

Li Z., MacDougald O.A. Preclinical models for investigating how bone marrow adipocytes influence bone and hematopoietic cellularity. Best Pract. Res. Clin. Endocrinol. Metab. 2021;35:101547. doi: 10.1016/j.beem.2021.101547. PubMed DOI PMC

Gkastaris K., Goulis D.G., Potoupnis M., Anastasilakis A.D., Kapetanos G. Obesity, osteoporosis and bone metabolism. J. Musculoskelet. Neuronal. Interact. 2020;20:372–381. PubMed PMC

Compston J.E., Watts N.B., Chapurlat R., Cooper C., Boonen S., Greenspan S., Pfeilschifter J., Silverman S., Díez-Pérez A., Lindsay R., et al. Obesity is not protective against fracture in postmenopausal women: GLOW. Am. J. Med. 2011;124:1043–1050. doi: 10.1016/j.amjmed.2011.06.013. PubMed DOI PMC

Johansson H., Kanis J.A., Odén A., McCloskey E., Chapurlat R.D., Christiansen C., Cummings S.R., Diez-Perez A., Eisman J.A., Fujiwara S., et al. A meta-analysis of the association of fracture risk and body mass index in women. J. Bone Miner. Res. 2014;29:223–233. doi: 10.1002/jbmr.2017. PubMed DOI

Cohen A., Dempster D.W., Recker R.R., Lappe J.M., Zhou H., Zwahlen A., Müller R., Zhao B., Lang T., Saeed I., et al. Abdominal fat is associated with lower bone formation and inferior bone quality in healthy premenopausal women: A transiliac bone biopsy study. J. Clin. Endocrinol. Metab. 2013;98:2562–2572. doi: 10.1210/jc.2013-1047. PubMed DOI PMC

Bredella M.A., Torriani M., Ghomi R.H., Thomas B.J., Brick D.J., Gerweck A.V., Rosen C.J., Klibanski A., Miller K.K. Vertebral bone marrow fat is positively associated with visceral fat and inversely associated with IGF-1 in obese women. Obesity. 2011;19:49–53. doi: 10.1038/oby.2010.106. PubMed DOI PMC

Bredella M., Gill C., Gerweck A., Landa M.G., Kumar V., Daley S.M., Torriani M., Miller K.K. Ectopic and Serum Lipid Levels Are Positively Associated with Bone Marrow Fat in Obesity. Radiology. 2013;269:534–541. doi: 10.1148/radiol.13130375. PubMed DOI PMC

Singhal V., Bose A., Liang Y., Srivastava G., Goode S., Stanford F.C., Misra M., Bredella M.A. Marrow adipose tissue in adolescent girls with obesity. Bone. 2019;129:115103. doi: 10.1016/j.bone.2019.115103. PubMed DOI PMC

Singhal V., Flores L.P.T., Stanford F.C., Toth A.T., Carmine B., Misra M., Bredella M.A. Differential associations between appendicular and axial marrow adipose tissue with bone microarchitecture in adolescents and young adults with obesity. Bone. 2018;116:203–206. doi: 10.1016/j.bone.2018.08.009. PubMed DOI PMC

CDC: Centers for Disease Control and Prevention Losing Weight; What Is Healthy Weight Loss? [(accessed on 15 May 2023)]; Available online: http://www.cdc.gov/healthyweight/losing_weight/index.html.

NICE: National Institute for Health and Care Excellence CG43 . Obesity: Guidance on the Prevention, Identification, Assessment and Management of Overweight and Obesity in Adults and Children. NICE; London, UK: 2006.

Verheijden M.W., Bakx J.C., Van Weel C., Koelen M.A., Van Staveren W.A. Role of social support in lifestyle-focussed weight management interventions. Euro. J. Clin. Nutr. 2005;59((Suppl. S1)):179–186. doi: 10.1038/sj.ejcn.1602194. PubMed DOI

Cordes C., Dieckmeyer M., Ott B., Shen J., Ruschke S., Settles M., Eichhorn C., Bauer J.S., Kooijman H., Rummeny E.J., et al. MR-detected changes in liver, abdominal, and vertebral bone marrow fat after a four-week calorie restriction in obese women. J. Magn. Reson. Imaging JMRI. 2015;42:272–1280. doi: 10.1002/jmri.24908. PubMed DOI

