Mycoparasitism related targets of Tmk1 indicate stimulating regulatory functions of this MAP kinase in Trichoderma atroviride
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37968441
PubMed Central
PMC10651915
DOI
10.1038/s41598-023-47027-6
PII: 10.1038/s41598-023-47027-6
Knihovny.cz E-zdroje
- MeSH
- Hypocreales * metabolismus MeSH
- mitogenem aktivované proteinkinasy genetika metabolismus MeSH
- proteom metabolismus MeSH
- regulace genové exprese u hub MeSH
- signální transdukce MeSH
- Trichoderma * metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- mitogenem aktivované proteinkinasy MeSH
- proteom MeSH
Mycoparasitism is a key feature of Trichoderma (Hypocreales, Ascomycota) biocontrol agents. Recent studies of intracellular signal transduction pathways of the potent mycoparasite Trichoderma atroviride revealed the involvement of Tmk1, a mitogen-activated protein kinase (MAPK), in triggering the mycoparasitic response. We previously showed that mutants missing Tmk1 exhibit reduced mycoparasitic activity against several plant pathogenic fungi. In this study, we identified the most robustly regulated targets that were governed by Tmk1 during mycoparasitism using transcriptome and proteome profiling. Tmk1 mainly exerts a stimulating function for T. atroviride during its mycoparasitic interaction with the fungal plant pathogen Rhizoctonia solani, as reflected by 89% of strongly differently responding genes in the ∆tmk1 mutant compared to the wild type. Specifically, 54% of these genes showed strong downregulation in the response with a deletion of the tmk1 gene, whereas in the wild type the same genes were strongly upregulated during the interaction with the fungal host. These included the gene encoding the mycoparasitism-related proteinase Prb1; genes involved in signal transduction pathways such as a candidate coding for a conserved 14-3-3 protein, and a gene coding for Tmk2, the T. atroviride cell-wall integrity MAP kinase; genes encoding a specific siderophore synthetase, and multiple FAD-dependent oxidoreductases and aminotransferases. Due to the phosphorylating activity of Tmk1, different (phospho-)proteomics approaches were applied and identified proteins associated with cellular metabolism, energy production, protein synthesis and fate, and cell organization. Members of FAD- and NAD/NADP-binding-domain proteins, vesicular trafficking of molecules between cellular organelles, fungal translational, as well as protein folding apparatus were among others found to be phosphorylated by Tmk1 during mycoparasitism. Outstanding downregulation in the response of the ∆tmk1 mutant to the fungal host compared to the wild type at both the transcriptome and the proteome levels was observed for nitrilase, indicating that its defense and detoxification functions might be greatly dependent on Tmk1 during T. atroviride mycoparasitism. An intersection network analysis between the identified transcripts and proteins revealed a strong involvement of Tmk1 in molecular functions with GTPase and oxidoreductase activity. These data suggest that during T. atroviride mycoparasitism this MAPK mainly governs processes regulating cell responses to extracellular signals and those involved in reactive oxygen stress.
Department of Microbiology Universität Innsbruck Innsbruck Austria
Institute of Chemical Technologies and Analytics TU Wien Vienna Austria
Zobrazit více v PubMed
Schaeffer HJ, Weber MJ. Mitogen-activated protein kinases: Specific messages from ubiquitous messengers. Mol. Cell. Biol. 1999;19:2435–2444. doi: 10.1128/MCB.19.4.2435. PubMed DOI PMC
Hamel L-P, Nicole M-C, Duplessis S, Ellis BE. Mitogen-activated protein kinase signaling in plant-interacting fungi: Distinct messages from conserved messengers. Plant Cell. 2012;24:1327–1351. doi: 10.1105/tpc.112.096156. PubMed DOI PMC
