MuDoGeR: Multi-Domain Genome recovery from metagenomes made easy
Language English Country England, Great Britain Media print-electronic
Document type Journal Article
Grant support
460129525
Deutsche Forschungsgemeinschaft
2019/03396-9
Fundação de Amparo à Pesquisa do Estado de São Paulo
2022/03534-5
Fundação de Amparo à Pesquisa do Estado de São Paulo
German Network for Bioinformatics Infrastructure
VH-NG-1248
Helmholtz-Gemeinschaft
Lundin Energy Norway
- Keywords
- genome reconstruction, metagenome-assembled genomes, metagenomics, multi-domain, uncultivated viral genomes,
- MeSH
- Bacteria genetics MeSH
- Phylogeny MeSH
- Metagenome * MeSH
- Metagenomics MeSH
- Software MeSH
- Viruses * genetics MeSH
- Publication type
- Journal Article MeSH
Several computational frameworks and workflows that recover genomes from prokaryotes, eukaryotes and viruses from metagenomes exist. Yet, it is difficult for scientists with little bioinformatics experience to evaluate quality, annotate genes, dereplicate, assign taxonomy and calculate relative abundance and coverage of genomes belonging to different domains. MuDoGeR is a user-friendly tool tailored for those familiar with Unix command-line environment that makes it easy to recover genomes of prokaryotes, eukaryotes and viruses from metagenomes, either alone or in combination. We tested MuDoGeR using 24 individual-isolated genomes and 574 metagenomes, demonstrating the applicability for a few samples and high throughput. While MuDoGeR can recover eukaryotic viral sequences, its characterization is predominantly skewed towards bacterial and archaeal viruses, reflecting the field's current state. However, acting as a dynamic wrapper, the MuDoGeR is designed to constantly incorporate updates and integrate new tools, ensuring its ongoing relevance in the rapidly evolving field. MuDoGeR is open-source software available at https://github.com/mdsufz/MuDoGeR. Additionally, MuDoGeR is also available as a Singularity container.
Biotechnical Faculty University of Ljubljana Ljubljana Slovenia
Institute for Theoretical Chemistry University of Vienna Vienna Austria
Institute of Mathematics and Computer Sciences University of São Paulo São Carlos Brazil
Max Planck Institute for Mathematics in the Sciences Leipzig Germany
See more in PubMed
Albertsen, M., Hugenholtz, P., Skarshewski, A., Nielsen, K. L., Tyson, G. W., & Nielsen, P. H. (2013). Genome sequences of rare, uncultured bacteria obtained by differential coverage binning of multiple metagenomes. Nature Biotechnology, 31(6), 533-538. https://doi.org/10.1038/nbt.2579
Alneberg, J., Bjarnason, B. S., de Bruijn, I., Schirmer, M., Quick, J., Ijaz, U. Z., Lahti, L., Loman, N. J., Andersson, A. F., & Quince, C. (2014). Binning metagenomic contigs by coverage and composition. Nature Methods, 11(11), 1144-1146. https://doi.org/10.1038/nmeth.3103
Besemer, J., Lomsadze, A., & Borodovsky, M. (2001). GeneMarkS: A self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Research, 29(12), 2607-2618.
