Genomic and phenotypic comparison of polyhydroxyalkanoates producing strains of genus Caldimonas/Schlegelella

. 2023 ; 21 () : 5372-5381. [epub] 20231030

Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37965057
Odkazy

PubMed 37965057
PubMed Central PMC10641440
DOI 10.1016/j.csbj.2023.10.051
PII: S2001-0370(23)00407-5
Knihovny.cz E-zdroje

Polyhydroxyalkanoates (PHAs) have emerged as an environmentally friendly alternative to conventional polyesters. In this study, we present a comprehensive analysis of the genomic and phenotypic characteristics of three non-model thermophilic bacteria known for their ability to produce PHAs: Schlegelella aquatica LMG 23380T, Caldimonas thermodepolymerans DSM 15264, and C. thermodepolymerans LMG 21645 and the results were compared with the type strain C. thermodepolymerans DSM 15344T. We have assembled the first complete genomes of these three bacteria and performed the structural and functional annotation. This analysis has provided valuable insights into the biosynthesis of PHAs and has allowed us to propose a comprehensive scheme of carbohydrate metabolism in the studied bacteria. Through phylogenomic analysis, we have confirmed the synonymity between Caldimonas and Schlegelella genera, and further demonstrated that S. aquatica and S. koreensis, currently classified as orphan species, belong to the Caldimonas genus.

Zobrazit více v PubMed

Alcock B.P., Raphenya A.R., Lau T.T.Y., Tsang K.K., Bouchard M., Edalatmand A., Huynh W., Nguyen A.L.V., Cheng A.A., Liu S., Min S.Y., Miroshnichenko A., Tran H.K., Werfalli R.E., Nasir J.A., Oloni M., Speicher D.J., Florescu A., Singh B., Faltyn M., Hernandez-Koutoucheva A., Sharma A.N., Bordeleau E., Pawlowski A.C., Zubyk H.L., Dooley D., Griffiths E., Maguire F., Winsor G.L., Beiko R.G., Brinkman F.S.L., Hsiao W.W.L., Domselaar G.V., McArthur A.G. CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res. 2020;48:D517–D525. doi: 10.1093/nar/gkz935. PubMed DOI PMC

Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. Basic local alignment search tool. J Mol Biol. 1990;215:403–410. doi: 10.1016/S0022-2836(05)80360-2. PubMed DOI

Bailey T.L. STREME: accurate and versatile sequence motif discovery. Bioinformatics. 2021;37:2834–2840. doi: 10.1093/BIOINFORMATICS/BTAB203. PubMed DOI PMC

Berks B.C., Palmer T., Sargent F. Tat Protein Translocat Pathw its role Microb Physiol. 2003:187–254. PubMed

Biswas A., Staals R.H.J., Morales S.E., Fineran P.C., Brown C.M. CRISPRDetect: a flexible algorithm to define CRISPR arrays. BMC Genom. 2016;17 doi: 10.1186/s12864-016-2627-0. PubMed DOI PMC

Bolger A.M., Lohse M., Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC

Cantalapiedra C.P., Hern̗andez-Plaza A., Letunic I., Bork P., Huerta-Cepas J. eggNOG-mapper v2: functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol Biol Evol. 2021;38:5825–5829. doi: 10.1093/MOLBEV/MSAB293. PubMed DOI PMC

Chaudhary D.K., Lee H., Dahal R.H., Kim D.-U. Schlegelella koreensis sp. nov., isolated from evaporator core of automobile air conditioning system. Arch Microbiol. 2021;203:2373–2378. doi: 10.1007/s00203-021-02206-9. PubMed DOI

Chen G.Q., Jiang X.R. Next generation industrial biotechnology based on extremophilic bacteria. Curr Opin Biotechnol. 2018;50:94–100. doi: 10.1016/j.copbio.2017.11.016. PubMed DOI

Chou Y.-J., Sheu S.-Y., Sheu D.-S., Wang J.-T., Chen W.-M. Schlegelella aquatica sp. nov., a novel thermophilic bacterium isolated from a hot spring. Int J Syst Evol Microbiol. 2006;56:2793–2797. doi: 10.1099/ijs.0.64446-0. PubMed DOI

Coker J.A. Extremophiles and biotechnology: current uses and prospects. F1000Research. 2016;5:396. PubMed PMC