Krysan PJ, Colcombet J. Cellular complexity in MAPK signaling in plants: Questions and emerging tools to answer them. Front. Plant Sci. 2018;9:1674. doi: 10.3389/fpls.2018.01674. PubMed DOI PMC
Zhang W, Liu HT. MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res. 2002;12:9–18. doi: 10.1038/sj.cr.7290105. PubMed DOI
Gustin MC, Albertyn J, Alexander M, Davenport K. MAP kinase pathways in the yeast Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 1998;62:1264–1300. doi: 10.1128/MMBR.62.4.1264-1300.1998. PubMed DOI PMC
Rispail N, et al. Comparative genomics of MAP kinase and calcium-calcineurin signalling components in plant and human pathogenic fungi. Fungal Genet. Biol. 2009;46:287–298. doi: 10.1016/j.fgb.2009.01.002. PubMed DOI
Xu J-R. MAP kinases in fungal pathogens. Fungal Genet. Biol. 2000;31:137–152. doi: 10.1006/fgbi.2000.1237. PubMed DOI
Zhao L-J, et al. Mitogen-activated protein kinase signalling pathways triggered by the hepatitis C virus envelope protein E2: Implications for the prevention of infection. Cell Prolif. 2007;40:508–521. doi: 10.1111/j.1365-2184.2007.00453.x. PubMed DOI PMC
Xu JR, Hamer JE. MAP kinase and cAMP signaling regulate infection structure formation and pathogenic growth in the rice blast fungus Magnaporthe grisea. Genes Dev. 1996;10:2696–2706. doi: 10.1101/gad.10.21.2696. PubMed DOI
Soanes DM, Chakrabarti A, Paszkiewicz KH, Dawe AL, Talbot NJ. Genome-wide transcriptional profiling of appressorium development by the rice blast fungus Magnaporthe oryzae. PLoS Pathog. 2012;8:e1002514. doi: 10.1371/journal.ppat.1002514. PubMed DOI PMC
Jin Q, et al. Complexity of roles and regulation of the PMK1-MAPK pathway in mycelium development, conidiation and appressorium formation in Magnaporthe oryzae. Gene Expr. Patterns. 2013;13:133–141. doi: 10.1016/j.gep.2013.02.003. PubMed DOI
Xiong D, Yu L, Shan H, Tian C. CcPmk1 is a regulator of pathogenicity in Cytospora chrysosperma and can be used as a potential target for disease control. Mol. Plant Pathol. 2021;22:710–726. doi: 10.1111/mpp.13059. PubMed DOI PMC
Harman GE, Howell CR, Viterbo A, Chet I, Lorito M. Trichoderma species-opportunistic, avirulent plant symbionts. Nat. Rev. Microbiol. 2004;2:43–56. doi: 10.1038/nrmicro797. PubMed DOI
Druzhinina IS, et al. Trichoderma: The genomics of opportunistic success. Nat. Rev. Microbiol. 2011;9:749–759. doi: 10.1038/nrmicro2637. PubMed DOI
Atanasova L, et al. Comparative transcriptomics reveals different strategies of Trichoderma mycoparasitism. BMC Genom. 2013;14:121. doi: 10.1186/1471-2164-14-121. PubMed DOI PMC
Atanasova L, et al. The Gpr1-regulated Sur7 family protein Sfp2 is required for hyphal growth and cell wall stability in the mycoparasite Trichoderma atroviride. Sci. Rep. 2018;8:12064. doi: 10.1038/s41598-018-30500-y. PubMed DOI PMC
Kubicek CP, et al. Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma. Genome Biol. 2011;12:R40. doi: 10.1186/gb-2011-12-4-r40. PubMed DOI PMC
Reithner B, et al. Signaling via the Trichoderma atroviride mitogen-activated protein kinase Tmk 1 differentially affects mycoparasitism and plant protection. Fungal Genet. Biol. 2007;44:1123–1133. doi: 10.1016/j.fgb.2007.04.001. PubMed DOI PMC
Soanes DM, et al. Comparative genome analysis of filamentous fungi reveals gene family expansions associated with fungal pathogenesis. PLoS ONE. 2008;3:e2300. doi: 10.1371/journal.pone.0002300. PubMed DOI PMC
Cullen PJ, et al. A signaling mucin at the head of the Cdc42- and MAPK-dependent filamentous growth pathway in yeast. Genes Dev. 2004;18:1695–1708. doi: 10.1101/gad.1178604. PubMed DOI PMC
Qi S, et al. Cross-pathway control gene CPC1/GCN4 coordinates with histone acetyltransferase GCN5 to regulate catalase-3 expression under oxidative stress in Neurospora crassa. Free Radic. Biol. Med. 2018;117:218–227. doi: 10.1016/j.freeradbiomed.2018.02.003. PubMed DOI