Bin Jang, H., Bolduc, B., Zablocki, O., Kuhn, J. H., Roux, S., Adriaenssens, E. M., Brister, J. R., Kropinski, A. M., Krupovic, M., Lavigne, R., Turner, D., & Sullivan, M. B. (2019). Taxonomic assignment of uncultivated prokaryotic virus genomes is enabled by gene-sharing networks. Nature Biotechnology, 37(6), 632-639. https://doi.org/10.1038/s41587-019-0100-8
Blankenberg, D., Kuster, G. V., Coraor, N., Ananda, G., Lazarus, R., Mangan, M., Nekrutenko, A., & Taylor, J. (2010). Galaxy: A web-based genome analysis tool for experimentalists. Current Protocols in Molecular Biology, 89(1), 19.10.1-19.10.21. https://doi.org/10.1002/0471142727.mb1910s89
Bornemann, T. L. V., Esser, S. P., Stach, T. L., Burg, T., & Probst, A. J. (2020). uBin - A manual refining tool for metagenomic bins designed for educational purposes. bioRxiv, 2020.07.15.204776. https://doi.org/10.1101/2020.07.15.204776
Breitwieser, F. P., Lu, J., & Salzberg, S. L. (2018). A review of methods and databases for metagenomic classification and assembly. Briefings in Bioinformatics, 20(4), 1125-1139. https://doi.org/10.1093/bib/bbx120
Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D., Costello, E. K., Fierer, N., Peña, A. G., Goodrich, J. K., Gordon, J. I., Huttley, G. A., Kelley, S. T., Knights, D., Koenig, J. E., Ley, R. E., Lozupone, C. A., McDonald, D., Muegge, B. D., Pirrung, M., … Knight, R. (2010). QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7(5), 335-336. https://doi.org/10.1038/nmeth.f.303
Chaumeil, P.-A., Mussig, A. J., Hugenholtz, P., & Parks, D. H. (2020). GTDB-Tk: A toolkit to classify genomes with the genome taxonomy database. Bioinformatics, 36(6), 1925-1927. https://doi.org/10.1093/bioinformatics/btz848
Churcheward, B., Millet, M., Bihouée, A., Fertin, G., & Chaffron, S. (2022). MAGNETO: An automated workflow for genome-resolved metagenomics. mSystems, 7(4), e00432-22. https://doi.org/10.1128/msystems.00432-22
Corrêa, F. B., Saraiva, J. P., Stadler, P. F., & da Rocha, U. N. (2020). TerrestrialMetagenomeDB: A public repository of curated and standardized metadata for terrestrial metagenomes. Nucleic Acids Research, 48(D1), D626-D632. https://doi.org/10.1093/nar/gkz994
da Rocha, U. N., Kasmanas, J. C., Toscan, R., Sanches, D. S., Magnusdottir, S., & Saraiva, J. P. (2023). Simulation of 69 microbial communities indicates sequencing depth and false positives are major drivers of bias in prokaryotic metagenome-assembled genome recovery. bioRxiv, p. 2023.05.02.539054. https://doi.org/10.1101/2023.05.02.539054
Delmont, T. O., & Eren, A. M. (2016). Identifying contamination with advanced visualization and analysis practices: Metagenomic approaches for eukaryotic genome assemblies. PeerJ, 4, e1839. https://doi.org/10.7717/peerj.1839
Dias, O., Saraiva, J., Faria, C., Ramirez, M., Pinto, F., & Rocha, I. (2019). iDS372, a phenotypically reconciled model for the metabolism of Streptococcus pneumoniae strain R6. Frontiers in Microbiology, 10, 1283. https://doi.org/10.3389/fmicb.2019.01283
Eren, A. M., Esen, Ö. C., Quince, C., Vineis, J. H., Morrison, H. G., Sogin, M. L., & Delmont, T. O. (2015). Anvi'o: An advanced analysis and visualization platform for ‘omics data. PeerJ, 3, e1319. https://doi.org/10.7717/peerj.1319
Evans, P. N., Parks, D. H., Chadwick, G. L., Robbins, S. J., Orphan, V. J., Golding, S. D., & Tyson, G. W. (2015). Methane metabolism in the archaeal phylum Bathyarchaeota revealed by genome-centric metagenomics. Science, 350(6259), 434-438. https://doi.org/10.1126/science.aac7745
Galiez, C., Siebert, M., Enault, F., Vincent, J., & Söding, J. (2017). WIsH: Who is the host? Predicting prokaryotic hosts from metagenomic phage contigs. Bioinformatics, 33(19), 3113-3114. https://doi.org/10.1093/bioinformatics/btx383
