• This record comes from PubMed

Biological Properties of Vitamins of the B-Complex, Part 1: Vitamins B1, B2, B3, and B5

. 2022 Jan 22 ; 14 (3) : . [epub] 20220122

Language English Country Switzerland Media electronic

Document type Journal Article, Review

This review summarizes the current knowledge on essential vitamins B1, B2, B3, and B5. These B-complex vitamins must be taken from diet, with the exception of vitamin B3, that can also be synthetized from amino acid tryptophan. All of these vitamins are water soluble, which determines their main properties, namely: they are partly lost when food is washed or boiled since they migrate to the water; the requirement of membrane transporters for their permeation into the cells; and their safety since any excess is rapidly eliminated via the kidney. The therapeutic use of B-complex vitamins is mostly limited to hypovitaminoses or similar conditions, but, as they are generally very safe, they have also been examined in other pathological conditions. Nicotinic acid, a form of vitamin B3, is the only exception because it is a known hypolipidemic agent in gram doses. The article also sums up: (i) the current methods for detection of the vitamins of the B-complex in biological fluids; (ii) the food and other sources of these vitamins including the effect of common processing and storage methods on their content; and (iii) their physiological function.

See more in PubMed

Spedding S. Vitamins are more Funky than Casimir thought. Australas. Med. J. 2013;6:104–106. doi: 10.4066/AMJ.2013.1588. PubMed DOI PMC

Tylicki A., Lotowski Z., Siemieniuk M., Ratkiewicz A. Thiamine and selected thiamine antivitamins-biological activity and methods of synthesis. Biosci. Rep. 2018;38:1–23. doi: 10.1042/BSR20171148. PubMed DOI PMC

Goodman L.S., Brunton L.L., Chabner B., Knollmann B.R.C. Goodman & Gilman’s Pharmacological Basis of Therapeutics. McGraw-Hill; New York, NY, USA: 2011.

Brown G. Defects of thiamine transport and metabolism. J. Inherit. Metab. Dis. 2014;37:577–585. doi: 10.1007/s10545-014-9712-9. PubMed DOI

Manzetti S., Zhang J., Van der Spoel D. Thiamin function, metabolism, uptake, and transport. Biochemistry. 2014;53:821–835. doi: 10.1021/bi401618y. PubMed DOI

Lonsdale D. A review of the biochemistry, metabolism and clinical benefits of thiamin(e) and its derivatives. Evid. Based Complement. Altern. Med. 2006;3:49–59. doi: 10.1093/ecam/nek009. PubMed DOI PMC

Bettendorff L., Wirtzfeld B., Makarchikov A.F., Mazzucchelli G., Frederich M., Gigliobianco T., Gangolf M., De Pauw E., Angenot L., Wins P. Discovery of a natural thiamine adenine nucleotide. Nat. Chem. Biol. 2007;3:211–212. doi: 10.1038/nchembio867. PubMed DOI

Jurgenson C.T., Begley T.P., Ealick S.E. The structural and biochemical foundations of thiamin biosynthesis. Annu. Rev. Biochem. 2009;78:569–603. doi: 10.1146/annurev.biochem.78.072407.102340. PubMed DOI PMC

Bocobza S.E., Aharoni A. Switching the light on plant riboswitches. Trends Plant Sci. 2008;13:526–533. doi: 10.1016/j.tplants.2008.07.004. PubMed DOI

Du Q., Wang H., Xie J. Thiamin (vitamin B1) biosynthesis and regulation: A rich source of antimicrobial drug targets? Int. J. Biol. Sci. 2011;7:41–52. doi: 10.7150/ijbs.7.41. PubMed DOI PMC

Wolak N., Zawrotniak M., Gogol M., Kozik A., Rapala-Kozik M. Vitamins B1, B2, B3 and B9-Occurrence, Biosynthesis Pathways and Functions in Human Nutrition. Mini Rev. Med. Chem. 2017;17:1075–1111. doi: 10.2174/1389557516666160725095729. PubMed DOI

Fitzpatrick T.B., Chapman L.M. The importance of thiamine (vitamin B1) in plant health: From crop yield to biofortification. J. Biol. Chem. 2020;295:12002–12013. doi: 10.1074/jbc.REV120.010918. PubMed DOI PMC

Ejsmond M.J., Blackburn N., Fridolfsson E., Haecky P., Andersson A., Casini M., Belgrano A., Hylander S. Modeling vitamin B1 transfer to consumers in the aquatic food web. Sci. Rep. 2019;9:10045. doi: 10.1038/s41598-019-46422-2. PubMed DOI PMC

Yoshii K., Hosomi K., Sawane K., Kunisawa J. Metabolism of Dietary and Microbial Vitamin B Family in the Regulation of Host Immunity. Front. Nutr. 2019;6:48. doi: 10.3389/fnut.2019.00048. PubMed DOI PMC

Fattal-Valevski A. Thiamine (Vitamin B1) J. Evid. Based Integr. Med. 2011;16:12–20. doi: 10.1177/1533210110392941. DOI

Turck D., Bresson J.L., Burlingame B., Dean T., Fairweather-Tait S., Heinonen M., Hirsch-Ernst K.I., Mangelsdorf I., McArdle H.J., Naska A., et al. Dietary reference values for thiamin. EFSA J. 2016;14:e04653. doi: 10.2903/j.efsa.2016.4653. DOI

Chawla J., Kvarnberg D. Hydrosoluble Vitamins. Volume 120. Elsevier B.V.; Amsterdam, The Netherlands: 2014. pp. 891–914. PubMed

O’Connor A. An overview of the role of bread in the UK diet. Nutr. Bull. 2012;37:193–212. doi: 10.1111/j.1467-3010.2012.01975.x. DOI

Lockyer S., Spiro A. The role of bread in the UK diet: An update. Nutr. Bull. 2020;45:133–164. doi: 10.1111/nbu.12435. DOI

Bonku R., Yu J.M. Health aspects of peanuts as an outcome of its chemical composition. Food Sci. Hum. Wellness. 2020;9:21–30. doi: 10.1016/j.fshw.2019.12.005. DOI

Stuetz W., Schlormann W., Glei M. B-vitamins, carotenoids and alpha-/gamma-tocopherol in raw and roasted nuts. Food Chem. 2017;221:222–227. doi: 10.1016/j.foodchem.2016.10.065. PubMed DOI

Prinzo Z.W. Thiamine Deficiency and Its Prevention and Control in Major Emergencies. Department of Nutrition for Health and Development, World Health Organisation; Geneva, Switzerland: 1999.

