Genomic and phenotypic comparison of polyhydroxyalkanoates producing strains of genus Caldimonas/Schlegelella
Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
37965057
PubMed Central
PMC10641440
DOI
10.1016/j.csbj.2023.10.051
PII: S2001-0370(23)00407-5
Knihovny.cz E-zdroje
- Klíčová slova
- Caldimonas, DSM 15264, DSM 15344T, LMG 21645, LMG 23380T, Next-Generation Industrial Biotechnology, PHAs, Schlegelella, de novo assembly,
- Publikační typ
- časopisecké články MeSH
Polyhydroxyalkanoates (PHAs) have emerged as an environmentally friendly alternative to conventional polyesters. In this study, we present a comprehensive analysis of the genomic and phenotypic characteristics of three non-model thermophilic bacteria known for their ability to produce PHAs: Schlegelella aquatica LMG 23380T, Caldimonas thermodepolymerans DSM 15264, and C. thermodepolymerans LMG 21645 and the results were compared with the type strain C. thermodepolymerans DSM 15344T. We have assembled the first complete genomes of these three bacteria and performed the structural and functional annotation. This analysis has provided valuable insights into the biosynthesis of PHAs and has allowed us to propose a comprehensive scheme of carbohydrate metabolism in the studied bacteria. Through phylogenomic analysis, we have confirmed the synonymity between Caldimonas and Schlegelella genera, and further demonstrated that S. aquatica and S. koreensis, currently classified as orphan species, belong to the Caldimonas genus.
Department of Experimental Biology Faculty of Science Masaryk University Brno Czech Republic
Department of Internal Medicine Hematology and Oncology University Hospital Brno Brno Czech Republic
Zobrazit více v PubMed
Alcock B.P., Raphenya A.R., Lau T.T.Y., Tsang K.K., Bouchard M., Edalatmand A., Huynh W., Nguyen A.L.V., Cheng A.A., Liu S., Min S.Y., Miroshnichenko A., Tran H.K., Werfalli R.E., Nasir J.A., Oloni M., Speicher D.J., Florescu A., Singh B., Faltyn M., Hernandez-Koutoucheva A., Sharma A.N., Bordeleau E., Pawlowski A.C., Zubyk H.L., Dooley D., Griffiths E., Maguire F., Winsor G.L., Beiko R.G., Brinkman F.S.L., Hsiao W.W.L., Domselaar G.V., McArthur A.G. CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res. 2020;48:D517–D525. doi: 10.1093/nar/gkz935. PubMed DOI PMC
Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. Basic local alignment search tool. J Mol Biol. 1990;215:403–410. doi: 10.1016/S0022-2836(05)80360-2. PubMed DOI
Bailey T.L. STREME: accurate and versatile sequence motif discovery. Bioinformatics. 2021;37:2834–2840. doi: 10.1093/BIOINFORMATICS/BTAB203. PubMed DOI PMC
Berks B.C., Palmer T., Sargent F. Tat Protein Translocat Pathw its role Microb Physiol. 2003:187–254. PubMed
Biswas A., Staals R.H.J., Morales S.E., Fineran P.C., Brown C.M. CRISPRDetect: a flexible algorithm to define CRISPR arrays. BMC Genom. 2016;17 doi: 10.1186/s12864-016-2627-0. PubMed DOI PMC
Bolger A.M., Lohse M., Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC
Cantalapiedra C.P., Hern̗andez-Plaza A., Letunic I., Bork P., Huerta-Cepas J. eggNOG-mapper v2: functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol Biol Evol. 2021;38:5825–5829. doi: 10.1093/MOLBEV/MSAB293. PubMed DOI PMC
Chaudhary D.K., Lee H., Dahal R.H., Kim D.-U. Schlegelella koreensis sp. nov., isolated from evaporator core of automobile air conditioning system. Arch Microbiol. 2021;203:2373–2378. doi: 10.1007/s00203-021-02206-9. PubMed DOI
Chen G.Q., Jiang X.R. Next generation industrial biotechnology based on extremophilic bacteria. Curr Opin Biotechnol. 2018;50:94–100. doi: 10.1016/j.copbio.2017.11.016. PubMed DOI
