First Complete Genome of the Thermophilic Polyhydroxyalkanoates-Producing Bacterium Schlegelella thermodepolymerans DSM 15344
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33432323
PubMed Central
PMC8023429
DOI
10.1093/gbe/evab007
PII: 6081016
Knihovny.cz E-zdroje
- Klíčová slova
- PHA, de novo assembly, functional annotation, hybrid assembly,
- MeSH
- anotace sekvence MeSH
- Comamonadaceae genetika MeSH
- genom bakteriální * MeSH
- sekvenční analýza DNA MeSH
- sekvenování celého genomu MeSH
- zastoupení bazí MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Schlegelella thermodepolymerans is a moderately thermophilic bacterium capable of producing polyhydroxyalkanoates-biodegradable polymers representing an alternative to conventional plastics. Here, we present the first complete genome of the type strain S. thermodepolymerans DSM 15344 that was assembled by hybrid approach using both long (Oxford Nanopore) and short (Illumina) reads. The genome consists of a single 3,858,501-bp-long circular chromosome with GC content of 70.3%. Genome annotation identified 3,650 genes in total, whereas 3,598 open reading frames belonged to protein-coding genes. Functional annotation of the genome and division of genes into clusters of orthologous groups revealed a relatively high number of 1,013 genes with unknown function or unknown clusters of orthologous groups, which reflects the fact that only a little is known about thermophilic polyhydroxyalkanoates-producing bacteria on a genome level. On the other hand, 270 genes involved in energy conversion and production were detected. This group covers genes involved in catabolic processes, which suggests capability of S. thermodepolymerans DSM 15344 to utilize and biotechnologically convert various substrates such as lignocellulose-based saccharides, glycerol, or lipids. Based on the knowledge of its genome, it can be stated that S. thermodepolymerans DSM 15344 is a very interesting, metabolically versatile bacterium with great biotechnological potential.
Zobrazit více v PubMed
Arndt D, et al.2016. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res. 44(W1):W16–W21. PubMed PMC
Biswas A, Staals RHJ, Morales SE, Fineran PC, Brown CM.. 2016. CRISPRDetect: a flexible algorithm to define CRISPR arrays. BMC Genomics 17(1):356. PubMed PMC
Bolger AM, Lohse M, Usadel B.. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114–2120. PubMed PMC
Carver T, Thomson N, Bleasby A, Berriman M, Parkhill J.. 2009. DNAPlotter: circular and linear interactive genome visualization. Bioinformatics 25(1):119–120. PubMed PMC
Chen GQ, Jiang XR.. 2018. Next generation industrial biotechnology based on extremophilic bacteria. Curr Opin Biotechnol. 50:94–100. PubMed
Elbanna K, et al.2003. Schlegelella thermodepolymerans gen. nov., sp. nov., a novel thermophilic bacterium that degrades poly(3-hydroxybutyrate-co-3-mercaptopropionate). Int J Syst Evol Microbiol. 53(4):1165–1168. PubMed
Ewels P, Magnusson M, Lundin S, Käller M.. 2016. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32(19):3047–3048. PubMed PMC
Farrell J, Campbell LL.. 1969. Thermophilic bacteria and bacteriophages. Adv Microb Physiol. 3:83–109.
Hi L. 2013. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv: Genomics. Available from: http://arxiv.org/abs/1303.3997.
Huerta-Cepas J, et al.2019. EggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 47(D1):D309–D314. PubMed PMC
Jończyk E, Kłak M, Międzybrodzki R, Górski A.. 2011. The influence of external factors on bacteriophages—review. Folia Microbiol. 56(3):191–200. PubMed PMC
Kourilova X, et al.2020. Production of polyhydroxyalkanoates (PHA) by a thermophilic strain of Schlegelella thermodepolymerans from xylose rich substrates. Bioresour Technol. 315:123885. PubMed
Lanfear R, Schalamun M, Kainer D, Wang W, Schwessinger B.. 2019. MinIONQC: fast and simple quality control for MinION sequencing data. Bioinformatics 35(3):523–525. PubMed PMC
Li H. 2018. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34(18):3094–3100. PubMed PMC
Li H, et al.2009. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25(16):2078–2079. PubMed PMC
Li X-Q, Du D.. 2014. Variation, evolution, and correlation analysis of C+G content and genome or chromosome size in different kingdoms and phyla. PLoS One 9(2):e88339. PubMed PMC
Luo H, Quan C-L, Peng C, Gao F.. 2019. Recent development of Ori-Finder system and DoriC database for microbial replication origins. Brief Bioinform. 20(4):1114–1124. PubMed
Muhammadi S, Afzal M, Hameed S.. 2015. Bacterial polyhydroxyalkanoates-eco-friendly next generation plastic: production, biocompatibility, biodegradation, physical properties and applications. Green Chem Lett Rev. 8:56–77.
Nasser AM, Oman SD.. 1999. Quantitative assessment of the inactivation of pathogenic and indicator viruses in natural water sources. Water Res. 33(7):1748–1752.
Obruca S, Sedlacek P, Koller M, Kucera D, Pernicova I.. 2018. Involvement of polyhydroxyalkanoates in stress resistance of microbial cells: biotechnological consequences and applications. Biotechnol Adv. 36(3):856–870. PubMed
Rutherford K, et al.2000. Artemis: sequence visualization and annotation. Bioinformatics 16(10):944–945. PubMed
Sabapathy PC, et al.2020. Recent developments in Polyhydroxyalkanoates (PHAs) production – a review. Bioresour Technol. 306:123132. PubMed
Shogren R, Wood D, Orts W, Glenn G.. 2019. Plant-based materials and transitioning to a circular economy. Sustain Prod Consum. 19:194–215.
Song W, et al.2019. Prophage Hunter: an integrative hunting tool for active prophages. Nucleic Acids Res. 47(W1):W74–W80. PubMed PMC
Taboada B, Estrada K, Ciria R, Merino E.. 2018. Operon-mapper: a web server for precise operon identification in bacterial and archaeal genomes. Bioinformatics 34(23):4118–4120. PubMed PMC
Tatusova T, et al.2016. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 44(14):6614–6624. PubMed PMC
Vaser R, Sović I, Nagarajan N, Šikić M.. 2017. Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res. 27(5):737–746. PubMed PMC
Walker BJ, et al.2014. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 9(11):e112963. PubMed PMC