Dietrich K., Dumont M.-J., Del Rio L.F., Orsat V. Sustainable PHA production in integrated lignocellulose biorefineries. N Biotechnol. 2019;49:161–168. doi: 10.1016/j.nbt.2018.11.004. PubMed DOI

Dvořák P., de Lorenzo V. Refactoring the upper sugar metabolism of Pseudomonas putida for co-utilization of cellobiose, xylose, and glucose. Metab Eng. 2018;48:94–108. doi: 10.1016/j.ymben.2018.05.019. PubMed DOI

Elbanna K., Lütke-Eversloh T., Van Trappen S., Mergaert J., Swings J., Steinbüchel A. Schlegelella thermodepolymerans gen. nov., sp. nov., a novel thermophilic bacterium that degrades poly(3-hydroxybutyrate-co-3-mercaptopropionate) Int J Syst Evol Microbiol. 2003;53:1165–1168. doi: 10.1099/ijs.0.02562-0. PubMed DOI

Ewels P., Magnusson M., Lundin S., Käller M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics. 2016;32:3047–3048. doi: 10.1093/bioinformatics/btw354. PubMed DOI PMC

Fatima T., Rani S., Fischer S., Efferth T., Kiani F.A. The hydrolysis of 6-phosphogluconolactone in the second step of pentose phosphate pathway occurs via a two-water mechanism. Biophys Chem. 2018;240:98–106. doi: 10.1016/j.bpc.2018.06.002. PubMed DOI

Gaj T., Sirk S.J., Shui S., Liu J. Genome-editing technologies: principles and applications. Cold Spring Harb Perspect Biol. 2016;8:a023754. doi: 10.1101/cshperspect.a023754. PubMed DOI PMC

Hi L. (2013) Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv: Genomics.

Hu E.Z., Lan X.R., Liu Z.L., Gao J., Niu D.K. A positive correlation between GC content and growth temperature in prokaryotes. BMC Genom. 2022;23:1–17. doi: 10.1186/S12864-022-08353-7/FIGURES/4. PubMed DOI PMC

Ibrahim M.H.A., Steinbüchel A. High-cell-density cyclic fed-batch fermentation of a Poly(3-Hydroxybutyrate)-accumulating thermophile, chelatococcus sp. strain MW10. Appl Environ Microbiol. 2010;76:7890–7895. doi: 10.1128/AEM.01488-10. PubMed DOI PMC

Kanehisa M. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28:27–30. doi: 10.1093/nar/28.1.27. PubMed DOI PMC

Knoll M., Hamm T.M., Wagner F., Martinez V., Pleiss J. The PHA depolymerase engineering database: a systematic analysis tool for the diverse family of polyhydroxyalkanoate (PHA) depolymerases. BMC Bioinforma. 2009;10 doi: 10.1186/1471-2105-10-89. PubMed DOI PMC

Koller M., Maršálek L., de Sousa Dias M.M., Braunegg G. Producing microbial polyhydroxyalkanoate (PHA) biopolyesters in a sustainable manner. N Biotechnol. 2017;37:24–38. doi: 10.1016/j.nbt.2016.05.001. PubMed DOI

Kolmogorov M., Yuan J., Lin Y., Pevzner P.A. Assembly of long, error-prone reads using repeat graphs. Nat Biotechnol 2019 375. 2019;37:540–546. doi: 10.1038/s41587-019-0072-8. PubMed DOI

Kourilova X., Novackova I., Koller M., Obruca S. Evaluation of mesophilic Burkholderia sacchari, thermophilic Schlegelella thermodepolymerans and halophilic Halomonas halophila for polyhydroxyalkanoates production on model media mimicking lignocellulose hydrolysates. Bioresour Technol. 2021;325 doi: 10.1016/j.biortech.2021.124704. PubMed DOI

Kourilova X., Pernicova I., Sedlar K., Musilova J., Sedlacek P., Kalina M., Koller M., Obruca S. Production of polyhydroxyalkanoates (PHA) by a thermophilic strain of Schlegelella thermodepolymerans from xylose rich substrates. Bioresour Technol. 2020;315 doi: 10.1016/j.biortech.2020.123885. PubMed DOI

Lanfear R., Schalamun M., Kainer D., Wang W., Schwessinger B. MinIONQC: fast and simple quality control for MinION sequencing data. Bioinformatics. 2019;35:523–525. doi: 10.1093/bioinformatics/bty654. PubMed DOI PMC

Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018;34:3094–3100. doi: 10.1093/bioinformatics/bty191. PubMed DOI PMC

Li H., Handsaker B., Wysoker A., Fennell T., Ruan J., Homer N., Marth G., Abecasis G., Durbin R. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–2079. doi: 10.1093/bioinformatics/btp352. PubMed DOI PMC

Li X.-Q., Du D. Variation, EVolution, and Correlation Analysis of C+G content and genome or chromosome size in different kingdoms and phyla. PLoS One. 2014;9:88339. doi: 10.1371/journal.pone.0088339. PubMed DOI PMC

Liu Y., Du J., Pei T., Du H., Feng G.Da, Zhu H. Genome-based taxonomic classification of the closest-to-Comamonadaceae group supports a new family Sphaerotilaceae fam. nov. and taxonomic revisions. Syst Appl Microbiol. 2022;45 doi: 10.1016/J.SYAPM.2022.126352. PubMed DOI

Maehara A., Taguchi S., Nishiyama T., Yamane T., Doi Y. A repressor protein, phar, regulates polyhydroxyalkanoate (PHA) synthesis via its direct interaction with PHA. J Bacteriol. 2002;184:3992–4002. doi: 10.1128/JB.184.14.3992-4002.2002. PubMed DOI PMC

Marchler-Bauer A., Bryant S.H. CD-Search: protein domain annotations on the fly. Nucleic Acids Res. 2004;32 doi: 10.1093/NAR/GKH454. PubMed DOI PMC

Martin A., McMinn A. Sea ice, extremophiles and life on extra-terrestrial ocean worlds. Int J Astrobiol. 2018;17:1–16. doi: 10.1017/S1473550416000483. DOI

Meier-Kolthoff J.P., Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun. 2019;101(10):1–10. doi: 10.1038/s41467-019-10210-3. PubMed DOI PMC

Mezzina M.P., Pettinari Phasina M.J. Multifaceted polyhydroxyalkanoate granule-associated proteins. Appl Environ Microbiol. 2016;82:5060–5067. doi: 10.1128/AEM.01161-16. PubMed DOI PMC

Musilova J., Kourilova X., Bezdicek M., Lengerova M., Obruca S., Skutkova H., Sedlar K. First complete genome of the thermophilic polyhydroxyalkanoates-producing bacterium Schlegelella thermodepolymerans DSM 15344. Genome Biol Evol. 2021;13 doi: 10.1093/GBE/EVAB007. PubMed DOI PMC

Naik S., Venu Gopal S.K., Somal P. Bioproduction of polyhydroxyalkanoates from bacteria: a metabolic approach. World J Microbiol Biotechnol. 2008;24:2307–2314. doi: 10.1007/s11274-008-9745-z. DOI

Nunes O.C., Manaia C.M., Vaz-Moreira I. Schlegelella. Bergey’s Man Syst Archaea Bact. 2021:1–11. doi: 10.1002/9781118960608.GBM01829. DOI

Obruca S., Sedlacek P., Koller M., Kucera D., Pernicova I. Involvement of polyhydroxyalkanoates in stress resistance of microbial cells: Biotechnological consequences and applications. Biotechnol Adv. 2018;36:856–870. doi: 10.1016/j.biotechadv.2017.12.006. PubMed DOI

Obruca S., Petrik S., Benesova P., Svoboda Z., Eremka L., Marova I. Utilization of oil extracted from spent coffee grounds for sustainable production of polyhydroxyalkanoates. Appl Microbiol Biotechnol. 2014;98:5883–5890. doi: 10.1007/S00253-014-5653-3. PubMed DOI

Obruča S., Dvořák P., Sedláček P., Koller M., Sedlář K., Pernicová I., Šafránek D. Polyhydroxyalkanoates synthesis by halophiles and thermophiles: towards sustainable production of microbial bioplastics. Biotechnol Adv. 2022;58 doi: 10.1016/j.biotechadv.2022.107906. PubMed DOI

Parisutham V., Chandran S.-P., Mukhopadhyay A., Lee S.K., Keasling J.D. Intracellular cellobiose metabolism and its applications in lignocellulose-based biorefineries. Bioresour Technol. 2017;239:496–506. doi: 10.1016/j.biortech.2017.05.001. PubMed DOI