Chou Y.-J., Sheu S.-Y., Sheu D.-S., Wang J.-T., Chen W.-M. Schlegelella aquatica sp. nov., a novel thermophilic bacterium isolated from a hot spring. Int J Syst Evol Microbiol. 2006;56:2793–2797. doi: 10.1099/ijs.0.64446-0. PubMed DOI
Coker J.A. Extremophiles and biotechnology: current uses and prospects. F1000Research. 2016;5:396. PubMed PMC
Dietrich K., Dumont M.-J., Del Rio L.F., Orsat V. Sustainable PHA production in integrated lignocellulose biorefineries. N Biotechnol. 2019;49:161–168. doi: 10.1016/j.nbt.2018.11.004. PubMed DOI
Dvořák P., de Lorenzo V. Refactoring the upper sugar metabolism of Pseudomonas putida for co-utilization of cellobiose, xylose, and glucose. Metab Eng. 2018;48:94–108. doi: 10.1016/j.ymben.2018.05.019. PubMed DOI
Elbanna K., Lütke-Eversloh T., Van Trappen S., Mergaert J., Swings J., Steinbüchel A. Schlegelella thermodepolymerans gen. nov., sp. nov., a novel thermophilic bacterium that degrades poly(3-hydroxybutyrate-co-3-mercaptopropionate) Int J Syst Evol Microbiol. 2003;53:1165–1168. doi: 10.1099/ijs.0.02562-0. PubMed DOI
Ewels P., Magnusson M., Lundin S., Käller M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics. 2016;32:3047–3048. doi: 10.1093/bioinformatics/btw354. PubMed DOI PMC
Fatima T., Rani S., Fischer S., Efferth T., Kiani F.A. The hydrolysis of 6-phosphogluconolactone in the second step of pentose phosphate pathway occurs via a two-water mechanism. Biophys Chem. 2018;240:98–106. doi: 10.1016/j.bpc.2018.06.002. PubMed DOI
Gaj T., Sirk S.J., Shui S., Liu J. Genome-editing technologies: principles and applications. Cold Spring Harb Perspect Biol. 2016;8:a023754. doi: 10.1101/cshperspect.a023754. PubMed DOI PMC
Hi L. (2013) Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv: Genomics.
Hu E.Z., Lan X.R., Liu Z.L., Gao J., Niu D.K. A positive correlation between GC content and growth temperature in prokaryotes. BMC Genom. 2022;23:1–17. doi: 10.1186/S12864-022-08353-7/FIGURES/4. PubMed DOI PMC
Ibrahim M.H.A., Steinbüchel A. High-cell-density cyclic fed-batch fermentation of a Poly(3-Hydroxybutyrate)-accumulating thermophile, chelatococcus sp. strain MW10. Appl Environ Microbiol. 2010;76:7890–7895. doi: 10.1128/AEM.01488-10. PubMed DOI PMC
Kanehisa M. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28:27–30. doi: 10.1093/nar/28.1.27. PubMed DOI PMC
Knoll M., Hamm T.M., Wagner F., Martinez V., Pleiss J. The PHA depolymerase engineering database: a systematic analysis tool for the diverse family of polyhydroxyalkanoate (PHA) depolymerases. BMC Bioinforma. 2009;10 doi: 10.1186/1471-2105-10-89. PubMed DOI PMC
Koller M., Maršálek L., de Sousa Dias M.M., Braunegg G. Producing microbial polyhydroxyalkanoate (PHA) biopolyesters in a sustainable manner. N Biotechnol. 2017;37:24–38. doi: 10.1016/j.nbt.2016.05.001. PubMed DOI
Kolmogorov M., Yuan J., Lin Y., Pevzner P.A. Assembly of long, error-prone reads using repeat graphs. Nat Biotechnol 2019 375. 2019;37:540–546. doi: 10.1038/s41587-019-0072-8. PubMed DOI
Kourilova X., Novackova I., Koller M., Obruca S. Evaluation of mesophilic Burkholderia sacchari, thermophilic Schlegelella thermodepolymerans and halophilic Halomonas halophila for polyhydroxyalkanoates production on model media mimicking lignocellulose hydrolysates. Bioresour Technol. 2021;325 doi: 10.1016/j.biortech.2021.124704. PubMed DOI