Grüning, B., Dale, R., Sjödin, A., Chapman, B. A., Rowe, J., Tomkins-Tinch, C. H., Valieris, R., & Köster, J. (2018). Bioconda: Sustainable and comprehensive software distribution for the life sciences. Nature Methods, 15(7), 476. https://doi.org/10.1038/s41592-018-0046-7
Guo, J., Bolduc, B., Zayed, A. A., Varsani, A., Dominguez-Huerta, G., Delmont, T. O., Pratama, A. A., Gazitúa, M. C., Vik, D., Sullivan, M. B., & Roux, S. (2021). VirSorter2: A multi-classifier, expert-guided approach to detect diverse DNA and RNA viruses. Microbiome, 9(1), 37. https://doi.org/10.1186/s40168-020-00990-y
Holt, C., & Yandell, M. (2011). MAKER2: An annotation pipeline and genome-database management tool for second-generation genome projects. BMC Bioinformatics, 12(1), 491. https://doi.org/10.1186/1471-2105-12-491
Kallies, R., Hölzer, M., Brizola Toscan, R., Nunes da Rocha, U., Anders, J., Marz, M., & Chatzinotas, A. (2019). Evaluation of sequencing library preparation protocols for viral metagenomic analysis from pristine aquifer groundwaters. Viruses, 11(6), 484. https://doi.org/10.3390/v11060484
Kang, D. D., Froula, J., Egan, R., & Wang, Z. (2015). MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ, 3, e1165. https://doi.org/10.7717/peerj.1165
Kasmanas, J. C., Bartholomäus, A., Corrêa, F. B., Tal, T., Jehmlich, N., Herberth, G., von Bergen, M., Stadler, P. F., Carvalho, A. C. P. L. F., & Nunes da Rocha, U. (2021). HumanMetagenomeDB: A public repository of curated and standardized metadata for human metagenomes. Nucleic Acids Research, 49(D1), D743-D750. https://doi.org/10.1093/nar/gkaa1031
Keller-Costa, T., Lago-Lestón, A., Saraiva, J. P., Toscan, R., Silva, S. G., Gonçalves, J., Cox, C. J., Kyrpides, N., Nunes da Rocha, U., & Costa, R. (2021). Metagenomic insights into the taxonomy, function, and dysbiosis of prokaryotic communities in octocorals. Microbiome, 9(1), 72. https://doi.org/10.1186/s40168-021-01031-y
Kieft, K., Zhou, Z., & Anantharaman, K. (2020). VIBRANT: Automated recovery, annotation and curation of microbial viruses, and evaluation of viral community function from genomic sequences. Microbiome, 8(1), 90. https://doi.org/10.1186/s40168-020-00867-0
Kieser, S., Brown, J., Zdobnov, E. M., Trajkovski, M., & McCue, L. A. (2020). ATLAS: A Snakemake workflow for assembly, annotation, and genomic binning of metagenome sequence data. BMC Bioinformatics, 21(1), 257. https://doi.org/10.1186/s12859-020-03585-4
Koonin, E. V., Krupovic, M., & Dolja, V. V. (2023). The global virome: How much diversity and how many independent origins? Environmental Microbiology, 25(1), 40-44. https://doi.org/10.1111/1462-2920.16207
Koren, S., Treangen, T. J., & Pop, M. (2011). Bambus 2: Scaffolding metagenomes. Bioinformatics, 27(21), 2964-2971. https://doi.org/10.1093/bioinformatics/btr520
Krakau, S., Straub, D., Gourlé, H., Gabernet, G., & Nahnsen, S. (2022). Nf-core/mag: A best-practice pipeline for metagenome hybrid assembly and binning. NAR Genomics and Bioinformatics, 4(1), lqac007. https://doi.org/10.1093/nargab/lqac007
Kurtzer, G. M., Sochat, V., & Bauer, M. W. (2017). Singularity: Scientific containers for mobility of compute. PLoS One, 12(5), e0177459. https://doi.org/10.1371/journal.pone.0177459
Leliaert, F., Smith, D. R., Moreau, H., Herron, M. D., Verbruggen, H., Delwiche, C. F., & De Clerck, O. (2012). Phylogeny and molecular evolution of the green algae. Critical Reviews in Plant Sciences, 31(1), 1-46. https://doi.org/10.1080/07352689.2011.615705