Whitfield K.C., Bourassa M.W., Adamolekun B., Bergeron G., Bettendorff L., Brown K.H., Cox L., Fattal-Valevski A., Fischer P.R., Frank E.L., et al. Thiamine deficiency disorders: Diagnosis, prevalence, and a roadmap for global control programs. Ann. N. Y. Acad. Sci. 2018;1430:3–43. doi: 10.1111/nyas.13919. PubMed DOI PMC

Pacei F., Tesone A., Laudi N., Laudi E., Cretti A., Pnini S., Varesco F., Colombo C. The Relevance of Thiamine Evaluation in a Practical Setting. Nutrients. 2020;12:2810. doi: 10.3390/nu12092810. PubMed DOI PMC

Panijpan B., Ratanaubolchai K. Kinetics of thiamine-polyphenol interactions and mechanism of thiamine disulphide formation. Int. J. Vitam. Nutr. Res. 1980;50:247–253. PubMed

Dhir S., Tarasenko M., Napoli E., Giulivi C. Neurological, Psychiatric, and Biochemical Aspects of Thiamine Deficiency in Children and Adults. Front. Psychiatry. 2019;10:207. doi: 10.3389/fpsyt.2019.00207. PubMed DOI PMC

Hilker D.M., Somogyi J.C. Antithiamins of plant origin: Their chemical nature and mode of action. Ann. N. Y. Acad. Sci. 1982;378:137–145. doi: 10.1111/j.1749-6632.1982.tb31192.x. PubMed DOI

Frank L.L. Thiamin in Clinical Practice. JPEN J. Parenter Enter. Nutr. 2015;39:503–520. doi: 10.1177/0148607114565245. PubMed DOI

Vimokesant S., Kunjara S., Rungruangsak K., Nakornchai S., Panijpan B. Beriberi caused by antithiamin factors in food and its prevention. Ann. N. Y. Acad. Sci. 1982;378:123–136. doi: 10.1111/j.1749-6632.1982.tb31191.x. PubMed DOI

Fabre B., Geay B., Beaufils P. Thiaminase activity in Equisetum arvense and its extracts. Plant Méd. Phytothér. 1993;26:190–197.

Yang P.F., Pratt D.E. Antithiamin Activity of Polyphenolic Antioxidants. J. Food Sci. 1984;49:489–492. doi: 10.1111/j.1365-2621.1984.tb12448.x. DOI

Sannino D., Angert E.R. Genomic insights into the thiamin metabolism of Paenibacillus thiaminolyticus NRRL B-4156 and P. apiarius NRRL B-23460. Stand. Genom. Sci. 2017;12:59. doi: 10.1186/s40793-017-0276-9. PubMed DOI PMC

Wang R.S., Kies C. Niacin, thiamin, iron and protein status of humans as affected by the consumption of tea (Camellia sinensis) infusions. Plant Foods Hum. Nutr. 1991;41:337–353. doi: 10.1007/BF02310628. PubMed DOI

Nishimune T., Watanabe Y., Okazaki H., Akai H. Thiamin is decomposed due to Anaphe spp. entomophagy in seasonal ataxia patients in Nigeria. J. Nutr. 2000;130:1625–1628. doi: 10.1093/jn/130.6.1625. PubMed DOI

Ringe H., Schuelke M., Weber S., Dorner B.G., Kirchner S., Dorner M.B. Infant botulism: Is there an association with thiamine deficiency? Pediatrics. 2014;134:e1436–e1440. doi: 10.1542/peds.2013-3378. PubMed DOI

Taungbodhitham A.K. Thiamin Content and Activity of Antithiamin Factor in Vegetables of Southern Thailand. Food Chem. 1995;52:285–288. doi: 10.1016/0308-8146(95)92825-5. DOI

Somogyi J.C. On antithiamine factors of fern. J. Vitam. 1971;17:165–174. doi: 10.5925/jnsv1954.17.165. PubMed DOI

Murata K., Tanaka R., Yamaoka M. Reaction mechanisms of thiamine with thermostable factors. J. Nutr. Sci. Vitam. 1974;20:351–362. doi: 10.3177/jnsv.20.351. PubMed DOI

Rungruangsak K., Tosukhowong P., Panijpan B., Vimokesant S.L. Chemical interactions between thiamin and tannic acid. I. Kinetics, oxygen dependence and inhibition by ascorbic acid. Am. J. Clin. Nutr. 1977;30:1680–1685. doi: 10.1093/ajcn/30.10.1680. PubMed DOI

Wills R.B.H., McBrien K.J. Antithiamin activity of tea fractions. Food Chem. 1980;6:111–114. doi: 10.1016/0308-8146(80)90026-6. DOI

Somogyi J.C., Bonicke R. Connection between chemical structure and antithiamine activity of various phenol derivatives. Bibl. Nutr. Dieta. 1970;15:180. PubMed

Somogyi J.C., Nageli U. Antithiamine effect of coffee. Int. J. Vitam. Nutr. Res. 1976;46:149–153. PubMed

Hilker D.M. Antithiamine factors in blueberries. Int. Z. Vitam. 1968;38:387–391. PubMed

Schaller K., Holler H. Thiamine absorption in the rat. IV. Effects of caffeic acid (3,4-dihydroxycinnamic acid) upon absorption and active transport of thiamine. Int. J. Vitam. Nutr. Res. 1976;46:143–148. PubMed