Zhu X, Soliman A, Islam MR, Adam LR, Daayf F. Verticillium dahliae’s isochorismatase hydrolase is a virulence factor that contributes to interference with potato’s salicylate and jasmonate defense signaling. Front. Plant Sci. 2017;8:399. doi: 10.3389/fpls.2017.00399. PubMed DOI PMC
Lafon A, Han K-H, Seo J-A, Yu J-H, d’Enfert C. G-protein and cAMP-mediated signaling in aspergilli: A genomic perspective. Fungal Genet. Biol. 2006;43:490–502. doi: 10.1016/j.fgb.2006.02.001. PubMed DOI
Jedd G, Chua N-H. A new self-assembled peroxisomal vesicle required for efficient resealing of the plasma membrane. Nat. Cell Biol. 2000;2:226–231. doi: 10.1038/35008652. PubMed DOI
Moon AL, Janmey PA, Louie KA, Drubin DG. Cofilin is an essential component of the yeast cortical cytoskeleton. J. Cell Biol. 1993;120:421–435. doi: 10.1083/jcb.120.2.421. PubMed DOI PMC
Egan MJ, McClintock MA, Reck-Peterson SL. Microtubule-based transport in filamentous fungi. Curr. Opin. Microbiol. 2012;15:637–645. doi: 10.1016/j.mib.2012.10.003. PubMed DOI PMC
Oh YT, et al. Aspergillus nidulans translationally controlled tumor protein has a role in the balance between asexual and sexual differentiation and normal hyphal branching. FEMS Microbiol. Lett. 2013;343:20–25. doi: 10.1111/1574-6968.12120. PubMed DOI
Kingsbury JM, Sen ND, Cardenas ME. Branched-chain aminotransferases control TORC1 signaling in Saccharomyces cerevisiae. PLoS Genet. 2015;11:e1005714. doi: 10.1371/journal.pgen.1005714. PubMed DOI PMC
Druzhinina IS, Shelest E, Kubicek CP. Novel traits of Trichoderma predicted through the analysis of its secretome. FEMS Microbiol. Lett. 2012;337:1–9. doi: 10.1111/j.1574-6968.2012.02665.x. PubMed DOI PMC
Schmoll M, et al. The genomes of three uneven siblings: Footprints of the lifestyles of three trichoderma species. Microbiol. Mol. Biol. Rev. 2016;80:205–327. doi: 10.1128/MMBR.00040-15. PubMed DOI PMC
Delgado-Jarana J, Sousa S, González F, Rey M, Llobell A. ThHog1 controls the hyperosmotic stress response in Trichoderma harzianum. Microbiol. Read. Engl. 2006;152:1687–1700. doi: 10.1099/mic.0.28729-0. PubMed DOI
Gruber S, Zeilinger S. The transcription factor Ste12 mediates the regulatory role of the Tmk1 MAP kinase in mycoparasitism and vegetative hyphal fusion in the filamentous fungus Trichoderma atroviride. PLoS ONE. 2014;9:e111636. doi: 10.1371/journal.pone.0111636. PubMed DOI PMC
Kumar A, et al. Overlapping and distinct functions of two Trichoderma virens MAP kinases in cell-wall integrity, antagonistic properties and repression of conidiation. Biochem. Biophys. Res. Commun. 2010;398:765–770. doi: 10.1016/j.bbrc.2010.07.020. PubMed DOI
Moreno-Ruiz D, Salzmann L, Fricker M, Zeilinger S, Lichius A. Stress-activated protein kinase signalling regulates mycoparasitic hyphal-hyphal interactions in Trichoderma atroviride. J. Fungi. 2021;7:365. doi: 10.3390/jof7050365. PubMed DOI PMC
Mukherjee PK, Latha J, Hadar R, Horwitz BA. TmkA, a mitogen-activated protein kinase of Trichoderma virens, is involved in biocontrol properties and repression of conidiation in the dark. Eukaryot. Cell. 2003;2:446–455. doi: 10.1128/EC.2.3.446-455.2003. PubMed DOI PMC
Son H, et al. Differential roles of pyruvate decarboxylase in aerial and embedded mycelia of the ascomycete Gibberella zeae. FEMS Microbiol. Lett. 2012;329:123–130. doi: 10.1111/j.1574-6968.2012.02511.x. PubMed DOI
Howden AJM, Preston GM. Nitrilase enzymes and their role in plant-microbe interactions. Microb. Biotechnol. 2009;2:441–451. doi: 10.1111/j.1751-7915.2009.00111.x. PubMed DOI PMC
Basile LJ, Willson RC, Sewell BT, Benedik MJ. Genome mining of cyanide-degrading nitrilases from filamentous fungi. Appl. Microbiol. Biotechnol. 2008;80:427. doi: 10.1007/s00253-008-1559-2. PubMed DOI
Michelsen CF, Stougaard P. Hydrogen cyanide synthesis and antifungal activity of the biocontrol strain Pseudomonas fluorescens In5 from Greenland is highly dependent on growth medium. Can. J. Microbiol. 2012;58:381–390. doi: 10.1139/w2012-004. PubMed DOI
