Testing exchangeability of multivariate distributions
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
37969545
PubMed Central
PMC10631382
DOI
10.1080/02664763.2022.2102158
PII: 2102158
Knihovny.cz E-zdroje
- Klíčová slova
- Multivariate distribution, exchangeable distribution, multiple comparisons, multiple testing, multivariate permutation test, non-parametric combination methodology,
- Publikační typ
- časopisecké články MeSH
Although there have been a number of available tests of bivariate exchangeability, i.e. bivariate symmetry for bivariate distributions, the literature is void of tests whether a multivariate distribution with more than two dimensions is exchangeable or not. In this paper, multivariate permutation tests of exchangeability of multivariate distributions are proposed, which are based on the non-parametric combination methodology, i.e. on combining non-parametric bivariate exchangeability tests. Numerical experiments on real as well as simulated multivariate data with more than two dimensions are presented here. The multivariate permutation test turns out to be typically more powerful than a bivariate exchangeability test performed only over a single pair of variables, and also more suitable compared to tests exploiting the approaches of Benjamini-Yekutieli or Bonferroni.
Institute of Computer Science The Czech Academy of Sciences Prague Czech Republic
Institute of Information Theory and Automation The Czech Academy of Sciences Prague Czech Republic
Zobrazit více v PubMed
Abd-Elfattah E.F., Bivariate symmetry tests for complete and competing risks data: A saddle point approach, J. Stat. Comput. Simul. 87 (2017), pp. 1269–1275.
Agresti A., Categorical Data Analysis, 2nd ed., Wiley, Hoboken, 2002.
Bell C.B. and Haller H.S., Bivariate symmetry tests: parametric and nonparametric, Ann. Math. Stat. 40 (1969), pp. 259–269.
Benjamini Y. and Hochberg Y., Controlling the false discovery rate: A practical and powerful approach to multiple testing, J. R. Stat. Soc. Ser. B. 57 (1995), pp. 289–300.
Benjamini Y. and Yekutieli D., The control of the false discovery rate in multiple testing under dependency, Ann. Stat. 29 (2001), pp. 1165–1188.
Bonnini S., Corain L., Marozzi M., and Salmaso L., Nonparametric Hypothesis Testing: Rank and Permutation Methods with Applications in R, Wiley, New York, 2014.
Commenges D., Transformations which preserve exchangeability and application to permutation tests, J. Nonparametr. Stat. 15 (2003), pp. 171–185.
Corain L. and Salmaso L., Nonparametric permutation and combination-based multivariate control charts with applications in microelectronics, Appl. Stoch. Models Bus. Ind. 29 (2013), pp. 334–349.
Deshpande J.V., A test for bivariate symmetry of dependent competing risks, Biom. J. 32 (2007), pp. 737–746.
Ernst M.D. and Schucany W.R., A class of permutation tests of bivariate interchangeability, J. Am. Stat. Assoc. 94 (1999), pp. 273–284.
Genest C., Nešlehová J., and Quessy J.F., Tests of symmetry for bivariate copulas, Ann. Inst. Stat. Math. 64 (2012), pp. 811–834.
Giancristofaro R.A. and Brombin C., Overview of nonparametric combination-based permutation tests for multivariate multi-sample problems, Statistica 74 (2014), pp. 233–246.
Hájek J., Šidák Z., and Sen P.K., Theory of Rank Tests, 2nd ed., Academic Press, San Diego, 1999.
Harder M. and Stadtmüller U., Testing exchangeability of copulas in arbitrary dimension, J. Nonparametr. Stat. 29 (2017), pp. 40–60.
Henze N., A multivariate two-sample test based on the number of nearest neighbor type coincidences, Ann. Stat. 16 (1988), pp. 772–783.
Henze N., Hlávka Z., and Meintanis S.G., Testing for spherical symmetry via the empirical characteristic function, Statistics 48 (2014), pp. 1282–1296.
Hilton J.F. and Gee L., The size and power of the exact bivariate symmetry test, Comput. Stat. Data Anal. 26 (1997), pp. 53–69.
Hollander M., A nonparametric test for bivariate symmetry, Biometrika 58 (1971), pp. 203–212.
Hudecová Š. and Šiman M., Testing axial symmetry by means of directional regression quantiles, Electron. J. Stat. 15 (2021), pp. 2690–2715.