Beruter J., Somogyi J.C. 3,4-Dihydroxycinnamic acid, an antithiamine factor of fern. Experientia. 1967;23:996–997. doi: 10.1007/BF02136405. PubMed DOI

Horman I., Brambilla E., Stalder R. Evidence against the reported antithiamine effect of caffeic and chlorogenic acids. Int. J. Vitam. Nutr. Res. 1981;51:385–390. PubMed

Zhang F., Masania J., Anwar A., Xue M., Zehnder D., Kanji H., Rabbani N., Thornalley P.J. The uremic toxin oxythiamine causes functional thiamine deficiency in end-stage renal disease by inhibiting transketolase activity. Kidney Int. 2016;90:396–403. doi: 10.1016/j.kint.2016.03.010. PubMed DOI

Burns A., Gleadow R., Cliff J., Zacarias A., Cavagnaro T. Cassava: The Drought, War and Famine Crop in a Changing World. Sustainability. 2010;2:3572–3607. doi: 10.3390/su2113572. DOI

Leichter J., Joslyn M.A. Kinetics of thiamin cleavage by sulphite. Biochem. J. 1969;113:611–615. doi: 10.1042/bj1130611. PubMed DOI PMC

Vanier N.L., Paraginski R.T., Berrios J.D., Oliveira L.D., Elias M.C. Thiamine content and technological quality properties of parboiled rice treated with sodium bisulfite: Benefits and food safety risk. J. Food Compos. Anal. 2015;41:98–103. doi: 10.1016/j.jfca.2015.02.008. DOI

Ottaway P.B. Stability of Vitamins during Food Processing and Storage. Woodhead Publishing Ltd.; Cambridge, UK: 2010. pp. 545–548, 553–556.

Yagi N., Itokawa Y. Cleavage of thiamine by chlorine in tap water. J. Nutr. Sci. Vitam. 1979;25:281–287. doi: 10.3177/jnsv.25.281. PubMed DOI

Kimura M., Itokawa Y., Fujiwara M. Cooking losses of thiamin in food and its nutritional significance. J. Nutr. Sci. Vitam. 1990;36:S17–S24. doi: 10.3177/jnsv.36.4-SupplementI_S17. PubMed DOI

Dwivedi B.K., Arnold R.G. Chemistry of thiamine degradation in food products and model systems: A review. J. Agric. Food Chem. 1973;21:54–60. doi: 10.1021/jf60185a004. PubMed DOI

Kaplan Evlice A., Özkaya H. Effects of wheat cultivar, cooking method, and bulgur type on nutritional quality characteristics of bulgur. J. Cereal Sci. 2020;96:103124. doi: 10.1016/j.jcs.2020.103124. DOI

Calinoiu L.F., Vodnar D.C. Whole Grains and Phenolic Acids: A Review on Bioactivity, Functionality, Health Benefits and Bioavailability. Nutrients. 2018;10:1615. doi: 10.3390/nu10111615. PubMed DOI PMC

Oghbaei M., Prakash J., Yildiz F. Effect of primary processing of cereals and legumes on its nutritional quality: A comprehensive review. Cogent. Food Agric. 2016;2:1136015. doi: 10.1080/23311932.2015.1136015. DOI

Batifoulier F., Verny M.A., Chanliaud E., Remesy C., Demigne C. Variability of B vitamin concentrations in wheat grain, milling fractions and bread products. Eur. J. Agron. 2006;25:163–169. doi: 10.1016/j.eja.2006.04.009. DOI

Létinois U., Moine G., Hohmann H.P. Ullmann’s Encyclopedia of Industrial Chemistry. John Wiley & Sons, Inc.; Hoboken, NJ, USA: 2020. 6. Vitamin B1(Thiamin) pp. 1–22.

Liu K.L., Zheng J.B., Chen F.S. Relationships between degree of milling and loss of Vitamin B, minerals, and change in amino acid composition of brown rice. LWT Food Sci. Technol. 2017;82:429–436. doi: 10.1016/j.lwt.2017.04.067. DOI

Tiozon R.N., Fernie A.R., Sreenivasulu N. Meeting human dietary vitamin requirements in the staple rice via strategies of biofortification and post-harvest fortification. Trends Food Sci. Technol. 2021;109:65–82. doi: 10.1016/j.tifs.2021.01.023. DOI

Suri D.J., Tanumihardjo S.A. Effects of Different Processing Methods on the Micronutrient and Phytochemical Contents of Maize: From A to Z. Compr. Rev. Food Sci. Food Saf. 2016;15:912–926. doi: 10.1111/1541-4337.12216. PubMed DOI

Gwirtz J.A., Garcia-Casal M.N. Processing maize flour and corn meal food products. Ann. N. Y. Acad. Sci. 2014;1312:66–75. doi: 10.1111/nyas.12299. PubMed DOI PMC

Voelker A.L., Miller J., Running C.A., Taylor L.S., Mauer L.J. Chemical stability and reaction kinetics of two thiamine salts (thiamine mononitrate and thiamine chloride hydrochloride) in solution. Food Res. Int. 2018;112:443–456. doi: 10.1016/j.foodres.2018.06.056. PubMed DOI

Rekha P.N., Singhal S., Pandit A.B. A study on degradation kinetics of thiamine in red gram splits (Cajanus cajan L.) Food Chem. 2004;85:591–598. doi: 10.1016/j.foodchem.2003.08.004. DOI

European Food Safety Authority Benfotiamine, thiamine monophosphate chloride and thiamine pyrophosphate chloride, as sources of vitamin B1 added for nutritional purposes to food supplements-Scientific Opinion of the Panel on Food Additives and Nutrient Sources added to Food (ANS) EFSA J. 2008;6:864. doi: 10.2903/j.efsa.2008.864. DOI

Voelker A.L., Taylor L.S., Mauer L.J. Chemical stability and reaction kinetics of thiamine mononitrate in the aqueous phase of bread dough. Food Res. Int. 2021;140:110084. doi: 10.1016/j.foodres.2020.110084. PubMed DOI

Dionísio A.P., Gomes R.T., Oetterer M. Ionizing radiation effects on food vitamins: A review. Braz. Arch. Biol. Technol. 2009;52:1267–1278. doi: 10.1590/S1516-89132009000500026. DOI

Godoy H.T., Amaya-Farfan J., Rodriguez-Amaya D.B. Degradation of vitamins. In: Rodriguez-Amaya D.B., Amaya-Farfan J., editors. Chemical Changes During Processing and Storage of Foods. Academic Press; Cambridge, MA, USA: 2021. pp. 329–383.