Kourilova X., Pernicova I., Sedlar K., Musilova J., Sedlacek P., Kalina M., Koller M., Obruca S. Production of polyhydroxyalkanoates (PHA) by a thermophilic strain of Schlegelella thermodepolymerans from xylose rich substrates. Bioresour Technol. 2020;315 doi: 10.1016/j.biortech.2020.123885. PubMed DOI
Lanfear R., Schalamun M., Kainer D., Wang W., Schwessinger B. MinIONQC: fast and simple quality control for MinION sequencing data. Bioinformatics. 2019;35:523–525. doi: 10.1093/bioinformatics/bty654. PubMed DOI PMC
Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018;34:3094–3100. doi: 10.1093/bioinformatics/bty191. PubMed DOI PMC
Li H., Handsaker B., Wysoker A., Fennell T., Ruan J., Homer N., Marth G., Abecasis G., Durbin R. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–2079. doi: 10.1093/bioinformatics/btp352. PubMed DOI PMC
Li X.-Q., Du D. Variation, EVolution, and Correlation Analysis of C+G content and genome or chromosome size in different kingdoms and phyla. PLoS One. 2014;9:88339. doi: 10.1371/journal.pone.0088339. PubMed DOI PMC
Liu Y., Du J., Pei T., Du H., Feng G.Da, Zhu H. Genome-based taxonomic classification of the closest-to-Comamonadaceae group supports a new family Sphaerotilaceae fam. nov. and taxonomic revisions. Syst Appl Microbiol. 2022;45 doi: 10.1016/J.SYAPM.2022.126352. PubMed DOI
Maehara A., Taguchi S., Nishiyama T., Yamane T., Doi Y. A repressor protein, phar, regulates polyhydroxyalkanoate (PHA) synthesis via its direct interaction with PHA. J Bacteriol. 2002;184:3992–4002. doi: 10.1128/JB.184.14.3992-4002.2002. PubMed DOI PMC
Marchler-Bauer A., Bryant S.H. CD-Search: protein domain annotations on the fly. Nucleic Acids Res. 2004;32 doi: 10.1093/NAR/GKH454. PubMed DOI PMC
Martin A., McMinn A. Sea ice, extremophiles and life on extra-terrestrial ocean worlds. Int J Astrobiol. 2018;17:1–16. doi: 10.1017/S1473550416000483. DOI
Meier-Kolthoff J.P., Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun. 2019;101(10):1–10. doi: 10.1038/s41467-019-10210-3. PubMed DOI PMC
Mezzina M.P., Pettinari Phasina M.J. Multifaceted polyhydroxyalkanoate granule-associated proteins. Appl Environ Microbiol. 2016;82:5060–5067. doi: 10.1128/AEM.01161-16. PubMed DOI PMC
Musilova J., Kourilova X., Bezdicek M., Lengerova M., Obruca S., Skutkova H., Sedlar K. First complete genome of the thermophilic polyhydroxyalkanoates-producing bacterium Schlegelella thermodepolymerans DSM 15344. Genome Biol Evol. 2021;13 doi: 10.1093/GBE/EVAB007. PubMed DOI PMC
Naik S., Venu Gopal S.K., Somal P. Bioproduction of polyhydroxyalkanoates from bacteria: a metabolic approach. World J Microbiol Biotechnol. 2008;24:2307–2314. doi: 10.1007/s11274-008-9745-z. DOI
Nunes O.C., Manaia C.M., Vaz-Moreira I. Schlegelella. Bergey’s Man Syst Archaea Bact. 2021:1–11. doi: 10.1002/9781118960608.GBM01829. DOI
Obruca S., Sedlacek P., Koller M., Kucera D., Pernicova I. Involvement of polyhydroxyalkanoates in stress resistance of microbial cells: Biotechnological consequences and applications. Biotechnol Adv. 2018;36:856–870. doi: 10.1016/j.biotechadv.2017.12.006. PubMed DOI
Obruca S., Petrik S., Benesova P., Svoboda Z., Eremka L., Marova I. Utilization of oil extracted from spent coffee grounds for sustainable production of polyhydroxyalkanoates. Appl Microbiol Biotechnol. 2014;98:5883–5890. doi: 10.1007/S00253-014-5653-3. PubMed DOI
Obruča S., Dvořák P., Sedláček P., Koller M., Sedlář K., Pernicová I., Šafránek D. Polyhydroxyalkanoates synthesis by halophiles and thermophiles: towards sustainable production of microbial bioplastics. Biotechnol Adv. 2022;58 doi: 10.1016/j.biotechadv.2022.107906. PubMed DOI