Hudecová Š. and Šiman M., Testing symmetry around a subspace, Stat. Pap. 62 (2021), pp. 2491–2508.
Janson S., Konstantopoulos T., and Yuan L., On a representation theorem for finitely exchangeable random vectors, J. Math. Anal. Appl. 442 (2016), pp. 703–714.
Jurečková J. and Kalina J., Nonparametric multivariate rank tests and their unbiasedness, Bernoulli 18 (2012), pp. 229–251.
Kalina J., Classification methods for high-dimensional data, Biocybern. Biomed. Eng. 34 (2014), pp. 10–18.
Kalina J., Common multivariate estimators of location and scatter capture the symmetry of the underlying distribution, Commun. Stat. Simul. 50 (2021), pp. 2845–2857.
Kallenberg O., Probabilistic Symmetries and Invariance Principles, Springer, New York, 2005.
Kuchibhotla A.K., Exchangeability, conformal prediction, and rank tests, preprint (2021). Available at https://arxiv.org/abs/2005.06095v3.
Lipták T., On the combination of independent tests, Magyar Tud. Akad. Mat. Kutató Int. Közl. 3 (1958), pp. 171–197.
Maa J.F., Pearl D.K., and Bartoszyński R., Reducing multidimensional two-sample data to one-dimensional interpoint comparisons, Ann. Stat. 24 (1996), pp. 1069–1074.
Maindonald J.H. and Braun W.J., DAAG: Data analysis and graphics data and functions, R package version 1.22, 2015. Available at https://cran.r-project.org/web/packages/DAAG.
Malik H.J. and Abraham B., Multivariate logistic distributions, Ann. Stat. 3 (1973), pp. 588–590.
Marozzi M., Mukherjee A., and Kalina J., Interpoint distance tests for high-dimensional comparison studies, J. Appl. Stat. 47 (2020), pp. 653–665. PubMed PMC
Modarres R., Tests of bivariate exchangeability, Int. Stat. Rev. 76 (2008), pp. 203–213.
Oja H., Multivariate Nonparametric Methods with R: An Approach Based on Spatial Signs and Ranks, Springer, New York, 2010.
Pesarin F. and Salmaso L., Permutation Tests for Complex Data: Theory, Applications and Software, Wiley, New York, 2010.
Quessy J.F., On consistent nonparametric statistical tests of symmetry hypotheses, Symmetry 8 (2016), Article 31.
R Core Team , R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, 2018. Available at http://www.R-project.org.
Rao K.S.M. and Raghunath M., A simple nonparametric test for bivariate symmetry about a line, J. Stat. Plan. Inference 142 (2012), pp. 430–444.
Sackrowitz H. and Samuel-Cahn E., P-values as random variables: Expected p values, Am. Stat. 53 (1999), pp. 326–3321.
Serfling R., Multivariate symmetry and asymmetry, in Encyclopedia of Statistical Sciences, S. Kotz, N. Balakrishnan, C.B. Read, B. Vidakovic, eds., 2nd ed., Vol. 8, Wiley, New York, 2006, pp. 5338–5345.
Smyth G.K., Limma: Linear models for microarray data, in Bioinformatics and Computational Biology Solutions Using R and Bioconductor, R. Gentleman, V. Carey, S. Dudoit, R. Irizarry, W. Huber, eds., Springer, New York, 2005, pp. 397–420.
Snijders T., Rank tests for bivariate symmetry, Ann. Stat. 9 (1981), pp. 1087–1095.
Vexler A. and Yu J., To t-test or not to t-test? A p-values-based point of view in the receiver operating characteristic curve framework, J. Comput. Biol. 25 (2018), pp. 541–550. PubMed PMC
Vexler A., Yu J., Zhao Y., Hutson A.D., and Gurevich G., Expected p-values in light of an ROC curve analysis applied to optimal multiple testing procedures, Stat. Methods Med. Res. 27 (2018), pp. 3560–3576. PubMed PMC
White T., van der Ende J., and Nichols T.E., Beyond Bonferroni revisited: Concerns over inflated false positive research findings in the fields of conservation genetics, biology, and medicine, Conserv. Genet. 20 (2019), pp. 927–937.
Yanagimoto T. and Sibuya M., Test of symmetry of a bivariate distribution, Sankhya A 38 (1976), pp. 105–115.