Bognár A. Tables on Weight Yield of Food and Retention Factors of Food Constituents for the Calculation of Nutrient Composition of Cooked Foods (Dishes) Bundesforschungsanstalt für Ernährung; Karlsruhe, Germany: 2002.

Öhrvik V., Carlsen M.H., Källman A., Martinsen T.A. Improving Food Composition Data by Standardizing Calculation Methods. Nordisk Ministerråd; Copenhagen, Denmark: 2015. p. 56.

USDA USDA Table of Nutrient Retention Factors. [(accessed on 10 July 2021)]; Available online: https://www.ars.usda.gov/ARSUserFiles/80400525/Data/retn/retn06.pdf.

Bell S., Becker W., Vásquez-Caicedo A., Hartmann B., Møller A., Butriss J. Report on Nutrient Losses and Gains Factors Used in European Food Composition Databases. Federal Research Centre for Nutrition and Food; Karlsruhe, Germany: 2006.

Lešková E., Kubíková J., Kováčiková E., Košická M., Porubská J., Holčíková K. Vitamin losses: Retention during heat treatment and continual changes expressed by mathematical models. J. Food Compos. Anal. 2006;19:252–276. doi: 10.1016/j.jfca.2005.04.014. DOI

Kumar S., Aalbersberg B. Nutrient retention in foods after earth-oven cooking compared to other forms of domestic cooking-2. Vitamins. J. Food Compos. Anal. 2006;19:311–320. doi: 10.1016/j.jfca.2005.06.007. DOI

Aktas-Akyildiz E., Koksel H. Minimisation of vitamin losses in fortified cookies by response surface methodology and validation of the determination methods. Eur. Food Res. Technol. 2021;247:1345–1354. doi: 10.1007/s00217-021-03712-2. DOI

Fillion L., Henry C.J. Nutrient losses and gains during frying: A review. Int. J. Food Sci. Nutr. 1998;49:157–168. doi: 10.3109/09637489809089395. PubMed DOI

Lombardi-Boccia G., Lanzi S., Aguzzi A. Aspects of meat quality: Trace elements and B vitamins in raw and cooked meats. J. Food Compos. Anal. 2005;18:39–46. doi: 10.1016/j.jfca.2003.10.007. DOI

Bognar A. Comparative study of frying to other cooking techniques influence on the nutritive value. Grasas Aceites. 1998;49:250–260. doi: 10.3989/gya.1998.v49.i3-4.746. DOI

Silveira C.M., Moreira A.V., Martino H.S., Gomide R.S., Pinheiro S.S., Della Lucia C.M., Pinheiro-Sant’ana H.M. Effect of cooking methods on the stability of thiamin and folic acid in fortified rice. Int. J. Food Sci. Nutr. 2017;68:179–187. doi: 10.1080/09637486.2016.1226273. PubMed DOI

Jaworska G., Bernas E. The effect of preliminary processing and period of storage on the quality of frozen Boletus edulis (Bull: Fr.) mushrooms. Food Chem. 2009;113:936–943. doi: 10.1016/j.foodchem.2008.08.023. DOI

Liu K., Zheng J., Wang X., Chen F. Effects of household cooking processes on mineral, vitamin B, and phytic acid contents and mineral bioaccessibility in rice. Food Chem. 2019;280:59–64. doi: 10.1016/j.foodchem.2018.12.053. PubMed DOI

Szymandera-Buszka K., Piechocka J., Zaremba A., Przeor M., Jedrusek-Golinska A. Pumpkin, Cauliflower and Broccoli as New Carriers of Thiamine Compounds for Food Fortification. Foods. 2021;10:578. doi: 10.3390/foods10030578. PubMed DOI PMC

Özdemir M., Açkurt F., Yildiz M., Biringen G., Gürcan T., Löker M. Effect of roasting on some nutrients of hazelnuts (Corylus avellena L.) Food Chem. 2001;73:185–190. doi: 10.1016/S0308-8146(00)00260-0. DOI

Pinheiro-Sant’Ana H.M., Penteado M., Brandão S., Stringheta P. Stability of B-vitamin in meats prepared by foodservice. 1. Thiamin. Foodserv. Res. Int. 1999;11:33–52.

Williams P.G. Vitamin retention in cook/chill and cook/hot-hold hospital food-services. J. Am. Diet Assoc. 1996;96:490–498. doi: 10.1016/S0002-8223(96)00135-6. PubMed DOI

Ryley J., Kajda P. Vitamins in Thermal-Processing. Food Chem. 1994;49:119–129. doi: 10.1016/0308-8146(94)90148-1. DOI

Hill M.A. Vitamin Retention in Microwave Cooking and Cook-Chill Foods. Food Chem. 1994;49:131–136. doi: 10.1016/0308-8146(94)90149-X. DOI

Severi S., Bedogni G., Manzieri A.M., Poli M., Battistini N. Effects of cooking and storage methods on the micronutrient content of foods. Eur. J. Cancer Prev. 1997;6:S21–S24. doi: 10.1097/00008469-199703001-00005. PubMed DOI

Hubner F., Arendt E.K. Germination of cereal grains as a way to improve the nutritional value: A review. Crit. Rev. Food Sci. Nutr. 2013;53:853–861. doi: 10.1080/10408398.2011.562060. PubMed DOI

Freitag S., Verrall S.R., Pont S.D.A., McRae D., Sungurtas J.A., Palau R., Hawes C., Alexander C.J., Allwood J.W., Foito A., et al. Impact of Conventional and Integrated Management Systems on the Water-Soluble Vitamin Content in Potatoes, Field Beans, and Cereals. J. Agric. Food Chem. 2018;66:831–841. doi: 10.1021/acs.jafc.7b03509. PubMed DOI

Titcomb T.J., Tanumihardjo S.A. Global Concerns with B Vitamin Statuses: Biofortification, Fortification, Hidden Hunger, Interactions, and Toxicity. Compr. Rev. Food Sci. Food Saf. 2019;18:1968–1984. doi: 10.1111/1541-4337.12491. PubMed DOI

FAO . FAO Food and Nutrition Series. FAO; Rome, Italy: 1995. Sorghum and millets in human nutrition; pp. 52, 121–124.