Vogt L.J., Steveling A., Meffert P.J., Kromrey M.L., Kessler R., Hosten N., Krüger J., Gärtner S., Aghdassi A.A., Mayerle J., et al. Magnetic resonance imaging of changes in abdominal compartments in obese diabetics during a low-calorie weight-loss program. PLoS ONE. 2016;11:e0153595. doi: 10.1371/journal.pone.0153595. PubMed DOI PMC

Spurny M., Jiang Y., Sowah S.A., Schübel R., Nonnenmacher T., Bertheau R., Kirsten R., Johnson T., Hillengass J., Schlett C.L., et al. Changes in Bone Marrow Fat upon Dietary-Induced Weight Loss. Nutrients. 2020;12:1509. doi: 10.3390/nu12051509. PubMed DOI PMC

Ofir N., Mizrakli Y., Greenshpan Y., Gepner Y., Sharabi O., Tsaban G., Zelicha H., Meir A.Y., Ceglarek U., Stumvoll M., et al. Vertebrae but not femur marrow fat transiently decreases in response to body weight loss in an 18-month randomized control trial. Bone. 2023;171:116727. doi: 10.1016/j.bone.2023.116727. PubMed DOI

Kim T.Y., Schwartz A.V., Li X., Xu K., Black D.M., Petrenko D.M., Stewart L., Rogers S.J., Posselt A.M., Carter J.T., et al. Bone Marrow Fat Changes After Gastric Bypass Surgery Are Associated with Loss of Bone Mass. J. Bone Miner. Res. 2017;32:2239–2247. doi: 10.1002/jbmr.3212. PubMed DOI PMC

Kim T.Y., Schwartz A.V., Li X., Xu K., Kazakia G.J., Grunfeld C., Nissenson R.A., Shoback D.M., Schafer A.L. Bone marrow adipose tissue composition and glycemic improvements after gastric bypass surgery. Bone Rep. 2022;17:101596. doi: 10.1016/j.bonr.2022.101596. PubMed DOI PMC

Beekman K.M., Akkerman E.M., Streekstra G.J., Veldhuis-Vlug A.G., Acherman Y., Gerdes V.E., den Heijer M., Maas M., Bravenboer N., Bisschop P.H. The Effect of Roux-en-Y Gastric Bypass on Bone Marrow Adipose Tissue and Bone Mineral Density in Postmenopausal, Nondiabetic Women. Obesity. 2021;29:1120–1127. doi: 10.1002/oby.23171. PubMed DOI PMC

Blom-Høgestøl I.K., Mala T., Kristinsson J.A., Hauge E., Brunborg C., Gulseth H.L., Eriksen E.F. Changes in Bone Marrow Adipose Tissue One Year After Roux-en-Y Gastric Bypass: A Prospective Cohort Study. J. Bone Miner. Res. 2019;34:1815–1823. doi: 10.1002/jbmr.3814. PubMed DOI

Bredella M.A., Singhal V., Hazhir Karzar N., Animashaun A., Bose A., Stanford F.C., Carmine B., Misra M. Effects of Sleeve Gastrectomy on Bone Mar-row Adipose Tissue in Adolescents and Young Adults with Obesity. J. Clin. Endocrinol. Metab. 2020;105:e3961–e3970. doi: 10.1210/clinem/dgaa581. PubMed DOI PMC

Huber F.A., Singhal V., Tuli S., Becetti I., López López A.P., Bouxsein M.L., Misra M., Bredella M.A. Two-year Skeletal Effects of Sleeve Gastrectomy in Ado-lescents with Obesity Assessed with Quantitative CT and MR Spectroscopy. Radiology. 2023;307:e223256. doi: 10.1148/radiol.223256. PubMed DOI PMC

Bredella M.A., Greenblatt L.B., Eajazi A., Torriani M., Yu E.W. Effects of Roux-en-Y gastric bypass and sleeve gastrectomy on bone mineral density and marrow adipose tissue. Bone. 2017;95:85–90. doi: 10.1016/j.bone.2016.11.014. PubMed DOI PMC

Ivaska K.K., Huovinen V., Soinio M., Hannukainen J.C., Saunavaara V., Salminen P., Helmiö M., Parkkola R., Nuutila P., Kiviranta R. Changes in bone metabolism after bariatric surgery by gastric bypass or sleeve gastrectomy. Bone. 2017;95:47–54. doi: 10.1016/j.bone.2016.11.001. PubMed DOI

Rao R.S., Rao V., Kini S. Animal models in bariatric surgery—A review of the surgical techniques and postsurgical physiology. Obes. Surg. 2010;20:1293–1305. doi: 10.1007/s11695-010-0135-x. PubMed DOI