Li, D., Luo, R., Liu, C.-M., Leung, C.-M., Ting, H.-F., Sadakane, K., Yamashita, H., & Lam, T.-W. (2016). MEGAHIT v1.0: A fast and scalable metagenome assembler driven by advanced methodologies and community practices. Methods (San Diego, Calif.), 102, 3-11. https://doi.org/10.1016/j.ymeth.2016.02.020
Liu, B., Sträuber, H., Saraiva, J., Harms, H., Silva, S. G., Kasmanas, J. C., Kleinsteuber, S., & Nunes da Rocha, U. (2022). Machine learning-assisted identification of bioindicators predicts medium-chain carboxylate production performance of an anaerobic mixed culture. Microbiome, 10(1), 48. https://doi.org/10.1186/s40168-021-01219-2
López-Mondéjar, R., Tláskal, V., Větrovský, T., Štursová, M., Toscan, R., Nunes da Rocha, U., & Baldrian, P. (2020). Metagenomics and stable isotope probing reveal the complementary contribution of fungal and bacterial communities in the recycling of dead biomass in forest soil. Soil Biology and Biochemistry, 148, 107875. https://doi.org/10.1016/j.soilbio.2020.107875
Lu, J., Rincon, N., Wood, D. E., Breitwieser, F. P., Pockrandt, C., Langmead, B., Salzberg, S. L., & Steinegger, M. (2022). Metagenome analysis using the kraken software suite. Nature Protocols, 17(12), 2839. https://doi.org/10.1038/s41596-022-00738-y
Mangul, S., Mosqueiro, T., Abdill, R. J., Duong, D., Mitchell, K., Sarwal, V., Hill, B., Brito, J., Littman, R. J., Statz, B., Lam, A. K.-M., Dayama, G., Grieneisen, L., Martin, L. S., Flint, J., Eskin, E., & Blekhman, R. (2019). Challenges and recommendations to improve the installability and archival stability of omics computational tools. PLoS Biology, 17(6), e3000333. https://doi.org/10.1371/journal.pbio.3000333
McMurdie, P. J., & Holmes, S. (2013). Phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One, 8(4), e61217. https://doi.org/10.1371/journal.pone.0061217
Melkonian, C., Fillinger, L., Atashgahi, S., da Rocha, U. N., Kuiper, E., Olivier, B., Braster, M., Gottstein, W., Helmus, R., Parsons, J. R., Smidt, H., van der Waals, M., Gerritse, J., Brandt, B. W., Röling, W. F. M., Molenaar, D., & van Spanning, R. J. M. (2021). High biodiversity in a benzene-degrading nitrate-reducing culture is sustained by a few primary consumers. Communications Biology, 4(1), 530. https://doi.org/10.1038/s42003-021-01948-y
Meyer, F., Lesker, T.-R., Koslicki, D., Fritz, A., Gurevich, A., Darling, A. E., Sczyrba, A., Bremges, A., & McHardy, A. C. (2021). Tutorial: Assessing metagenomics software with the CAMI benchmarking toolkit. Nature Protocols, 16(4), 1801. https://doi.org/10.1038/s41596-020-00480-3
Namiki, T., Hachiya, T., Tanaka, H., & Sakakibara, Y. (2012). MetaVelvet: An extension of velvet assembler to de novo metagenome assembly from short sequence reads. Nucleic Acids Research, 40(20), e155. https://doi.org/10.1093/nar/gks678
Nayfach, S., Camargo, A. P., Schulz, F., Eloe-Fadrosh, E., Roux, S., & Kyrpides, N. C. (2021). CheckV assesses the quality and completeness of metagenome-assembled viral genomes. Nature Biotechnology, 39(5), 578-585. https://doi.org/10.1038/s41587-020-00774-7
Noor, E., Eden, E., Milo, R., & Alon, U. (2010). Central carbon metabolism as a minimal biochemical walk between precursors for biomass and energy. Molecular Cell, 39(5), 809-820. https://doi.org/10.1016/j.molcel.2010.08.031
Nurk, S., Meleshko, D., Korobeynikov, A., & Pevzner, P. A. (2017). metaSPAdes: A new versatile metagenomic assembler. Genome Research, 27(5), 824-834. https://doi.org/10.1101/gr.213959.116
Oliveira Monteiro, L. M., Saraiva, J. P., Brizola Toscan, R., Stadler, P. F., Silva-Rocha, R., & Nunes da Rocha, U. (2022). PredicTF: Prediction of bacterial transcription factors in complex microbial communities using deep learning. Environmental Microbiomes, 17(1), 7. https://doi.org/10.1186/s40793-021-00394-x
Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P., & Tyson, G. W. (2015). CheckM: Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Research, 25(7), 1043-1055. https://doi.org/10.1101/gr.186072.114
Parks, D. H., Rinke, C., Chuvochina, M., Chaumeil, P.-A., Woodcroft, B. J., Evans, P. N., Hugenholtz, P., & Tyson, G. W. (2017). Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nature Microbiology, 2(11), 1533-1542. https://doi.org/10.1038/s41564-017-0012-7
Pawlowski, J., Audic, S., Adl, S., Bass, D., Belbahri, L., Berney, C., Bowser, S. S., Cepicka, I., Decelle, J., Dunthorn, M., Fiore-Donno, A. M., Gile, G. H., Holzmann, M., Jahn, R., Jirků, M., Keeling, P. J., Kostka, M., Kudryavtsev, A., Lara, E., … de Vargas, C. (2012). CBOL protist working group: Barcoding eukaryotic richness beyond the animal, plant, and fungal kingdoms. PLoS Biology, 10(11), e1001419. https://doi.org/10.1371/journal.pbio.1001419
Pearman, W. S., Freed, N. E., & Silander, O. K. (2020). Testing the advantages and disadvantages of short- and long- read eukaryotic metagenomics using simulated reads. BMC Bioinformatics, 21(1), 220. https://doi.org/10.1186/s12859-020-3528-4
Peng, Y., Leung, H. C. M., Yiu, S. M., & Chin, F. Y. L. (2012). IDBA-UD: A de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics, 28(11), 1420-1428. https://doi.org/10.1093/bioinformatics/bts174
Ren, J., Ahlgren, N. A., Lu, Y. Y., Fuhrman, J. A., & Sun, F. (2017). VirFinder: A novel k-mer based tool for identifying viral sequences from assembled metagenomic data. Microbiome, 5(1), 69. https://doi.org/10.1186/s40168-017-0283-5
Roux, S., Adriaenssens, E. M., Dutilh, B. E., Koonin, E. V., Kropinski, A. M., Krupovic, M., Kuhn, J. H., Lavigne, R., Brister, J. R., Varsani, A., Amid, C., Aziz, R. K., Bordenstein, S. R., Bork, P., Breitbart, M., Cochrane, G. R., Daly, R. A., Desnues, C., Duhaime, M. B., … Eloe-Fadrosh, E. A. (2019). Minimum information about an uncultivated virus genome (MIUViG). Nature Biotechnology, 37(1), 29-37. https://doi.org/10.1038/nbt.4306
Saary, P., Mitchell, A. L., & Finn, R. D. (2020). Estimating the quality of eukaryotic genomes recovered from metagenomic analysis with EukCC. Genome Biology, 21(1), 244. https://doi.org/10.1186/s13059-020-02155-4
Santos-Medellin, C., Zinke, L. A., ter Horst, A. M., Gelardi, D. L., Parikh, S. J., & Emerson, J. B. (2021). Viromes outperform total metagenomes in revealing the spatiotemporal patterns of agricultural soil viral communities. The ISME Journal, 15(7), 1956-1970. https://doi.org/10.1038/s41396-021-00897-y
Saraiva, J. P., Bartholomäus, A., Kallies, R., Gomes, M., Bicalho, M., Coelho Kasmanas, J., Vogt, C., Chatzinotas, A., Stadler, P., Dias, O., & Nunes da Rocha, U. (2021). OrtSuite: From genomes to prediction of microbial interactions within targeted ecosystem processes. Life Science Alliance, 4(12), e202101167. https://doi.org/10.26508/lsa.202101167
Saraiva, J. P., Bartholomäus, A., Toscan, R. B., Baldrian, P., & Nunes da Rocha, U. (2023). Recovery of 197 eukaryotic bins reveals major challenges for eukaryote genome reconstruction from terrestrial metagenomes. Molecular Ecology Resources, 23(5), 1066-1076. https://doi.org/10.1111/1755-0998.13776
Saraiva, J. P., Worrich, A., Karakoç, C., Kallies, R., Chatzinotas, A., Centler, F., & Nunes da Rocha, U. (2021). Mining synergistic microbial interactions: A roadmap on how to integrate multi-omics data. Microorganisms, 9(4), 840. https://doi.org/10.3390/microorganisms9040840
Saraiva, J. P. L. F., Zubiria-Barrera, C., Klassert, T. E., Lautenbach, M. J., Blaess, M., Claus, R. A., Slevogt, H., & König, R. (2017). Combination of classifiers identifies fungal-specific activation of lysosome genes in human monocytes. Frontiers in Microbiology, 8, 2366. https://doi.org/10.3389/fmicb.2017.02366