Malleshi N.G., Klopfenstein C.E. Nutrient composition, amino acid and vitamin contents of malted sorghum, pearl millet, finger millet and their rootlets. Int. J. Food Sci. Technol. 1998;49:415–422. doi: 10.3109/09637489809086420. DOI

Pinheiro S.S., Anunciacao P.C., Cardoso L.M., Della Lucia C.M., de Carvalho C.W.P., Queiroz V.A.V., Pinheiro Sant’Ana H.M. Stability of B vitamins, vitamin E, xanthophylls and flavonoids during germination and maceration of sorghum (Sorghum bicolor L.) Food Chem. 2021;345:128775. doi: 10.1016/j.foodchem.2020.128775. PubMed DOI

Prodanov M., Sierra I., Vidal-Valverde C. Effect of germination on the thiamine, riboflavin and niacin contents in legumes. Eur. Food Res. Technol. 1997;205:48–52. doi: 10.1007/s002170050122. DOI

Frias J., Prodanov M., Sierra I., Vidal-Valverde C. Effect of Light on Carbohydrates and Hydrosoluble Vitamins of Lentils during Soaking. J. Food Prot. 1995;58:692–695. doi: 10.4315/0362-028X-58.6.692. PubMed DOI

Roe M., Church S., Pinchen H., Finglas P. Nutrient Analysis of Fruit and Vegetables. Institute of Food Research; Norwich, UK: 2013. pp. 17–76. Analytical Report.

Garg M., Sharma A., Vats S., Tiwari V., Kumari A., Mishra V., Krishania M. Vitamins in Cereals: A Critical Review of Content, Health Effects, Processing Losses, Bioaccessibility, Fortification, and Biofortification Strategies for Their Improvement. Front. Nutr. 2021;8:586815. doi: 10.3389/fnut.2021.586815. PubMed DOI PMC

Maskova E.R., Fiedlerova V., Holasova M. Vitamin and mineral retention in meat in various cooking methods. Czech J. Food Sci. 1994;12:407–416.

USDA USDA Food Composition Databases. [(accessed on 12 June 2021)]; Available online: https://fdc.nal.usda.gov/

Roe M., Church S., Pinchen H., Finglas P. Nutrient Analysis of Fish and Fish Products. Institute of Food Research; Norwich, UK: 2013. pp. 14–69. Analytical Report.

Mattila P., Konko K., Eurola M., Pihlava J.M., Astola J., Vahteristo L., Hietaniemi V., Kumpulainen J., Valtonen M., Piironen V. Contents of vitamins, mineral elements, and some phenolic compounds in cultivated mushrooms. J. Agric. Food Chem. 2001;49:2343–2348. doi: 10.1021/jf001525d. PubMed DOI

Sałata A., Lemieszek M., Parzymies M. The Nutritional and Health Properties of an Oyster Mushroom (Pleurotus ostreatus (Jacq. Fr) P. Kumm.) Acta Sci. Pol. Hortorum Cultus. 2018;17:185–197. doi: 10.24326/asphc.2018.2.16. DOI

Bernaś E., Jaworska G. Vitamins profile as an indicator of the quality of frozen Agaricus bisporus mushrooms. J. Food Compos. Anal. 2016;49:1–8. doi: 10.1016/j.jfca.2016.03.002. DOI

Hashemi Gahruie H., Eskandari M.H., Mesbahi G., Hanifpour M.A. Scientific and technical aspects of yogurt fortification: A review. Food Sci. Hum. Wellness. 2015;4:1–8. doi: 10.1016/j.fshw.2015.03.002. DOI

Roe M., Church S., Pinchen H., Finglas P. Nutrient Analysis of Eggs. Institute of Food Research; Norwich, UK: 2013. pp. 1–44. Analytical Report.

Awonorin S.O., Rotimi D.K. Effects of oven temperature and time on the losses of some B vitamins in roasted beef and pork. Foodserv. Res. Int. 1991;6:89–105. doi: 10.1111/j.1745-4506.1991.tb00287.x. DOI

Kyritsi A., Tzia C., Karathanos V.T. Vitamin fortified rice grain using spraying and soaking methods. LWT Food Sci. Technol. 2011;44:312–320. doi: 10.1016/j.lwt.2010.06.001. DOI

Atungulu G.G., Pan Z. Rice industrial processing worldwide and impact on macro- and micronutrient content, stability, and retention. Ann. N. Y. Acad. Sci. 2014;1324:15–28. doi: 10.1111/nyas.12492. PubMed DOI

Rumm-Kreuter D., Demmel I. Comparison of vitamin losses in vegetables due to various cooking methods. J. Nutr. Sci. Vitaminol. 1990;36:S7–S15. doi: 10.3177/jnsv.36.4-SupplementI_S7. PubMed DOI

Díaz-Gómez J., Twyman R.M., Zhu C., Farré G., Serrano J.C., Portero-Otin M., Muñoz P., Sandmann G., Capell T., Christou P. Biofortification of crops with nutrients: Factors affecting utilization and storage. Curr. Opin. Biotechnol. 2017;44:115–123. doi: 10.1016/j.copbio.2016.12.002. PubMed DOI