Lutz T.A., Bueter M. The Use of Rat and Mouse Models in Bariatric Surgery Experiments. Front. Nutr. 2016;3:25. doi: 10.3389/fnut.2016.00025. PubMed DOI PMC

Scheller E.L., Doucette C.R., Learman B.S., Cawthorn W.P., Khandaker S., Schell B., Wu B., Ding S.-Y., Bredella M.A., Fazeli P.K., et al. Region-specific variation in the properties of skeletal adipocytes reveals regulated and constitutive marrow adipose tissues. Nat. Commun. 2015;6:7808. doi: 10.1038/ncomms8808. PubMed DOI PMC

Li Z., Hardij J., Bagchi D.P., Scheller E.L., MacDougald O.A. Development, regulation, metabolism and function of bone marrow adipose tissues. Bone. 2018;110:134–140. doi: 10.1016/j.bone.2018.01.008. PubMed DOI PMC

Suchacki K.J., Cawthorn W.P. Molecular Interaction of Bone Marrow Adipose Tissue with Energy Metabolism. Curr. Mol. Biol. Rep. 2018;4:41–49. doi: 10.1007/s40610-018-0096-8. PubMed DOI PMC

Scheller E.L., Khandaker S., Learman B.S., Cawthorn W.P., Anderson L.M., Pham H., Robles H., Wang Z., Li Z., Parlee S.D., et al. Bone marrow adipocytes resist lipolysis and remodeling in response to β-adrenergic stimulation. Bone. 2019;118:32–41. doi: 10.1016/j.bone.2018.01.016. PubMed DOI PMC

Styner M., Thompson W.R., Galior K., Uzer G., Wu X., Kadari S., Case N., Xie Z., Sen B., Romaine A., et al. Bone marrow fat accumulation accelerated by high fat diet is suppressed by exercise. Bone. 2014;64:39–46. doi: 10.1016/j.bone.2014.03.044. PubMed DOI PMC

Li Z., Hardij J., Evers S.S., Hutch C.R., Choi S.M., Shao Y., Learman B.S., Lewis K.T., Schill R.L., Mori H., et al. G-CSF partially mediates effects of sleeve gastrectomy on the bone marrow niche. J. Clin. Investig. 2019;129:2404–2416. doi: 10.1172/JCI126173. PubMed DOI PMC

Bozadjieva-Kramer N., Shin J.H., Shao Y., Gutierrez-Aguilar R., Li Z., Heppner K.M., Chiang S., Vargo S.G., Granger K., Sandoval D.A., et al. Intestinal-derived FGF15 protects against deleterious effects of vertical sleeve gastrectomy in mice. Nat. Commun. 2021;12:4768. doi: 10.1038/s41467-021-24914-y. PubMed DOI PMC

Fazeli P.K., Horowitz M.C., MacDougald O.A., Scheller E.L., Rodeheffer M.S., Rosen C.J., Klibanski A. Marrow fat and bone—New perspectives. J. Clin. Endocrinol. Metab. 2013;98:935–945. doi: 10.1210/jc.2012-3634. PubMed DOI PMC

Botolin S., McCabe L.R. Bone loss and increased bone adiposity in spontaneous and pharmacologically induced diabetic mice. Endocrinology. 2007;148:198–205. doi: 10.1210/en.2006-1006. PubMed DOI

Sulston R.J., Learman B.S., Zhang B., Scheller E.L., Parlee S.D., Simon B.R., Mori H., Bree A.J., Wallace R.J., Krishnan V., et al. Increased Circulating Adiponectin in Response to Thiazolidinediones: Investigating the Role of Bone Marrow Adipose Tissue. Front. Endocrinol. 2016;7:128. doi: 10.3389/fendo.2016.00128. PubMed DOI PMC

Tencerova M., Figeac F., Ditzel N., Taipaleenmäki H., Nielsen T.K., Kassem M. High-Fat Diet-Induced Obesity Promotes Expansion of Bone Marrow Adipose Tissue and Impairs Skeletal Stem Cell Functions in Mice. J. Bone Miner. Res. 2018;33:1154–1165. doi: 10.1002/jbmr.3408. PubMed DOI

Devlin M.J., Cloutier A.M., Thomas N.A., Panus D.A., Lotinun S., Pinz I., Baron R., Rosen C.J., Bouxsein M.L. Caloric restriction leads to high marrow adiposity and low bone mass in growing mice. J. Bone Miner. Res. 2010;25:2078–2088. doi: 10.1002/jbmr.82. PubMed DOI PMC