Pradhan S., Dikshit P.K., Moholkar V.S. Prod, Charact, Appl Biodegrad Polym: Polyhydroxyalkanoates. 2020:51–94. doi: 10.1007/978-981-15-1251-3_4. DOI

Riley L.A., Guss A.M. Approaches to genetic tool development for rapid domestication of non-model microorganisms. Biotechnol Biofuels. 2021;14 doi: 10.1186/s13068-020-01872-z. PubMed DOI PMC

Roberts R.J., Vincze T., Posfai J., Macelis D. REBASE—a database for DNA restriction and modification: enzymes, genes and genomes. Nucleic Acids Res. 2015;43:D298–D299. doi: 10.1093/nar/gku1046. PubMed DOI PMC

Rothschild L.J., Mancinelli R.L. Life in extreme environments. Nat. 2001;4096823(409):1092–1101. doi: 10.1038/35059215. PubMed DOI

Sabapathy P.C., Devaraj S., Meixner K., Anburajan P., Kathirvel P., Ravikumar Y., Zabed H.M., Qi X. Recent developments in Polyhydroxyalkanoates (PHAs) production – a review. Bioresour Technol. 2020;306 PubMed

Segata N., Börnigen D., Morgan X.C., Huttenhower C. PhyloPhlAn is a new method for improved phylogenetic and taxonomic placement of microbes. Nat Commun. 2013;4 doi: 10.1038/ncomms3304. PubMed DOI PMC

Shogren R., Wood D., Orts W., Glenn G. Plant-based materials and transitioning to a circular economy. Sustain Prod Consum. 2019;19:194–215. doi: 10.1016/j.spc.2019.04.007. DOI

Simpson J.T., Workman R.E., Zuzarte P.C., David M., Dursi L.J., Timp W. Detecting DNA cytosine methylation using nanopore sequencing. Nat Methods. 2017;14:407–410. doi: 10.1038/nmeth.4184. PubMed DOI

Steinbüchel A. In: Biomaterials. Byrom D., editor. Palgrave Macmillan; London: 1991. Polyhydroxyalkanoic acids; pp. 123–213.

Taboada B., Estrada K., Ciria R., Merino E. Operon-mapper: a web server for precise operon identification in bacterial and archaeal genomes. Bioinformatics. 2018;34:4118–4120. doi: 10.1093/bioinformatics/bty496. PubMed DOI PMC

Tatusova T., DiCuccio M., Badretdin A., Chetvernin V., Nawrocki E.P., Zaslavsky L., Lomsadze A., Pruitt K.D., Borodovsky M., Ostell J. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 2016;44:6614–6624. doi: 10.1093/nar/gkw569. PubMed DOI PMC

Tindall B.J., Rosselló-Móra R., Busse H.-J., Ludwig W., Kämpfer P. Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol. 2010;60:249–266. doi: 10.1099/ijs.0.016949-0. PubMed DOI

Umeda F., Kitano Y., Murakami Y., Yagi K., Miura Y., Mizoguchi T. Cloning and sequence analysis of the poly(3-hydroxyalkanoic acid)-synthesis genes of Pseudomonas acidophila. Appl Biochem Biotechnol 70–72. 1998:341–352. doi: 10.1007/BF02920150. PubMed DOI

Vaser R., Sović I., Nagarajan N., Šikić M. Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res. 2017;27:737–746. doi: 10.1101/gr.214270.116. PubMed DOI PMC

Walker B.J., Abeel T., Shea T., Priest M., Abouelliel A., Sakthikumar S., Cuomo C.A., Zeng Q., Wortman J., Young S.K., Earl A.M. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One. 2014;9 doi: 10.1371/journal.pone.0112963. PubMed DOI PMC

Walker J.E., Lanahan A.A., Zheng T., Toruno C., Lynd L.R., Cameron J.C., Olson D.G., Eckert C.A. Development of both type I–B and type II CRISPR/Cas genome editing systems in the cellulolytic bacterium Clostridium thermocellum. Metab Eng Commun. 2020;10 doi: 10.1016/j.mec.2019.e00116. PubMed DOI PMC

Wu H., Zhang Z., Hu S., Yu J. On the molecular mechanism of GC content variation among eubacterial genomes. Biol Direct. 2012;7 doi: 10.1186/1745-6150-7-2. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...