Prodanov M., Sierra I., Vidal-Valverde C. Influence of soaking and cooking on the thiamin, riboflavin and niacin contents of legumes. Food Chem. 2004;84:271–277. doi: 10.1016/S0308-8146(03)00211-5. DOI

Batifoulier F., Verny M.A., Chanliaud E., Remesy C., Demigne C. Effect of different breadmaking methods on thiamine, riboflavin and pyridoxine contents of wheat bread. J. Cereal Sci. 2005;42:101–108. doi: 10.1016/j.jcs.2005.03.003. DOI

Martinez-Villaluenga C., Michalska A., Frias J., Piskula M.K., Vidal-Valverde C., Zielinski H. Effect of flour extraction rate and baking on thiamine and riboflavin content and antioxidant capacity of traditional rye bread. J. Food Sci. 2009;74:C49–C55. doi: 10.1111/j.1750-3841.2008.01008.x. PubMed DOI

Haddad G.S., Loewenstein M. Effect of several heat treatments and frozen storage on thiamine, riboflavin, and ascorbic acid content of milk. J. Dairy Sci. 1983;66:1601–1606. doi: 10.3168/jds.S0022-0302(83)81980-8. PubMed DOI

Graham D.M. Alteration of nutritive value resulting from processing and fortification of milk and milk products. J. Dairy Sci. 1974;57:738–745. doi: 10.3168/jds.S0022-0302(74)84959-3. PubMed DOI

Lima H., Vogel K., Wagner-Gillespie M., Wimer C., Dean L., Fogleman A. Nutritional Comparison of Raw, Holder Pasteurized, and Shelf-stable Human Milk Products. J. Pediatr. Gastroenterol. Nutr. 2018;67:649–653. doi: 10.1097/MPG.0000000000002094. PubMed DOI

Athar N., Hardacre A., Taylor G., Clark S., Harding R., McLaughlin J. Vitamin retention in extruded food products. J. Food Compos. Anal. 2006;19:379–383. doi: 10.1016/j.jfca.2005.03.004. DOI

Riaz M.N., Asif M., Ali R. Stability of vitamins during extrusion. Crit. Rev. Food Sci. Nutr. 2009;49:361–368. doi: 10.1080/10408390802067290. PubMed DOI

Aylangan A., Ic E., Ozyardimci B. Investigation of gamma irradiation and storage period effects on the nutritional and sensory quality of chickpeas, kidney beans and green lentils. Food Control. 2017;80:428–434. doi: 10.1016/j.foodcont.2017.04.005. DOI

Fox J.B., Thayer D.W., Jenkins R.K., Phillips J.G., Ackerman S.A., Beecher G.R., Holden J.M., Morrow F.D., Quirbach D.M. Effect of gamma irradiation on the B vitamins of pork chops and chicken breasts. Int. J. Radiat. Biol. 1989;55:689–703. doi: 10.1080/09553008914550721. PubMed DOI

Fox J.B., Lakritz L., Hampson J.R., Ward K., Thayer D.W. Gamma Irradiation Effects on Thiamin and Riboflavin in Beef, Lamb, Pork, and Turkey. J. Food Sci. 1995;60:596–598. doi: 10.1111/j.1365-2621.1995.tb09835.x. DOI

Woodside J. Nutritional aspects of irradiated food. Stewart Postharvest Rev. 2015;11:1–6. doi: 10.2212/spr.2015.3.2. DOI

Greenwood D.A., Kraybill H.R., Feaster J.F., Jackson J.M. Vitamin Retention in Processed Meat. Ind. Eng. Chem. 1944;36:922–927. doi: 10.1021/ie50418a012. PubMed DOI

Rickman J.C., Barrett D.M., Bruhn C.M. Nutritional comparison of fresh, frozen and canned fruits and vegetables. Part 1. Vitamins C and B and phenolic compounds. J. Sci. Food Agric. 2007;87:930–944. doi: 10.1002/jsfa.2825. DOI

Martín-Belloso O., Llanos-Barriobero E. Proximate composition, minerals and vitamins in selected canned vegetables. Eur. Food Res. Technol. 2001;212:182–187. doi: 10.1007/s002170000210. DOI

Marçal S., Sousa A.S., Taofiq O., Antunes F., Morais A.M., Freitas A.C., Barros L., Ferreira I.C., Pintado M. Impact of postharvest preservation methods on nutritional value and bioactive properties of mushrooms. Trends Food Sci. Technol. 2021;110:418–431. doi: 10.1016/j.tifs.2021.02.007. DOI

Coad R., Bui L. Stability of Vitamins B1, B2, B6 and E in a Fortified Military Freeze-Dried Meal During Extended Storage. Foods. 2020;9:39. doi: 10.3390/foods9010039. PubMed DOI PMC

Ayhan D.K., Koksel H. Investigation of the effect of different storage conditions on vitamin content of enriched pasta product. Qual. Assur. Saf. Crops. 2019;11:701–712. doi: 10.3920/QAS2019.1575. DOI

Walker G.J. The nutritional value of processed foods. CSIRO Food Proc. 1979:4. doi: 10.25919/5bec62b344f33. DOI

Gan R.Y., Lui W.Y., Wu K., Chan C.L., Dai S.H., Sui Z.Q., Corke H. Bioactive compounds and bioactivities of germinated edible seeds and sprouts: An updated review. Trends Food Sci. Technol. 2017;59:1–14. doi: 10.1016/j.tifs.2016.11.010. DOI

Lemmens E., Moroni A.V., Pagand J., Heirbaut P., Ritala A., Karlen Y., Le K.A., Van den Broeck H.C., Brouns F., De Brier N., et al. Impact of Cereal Seed Sprouting on Its Nutritional and Technological Properties: A Critical Review. Compr. Rev. Food Sci. Food Saf. 2019;18:305–328. doi: 10.1111/1541-4337.12414. PubMed DOI

Lonsdale D. Thiamine tetrahydrofurfuryl disulfide: A little known therapeutic agent. Med. Sci. Monit. 2004;10:RA199–RA203. PubMed