Parisutham V., Chandran S.-P., Mukhopadhyay A., Lee S.K., Keasling J.D. Intracellular cellobiose metabolism and its applications in lignocellulose-based biorefineries. Bioresour Technol. 2017;239:496–506. doi: 10.1016/j.biortech.2017.05.001. PubMed DOI
Pradhan S., Dikshit P.K., Moholkar V.S. Prod, Charact, Appl Biodegrad Polym: Polyhydroxyalkanoates. 2020:51–94. doi: 10.1007/978-981-15-1251-3_4. DOI
Riley L.A., Guss A.M. Approaches to genetic tool development for rapid domestication of non-model microorganisms. Biotechnol Biofuels. 2021;14 doi: 10.1186/s13068-020-01872-z. PubMed DOI PMC
Roberts R.J., Vincze T., Posfai J., Macelis D. REBASE—a database for DNA restriction and modification: enzymes, genes and genomes. Nucleic Acids Res. 2015;43:D298–D299. doi: 10.1093/nar/gku1046. PubMed DOI PMC
Rothschild L.J., Mancinelli R.L. Life in extreme environments. Nat. 2001;4096823(409):1092–1101. doi: 10.1038/35059215. PubMed DOI
Sabapathy P.C., Devaraj S., Meixner K., Anburajan P., Kathirvel P., Ravikumar Y., Zabed H.M., Qi X. Recent developments in Polyhydroxyalkanoates (PHAs) production – a review. Bioresour Technol. 2020;306 PubMed
Segata N., Börnigen D., Morgan X.C., Huttenhower C. PhyloPhlAn is a new method for improved phylogenetic and taxonomic placement of microbes. Nat Commun. 2013;4 doi: 10.1038/ncomms3304. PubMed DOI PMC
Shogren R., Wood D., Orts W., Glenn G. Plant-based materials and transitioning to a circular economy. Sustain Prod Consum. 2019;19:194–215. doi: 10.1016/j.spc.2019.04.007. DOI
Simpson J.T., Workman R.E., Zuzarte P.C., David M., Dursi L.J., Timp W. Detecting DNA cytosine methylation using nanopore sequencing. Nat Methods. 2017;14:407–410. doi: 10.1038/nmeth.4184. PubMed DOI
Steinbüchel A. In: Biomaterials. Byrom D., editor. Palgrave Macmillan; London: 1991. Polyhydroxyalkanoic acids; pp. 123–213.
Taboada B., Estrada K., Ciria R., Merino E. Operon-mapper: a web server for precise operon identification in bacterial and archaeal genomes. Bioinformatics. 2018;34:4118–4120. doi: 10.1093/bioinformatics/bty496. PubMed DOI PMC
Tatusova T., DiCuccio M., Badretdin A., Chetvernin V., Nawrocki E.P., Zaslavsky L., Lomsadze A., Pruitt K.D., Borodovsky M., Ostell J. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 2016;44:6614–6624. doi: 10.1093/nar/gkw569. PubMed DOI PMC
Tindall B.J., Rosselló-Móra R., Busse H.-J., Ludwig W., Kämpfer P. Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol. 2010;60:249–266. doi: 10.1099/ijs.0.016949-0. PubMed DOI
Umeda F., Kitano Y., Murakami Y., Yagi K., Miura Y., Mizoguchi T. Cloning and sequence analysis of the poly(3-hydroxyalkanoic acid)-synthesis genes of Pseudomonas acidophila. Appl Biochem Biotechnol 70–72. 1998:341–352. doi: 10.1007/BF02920150. PubMed DOI
Vaser R., Sović I., Nagarajan N., Šikić M. Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res. 2017;27:737–746. doi: 10.1101/gr.214270.116. PubMed DOI PMC
Walker B.J., Abeel T., Shea T., Priest M., Abouelliel A., Sakthikumar S., Cuomo C.A., Zeng Q., Wortman J., Young S.K., Earl A.M. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One. 2014;9 doi: 10.1371/journal.pone.0112963. PubMed DOI PMC
Walker J.E., Lanahan A.A., Zheng T., Toruno C., Lynd L.R., Cameron J.C., Olson D.G., Eckert C.A. Development of both type I–B and type II CRISPR/Cas genome editing systems in the cellulolytic bacterium Clostridium thermocellum. Metab Eng Commun. 2020;10 doi: 10.1016/j.mec.2019.e00116. PubMed DOI PMC
Wu H., Zhang Z., Hu S., Yu J. On the molecular mechanism of GC content variation among eubacterial genomes. Biol Direct. 2012;7 doi: 10.1186/1745-6150-7-2. PubMed DOI PMC