Cawthorn W.P., Scheller E.L., Parlee S.D., Pham H.A., Learman B.S., Redshaw C.M.H., Sulston R.J., Burr A.A., Das A.K., Simon B.R., et al. Expansion of Bone Marrow Adipose Tissue During Caloric Restriction Is Associated With Increased Circulating Glucocorticoids and Not With Hypoleptinemia. Endocrinology. 2016;157:508–521. doi: 10.1210/en.2015-1477. PubMed DOI PMC

Li Z., Bagchi D.P., Zhu J., Bowers E., Yu H., Hardij J., Mori H., Granger K., Skjaerlund J.D., Mandair G.S., et al. Constitutive bone marrow adipocytes suppress local bone formation. J. Clin. Investig. 2022;7:e160915. doi: 10.1172/jci.insight.160915. PubMed DOI PMC

Baum T., Yap S.P., Karampinos D.C., Nardo L., Kuo D., Burghardt A.J., Masharani U.B., Schwartz A.V., Li X., Link T.M. Does vertebral bone marrow fat content correlate with abdominal adipose tissue, lumbar spine bone mineral density, and blood biomarkers in women with type 2 diabetes mellitus? J. Magn. Reason. Imaging. 2012;35:117–124. doi: 10.1002/jmri.22757. PubMed DOI PMC

Sheu Y., Amati F., Schwartz A.V., Danielson M.E., Li X., Boudreau R., Cauley J.A., Osteoporotic Fractures in Men (MrOS) Research Group Vertebral bone marrow fat, bone mineral density and diabetes: The Osteoporotic Fractures in Men (MrOS) study. Bone. 2017;97:299–305. doi: 10.1016/j.bone.2017.02.001. PubMed DOI PMC

Yu E.W., Greenblatt L., Eajazi A., Torriani M., Bredella M.A. Marrow adipose tissue composition in adults with morbid obesity. Bone. 2017;97:38–42. doi: 10.1016/j.bone.2016.12.018. PubMed DOI PMC

Woods G.N., Ewing S.K., Sigurdsson S., Kado D.M., Ix J.H., Hue T.F., Eiriksdottir G., Xu K., Gudnason V., Lang T.F., et al. Chronic Kidney Disease Is Associated with Greater Bone Marrow Adiposity. J. Bone Miner. Res. 2018;33:2158–2164. doi: 10.1002/jbmr.3562. PubMed DOI PMC

Moorthi R.N., Fadel W., Eckert G.J., Ponsler-Sipes K., Moe S.M., Lin C. Bone marrow fat is increased in chronic kidney disease by magnetic resonance spectroscopy. Osteoporos. Int. 2015;26:1801–1807. doi: 10.1007/s00198-015-3064-7. PubMed DOI PMC

Badr S., Cotten A., Mentaverri R., Lombardo D., Labreuche J., Martin C., Hénaut L., Cortet B., Paccou J. Relationship between Bone Marrow Adipose Tissue and kidney function in postmenopausal women. Bone Rep. 2023;19:101713. doi: 10.1016/j.bonr.2023.101713. PubMed DOI PMC

Kuiper J.W., van Kuijk C., Grashuis J.L., Ederveen A.G.H., Schütte H.E. Accuracy and the Influence of Marrow Fat on Quantitative CT and Dual-Energy X-ray Absorp-tiometry Measurements of the Femoral Neck in Vitro. Osteoporos. Int. 1996;6:25–30. doi: 10.1007/BF01626534. PubMed DOI

Sfeir J.G., Drake M.T., Atkinson E.J., Achenbach S.J., Camp J.J., Tweed A.J., McCready L.K., Yu L., Adkins M.C., Amin S., et al. Evaluation of Cross-Sectional and Longitudinal Changes in Volumetric Bone Mineral Density in Postmenopausal Women Using Single-versus Dual-Energy Quantitative Computed Tomography. Bone. 2018;112:145–152. doi: 10.1016/j.bone.2018.04.023. PubMed DOI PMC

Yu E.W., Thomas B.J., Brown J.K., Finkelstein J.S. Simulated Increases in Body Fat and Errors in Bone Mineral Density Measurements by DXA and QCT. J. Bone Miner. Res. 2012;27:119–124. doi: 10.1002/jbmr.506. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...