Fujiwara M., Watanabe H., Matsui K. “Allithiamine” a Newly Found Derivative of Vitamin B1. J. Biochem. 1954;41:29–39. doi: 10.1093/oxfordjournals.jbchem.a126421. DOI

Fujiwara M. Allithiamine and its properties. J. Nutr. Sci. Vitam. 1976;22:S57–S62. doi: 10.3177/jnsv.22.Supplement_57. PubMed DOI

Matsukawa T., Kawasaki H., Iwatsu T., Yurugi S. Syntheses of allithiamine and its homologues. J. Vitam. 1954;1:13–26. doi: 10.5925/jnsv1954.1.13. PubMed DOI

Miah M.A.K., Haque A., Douglass M.P., Clarke B. Parboiling of rice. Part II: Effect of hot soaking time on the degree of starch gelatinization. Int. J. Food Sci. Technol. 2002;37:539–545. doi: 10.1046/j.1365-2621.2002.00611.x. DOI

Ituen E., Ukpakha A. Improved method of par-boiling paddy for better quality rice. World J. Appl. Sci. Technol. 2011;3:31–40.

Oli P., Ward R., Adhikari B., Torley P. Parboiled rice: Understanding from a materials science approach. J. Food Eng. 2014;124:173–183. doi: 10.1016/j.jfoodeng.2013.09.010. DOI

Hinton J.J. Parboiling treatment of rice. Nature. 1948;162:913–915. doi: 10.1038/162913a0. PubMed DOI

Villota S.M.A., Tuates A.M., Jr., Capariño O.A. Cooking Qualilites and Nutritional Contents of Parboiled Milled Rice. Asian J. Appl. Sci. 2016;4:1172–1178.

Manful J., Swetman A., Coker R., Drunis A. Changes in the thiamine and riboflavin contents of rice during artisanal parboiling in Ghana. Trop. Sci. 2007;47:211–217. doi: 10.1002/ts.215. DOI

Padua A.B., Juliano B.O. Effect of parboiling on thiamin, protein and fat of rice. J. Sci. Food Agric. 1974;25:697–701. doi: 10.1002/jsfa.2740250611. PubMed DOI

Cubadda F., Jackson B.P., Cottingham K.L., Van Horne Y.O., Kurzius-Spencer M. Human exposure to dietary inorganic arsenic and other arsenic species: State of knowledge, gaps and uncertainties. Sci. Total Environ. 2017;579:1228–1239. doi: 10.1016/j.scitotenv.2016.11.108. PubMed DOI PMC

Davis M.A., Signes-Pastor A.J., Argos M., Slaughter F., Pendergrast C., Punshon T., Gossai A., Ahsan H., Karagas M.R. Assessment of human dietary exposure to arsenic through rice. Sci. Total Environ. 2017;586:1237–1244. doi: 10.1016/j.scitotenv.2017.02.119. PubMed DOI PMC

Sun G.X., Williams P.N., Carey A.M., Zhu Y.G., Deacon C., Raab A., Feldmann J., Islam R.M., Meharg A.A. Inorganic arsenic in rice bran and its products are an order of magnitude higher than in bulk grain. Environ. Sci. Technol. 2008;42:7542–7546. doi: 10.1021/es801238p. PubMed DOI

Lombi E., Scheckel K.G., Pallon J., Carey A.M., Zhu Y.G., Meharg A.A. Speciation and distribution of arsenic and localization of nutrients in rice grains. New Phytol. 2009;184:193–201. doi: 10.1111/j.1469-8137.2009.02912.x. PubMed DOI

Meharg A.A., Lombi E., Williams P.N., Scheckel K.G., Feldmann J., Raab A., Zhu Y., Islam R. Speciation and localization of arsenic in white and brown rice grains. Environ. Sci. Technol. 2008;42:1051–1057. doi: 10.1021/es702212p. PubMed DOI

Wang X., Peng B., Tan C., Ma L., Rathinasabapathi B. Recent advances in arsenic bioavailability, transport, and speciation in rice. Environ. Sci. Pollut. Res. Int. 2015;22:5742–5750. doi: 10.1007/s11356-014-4065-3. PubMed DOI

USFDA, U.S.F.a.D Arsenic in Rice and Rice Products Risk Assessment Report. [(accessed on 10 July 2021)]; Available online: http://www.fda.gov/Food/FoodScienceResearch/RiskSafetyAssessment/default.htm.

Upadhyay M.K., Shukla A., Yadav P., Srivastava S. A review of arsenic in crops, vegetables, animals and food products. Food Chem. 2019;276:608–618. doi: 10.1016/j.foodchem.2018.10.069. PubMed DOI

European Food Safety Authority. Arcella D., Cascio C., Gomez Ruiz J.A. Chronic dietary exposure to inorganic arsenic. EFSA J. 2021;19:50. doi: 10.2903/j.efsa.2021.6380. PubMed DOI PMC

EFSA Dietary exposure to inorganic arsenic in the European population. EFSA J. 2014;12:3597. doi: 10.2903/j.efsa.2014.3597. DOI

Rasheed H., Kay P., Slack R., Gong Y.Y. Arsenic species in wheat, raw and cooked rice: Exposure and associated health implications. Sci. Total Environ. 2018;634:366–373. doi: 10.1016/j.scitotenv.2018.03.339. PubMed DOI

Lai P.Y., Cottingham K.L., Steinmaus C., Karagas M.R., Miller M.D. Arsenic and Rice: Translating Research to Address Health Care Providers’ Needs. J. Pediatr. 2015;167:797–803. doi: 10.1016/j.jpeds.2015.07.003. PubMed DOI PMC

Islam S., Rahman M.M., Rahman M.A., Naidu R. Inorganic arsenic in rice and rice-based diets: Health risk assessment. Food Control. 2017;82:196–202. doi: 10.1016/j.foodcont.2017.06.030. DOI