Garrett MD, Zahner JE, Cheney CM, Novick PJ. GDI1 encodes a GDP dissociation inhibitor that plays an essential role in the yeast secretory pathway. EMBO J. 1994;13:1718–1728. doi: 10.1002/j.1460-2075.1994.tb06436.x. PubMed DOI PMC
Morano KA. New tricks for an old dog: The evolving world of Hsp70. Ann. N. Y. Acad. Sci. 2007;1113:1–14. doi: 10.1196/annals.1391.018. PubMed DOI
Nguyen EV, et al. Quantitative site-specific phosphoproteomics of Trichoderma reesei signaling pathways upon induction of hydrolytic enzyme production. J. Proteome Res. 2016;15:457–467. doi: 10.1021/acs.jproteome.5b00796. PubMed DOI
McNally MT, Free SJ. Isolation and characterization of a Neurospora glucose-repressible gene. Curr. Genet. 1988;14:545–551. doi: 10.1007/BF00434079. PubMed DOI
Parsons JF, Calabrese K, Eisenstein E, Ladner JE. Structure and mechanism of Pseudomonas aeruginosa PhzD, an isochorismatase from the phenazine biosynthetic pathway. Biochemistry (Mosc.) 2003;42:5684–5693. doi: 10.1021/bi027385d. PubMed DOI
Gehring AM, Bradley KA, Walsh CT. Enterobactin biosynthesis in Escherichia coli: Isochorismate lyase (EntB) is a bifunctional enzyme that is phosphopantetheinylated by EntD and then acylated by EntE using ATP and 2,3-dihydroxybenzoate. Biochemistry (Mosc.) 1997;36:8495–8503. doi: 10.1021/bi970453p. PubMed DOI
Wang M, et al. Identification of the role of a MAP kinase Tmk2 in Hypocrea jecorina (Trichoderma reesei) Sci. Rep. 2014;4:6732. doi: 10.1038/srep06732. PubMed DOI PMC
Pennington K, Chan T, Torres M, Andersen J. The dynamic and stress-adaptive signaling hub of 14-3-3: Emerging mechanisms of regulation and context-dependent protein–protein interactions. Oncogene. 2018;37:5587–5604. doi: 10.1038/s41388-018-0348-3. PubMed DOI PMC
van Heusden GP, et al. The 14-3-3 proteins encoded by the BMH1 and BMH2 genes are essential in the yeast Saccharomyces cerevisiae and can be replaced by a plant homologue. Eur. J. Biochem. 1995;229:45–53. doi: 10.1111/j.1432-1033.1995.tb20435.x. PubMed DOI
Maere S, Heymans K, Kuiper M. BiNGO: A Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinform. Oxf. Engl. 2005;21:3448–3449. doi: 10.1093/bioinformatics/bti551. PubMed DOI
Shannon P, et al. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–2504. doi: 10.1101/gr.1239303. PubMed DOI PMC
Reiner, D. J. Small GTPases. In WormBook 1–65. 10.1895/wormbook.1.67.2 (2018). PubMed PMC
Warris A, Ballou ER. Oxidative responses and fungal infection biology. Semin. Cell Dev. Biol. 2019;89:34–46. doi: 10.1016/j.semcdb.2018.03.004. PubMed DOI
Zeilinger S, et al. Chitinase gene expression during mycoparasitic interaction of Trichoderma harzianum with its host. Fungal Genet. Biol. 1999;26:131–140. doi: 10.1006/fgbi.1998.1111. PubMed DOI
Ruepp A. The FunCat, a functional annotation scheme for systematic classification of proteins from whole genomes. Nucleic Acids Res. 2004;32:5539–5545. doi: 10.1093/nar/gkh894. PubMed DOI PMC
Grigoriev IV, et al. MycoCosm portal: Gearing up for 1000 fungal genomes. Nucleic Acids Res. 2014;42:D699–D704. doi: 10.1093/nar/gkt1183. PubMed DOI PMC
Krogh A, Larsson B, von Heijne G, Sonnhammer EL. Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. J. Mol. Biol. 2001;305:567–580. doi: 10.1006/jmbi.2000.4315. PubMed DOI
Petersen TN, Brunak S, von Heijne G, Nielsen H. SignalP 4.0: Discriminating signal peptides from transmembrane regions. Nat. Methods. 2011;8:785–786. doi: 10.1038/nmeth.1701. PubMed DOI
Almagro Armenteros JJ, et al. Detecting sequence signals in targeting peptides using deep learning. Life Sci. Alliance. 2019;2:e201900429. doi: 10.26508/lsa.201900429. PubMed DOI PMC
Marchetti-Deschmann M, Kemptner J, Reichel C, Allmaier G. Comparing standard and microwave assisted staining protocols for SDS-PAGE of glycoproteins followed by subsequent PMF with MALDI MS. J. Proteom. 2009;72:628–639. doi: 10.1016/j.jprot.2008.12.005. PubMed DOI