Seemann, T. (2014). Prokka: Rapid prokaryotic genome annotation. Bioinformatics (Oxford, England), 30(14), 2068-2069. https://doi.org/10.1093/bioinformatics/btu153
Sharon, I., Morowitz, M. J., Thomas, B. C., Costello, E. K., Relman, D. A., & Banfield, J. F. (2013). Time series community genomics analysis reveals rapid shifts in bacterial species, strains, and phage during infant gut colonization. Genome Research, 23(1), 111-120. https://doi.org/10.1101/gr.142315.112
Sieber, C. M. K., Probst, A. J., Sharrar, A., Thomas, B. C., Hess, M., Tringe, S. G., & Banfield, J. F. (2018). Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nature Microbiology, 3(7), 836-843. https://doi.org/10.1038/s41564-018-0171-1
Taur, Y., Coyte, K., Schluter, J., Robilotti, E., Figueroa, C., Gjonbalaj, M., Littmann, E. R., Ling, L., Miller, L., Gyaltshen, Y., Fontana, E., Morjaria, S., Gyurkocza, B., Perales, M.-A., Castro-Malaspina, H., Tamari, R., Ponce, D., Koehne, G., Barker, J., … Xavier, J. B. (2018). Reconstitution of the gut microbiota of antibiotic-treated patients by autologous fecal microbiota transplant. Science Translational Medicine, 10(460), eaap9489. https://doi.org/10.1126/scitranslmed.aap9489
Tisza, M. J., & Buck, C. B. (2021). A catalog of tens of thousands of viruses from human metagenomes reveals hidden associations with chronic diseases. Proceedings of the National Academy of Sciences of the United States of America, 118(23), e2023202118. https://doi.org/10.1073/pnas.2023202118
Tláskal, V., Brabcová, V., Větrovský, T., Jomura, M., López-Mondéjar, R., Monteiro, L. M. O., Saraiva, J. P., Human, Z. R., Cajthaml, T., da Rocha, U. N., & Baldrian, P. (2021). Complementary roles of Wood-inhabiting fungi and bacteria facilitate deadwood decomposition. mSystems, 6(1), e01078-20. https://doi.org/10.1128/mSystems.01078-20
Tyson, G. W., Chapman, J., Hugenholtz, P., Allen, E. E., Ram, R. J., Richardson, P. M., Solovyev, V. V., Rubin, E. M., Rokhsar, D. S., & Banfield, J. F. (2004). Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature, 428(6978), 37-43. https://doi.org/10.1038/nature02340
Uritskiy, G. V., DiRuggiero, J., & Taylor, J. (2018). MetaWRAP-A flexible pipeline for genome-resolved metagenomic data analysis. Microbiome, 6(1), 158. https://doi.org/10.1186/s40168-018-0541-1
Waterhouse, R. M., Seppey, M., Simão, F. A., Manni, M., Ioannidis, P., Klioutchnikov, G., Kriventseva, E. V., & Zdobnov, E. M. (2017). BUSCO applications from quality assessments to gene prediction and phylogenomics. Molecular Biology and Evolution, 35, 543-548. https://doi.org/10.1093/molbev/msx319
West, P. T., Probst, A. J., Grigoriev, I. V., Thomas, B. C., & Banfield, J. F. (2018). Genome-reconstruction for eukaryotes from complex natural microbial communities. Genome Research, 28(4), 569-580. https://doi.org/10.1101/gr.228429.117
Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J., Appleton, G., Axton, M., Baak, A., Blomberg, N., Boiten, J.-W., da Silva Santos, L. B., Bourne, P. E., Bouwman, J., Brookes, A. J., Clark, T., Crosas, M., Dillo, I., Dumon, O., Edmunds, S., Evelo, C. T., Finkers, R., … Mons, B. (2016). The FAIR guiding principles for scientific data management and stewardship. Scientific Data, 3(1), 160018. https://doi.org/10.1038/sdata.2016.18
Wu, Y.-W., Simmons, B. A., & Singer, S. W. (2016). MaxBin 2.0: An automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics (Oxford, England), 32(4), 605-607. https://doi.org/10.1093/bioinformatics/btv638
Yandell, M., & Ence, D. (2012). A beginner's guide to eukaryotic genome annotation. Nature Reviews Genetics, 13(5), 329-342. https://doi.org/10.1038/nrg3174