Mwale T., Rahman M.M., Mondal D. Risk and Benefit of Different Cooking Methods on Essential Elements and Arsenic in Rice. Int. J. Environ. Res. Public Health. 2018;15:1056. doi: 10.3390/ijerph15061056. PubMed DOI PMC

Nachman K.E., Ginsberg G.L., Miller M.D., Murray C.J., Nigra A.E., Pendergrast C.B. Mitigating dietary arsenic exposure: Current status in the United States and recommendations for an improved path forward. Sci. Total Environ. 2017;581:221–236. doi: 10.1016/j.scitotenv.2016.12.112. PubMed DOI PMC

IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, International Agency for Research on Cancer, and World Health Organization Arsenic, metals, fibres, and dusts. IARC Monogr. Eval. Carcinog. Risks Hum. 2012;100C:41–93. PubMed PMC

EFSA Scientific Opinion on Arsenic in Food. EFSA J. 2009;7:1351–1550. doi: 10.2903/j.efsa.2009.1351. DOI

Rahman M.A., Rahman A., Khan M.Z.K., Renzaho A.M.N. Human health risks and socio-economic perspectives of arsenic exposure in Bangladesh: A scoping review. Ecotoxicol. Environ. Saf. 2018;150:335–343. doi: 10.1016/j.ecoenv.2017.12.032. PubMed DOI

Gray P.J., Conklin S.D., Todorov T.I., Kasko S.M. Cooking rice in excess water reduces both arsenic and enriched vitamins in the cooked grain. Food Addit. Contam. Part A. 2016;33:78–85. doi: 10.1080/19440049.2015.1103906. PubMed DOI

Kumarathilaka P., Seneweera S., Ok Y.S., Meharg A., Bundschuh J. Arsenic in cooked rice foods: Assessing health risks and mitigation options. Environ. Int. 2019;127:584–591. doi: 10.1016/j.envint.2019.04.004. PubMed DOI

Pedron T., Segura F.R., Paniz F.P., Souz F.D., dos Santos M.C., de Magalhaes A.M., Batista B.L. Mitigation of arsenic in rice grains by polishing and washing: Evidencing the benefit and the cost. J. Cereal Sci. 2019;87:52–58. doi: 10.1016/j.jcs.2019.03.003. DOI

Menon M., Dong W., Chen X., Hufton J., Rhodes E.J. Improved rice cooking approach to maximise arsenic removal while preserving nutrient elements. Sci. Total Environ. 2021;755:143341. doi: 10.1016/j.scitotenv.2020.143341. PubMed DOI

Naito S., Matsumoto E., Shindoh K., Nishimura T. Effects of polishing, cooking, and storing on total arsenic and arsenic species concentrations in rice cultivated in Japan. Food Chem. 2015;168:294–301. doi: 10.1016/j.foodchem.2014.07.060. PubMed DOI

Atiaga O., Nunes L.M., Otero X.L. Effect of cooking on arsenic concentration in rice. Environ. Sci. Pollut. Res. Int. 2020;27:10757–10765. doi: 10.1007/s11356-019-07552-2. PubMed DOI

Raab A., Baskaran C., Feldmann J., Meharg A.A. Cooking rice in a high water to rice ratio reduces inorganic arsenic content. J. Environ. Monit. 2009;11:41–44. doi: 10.1039/B816906C. PubMed DOI

Eggersdorfer M., Laudert D., Letinois U., McClymont T., Medlock J., Netscher T., Bonrath W. One hundred years of vitamins-a success story of the natural sciences. Angew. Chem. Int. Ed. Engl. 2012;51:12960–12990. doi: 10.1002/anie.201205886. PubMed DOI

Acevedo-Rocha C.G., Gronenberg L.S., Mack M., Commichau F.M., Genee H.J. Microbial cell factories for the sustainable manufacturing of B vitamins. Curr. Opin. Biotechnol. 2019;56:18–29. doi: 10.1016/j.copbio.2018.07.006. PubMed DOI

Fitzpatrick T.B., Basset G.J., Borel P., Carrari F., DellaPenna D., Fraser P.D., Hellmann H., Osorio S., Rothan C., Valpuesta V., et al. Vitamin deficiencies in humans: Can plant science help? Plant Cell. 2012;24:395–414. doi: 10.1105/tpc.111.093120. PubMed DOI PMC

Fulgoni V.L., 3rd, Keast D.R., Bailey R.L., Dwyer J. Foods, fortificants, and supplements: Where do Americans get their nutrients? J. Nutr. 2011;141:1847–1854. doi: 10.3945/jn.111.142257. PubMed DOI PMC

Liberato S.C., Pinheiro-Sant’Ana H.M. Fortification of industrialized foods with vitamins. Rev. Nutr. 2006;19:215–231. doi: 10.1590/S1415-52732006000200009. DOI

Berner L.A., Keast D.R., Bailey R.L., Dwyer J.T. Fortified foods are major contributors to nutrient intakes in diets of US children and adolescents. J. Acad. Nutr. Diet. 2014;114:1009–1022. doi: 10.1016/j.jand.2013.10.012. PubMed DOI

Whitfield K.C., Smith T.J., Rohner F., Wieringa F.T., Green T.J. Thiamine fortification strategies in low- and middle-income settings: A review. Ann. N. Y. Acad. Sci. 2021;1498:29–45. doi: 10.1111/nyas.14565. PubMed DOI PMC

Allen L., Benoist B., Dary O., Hurrell R. Guidelines on Food Fortification with Micronutrients. World Health Organization Food and Agriculture Organization United Nations; Geneva, Switzerland: 2006.

Newman J.C., Malek A.M., Hunt K.J., Marriott B.P. Nutrients in the US Diet: Naturally Occurring or Enriched/Fortified Food and Beverage Sources, Plus Dietary Supplements: NHANES 2009–2012. J. Nutr. 2019;149:1404–1412. doi: 10.1093/jn/nxz066. PubMed DOI PMC

EU Parliament E. Regulation (EC) No 1925/2006 of the European Parliament and of the Council of 20 December 2006 on the addition of vitamins and minerals and of certain other substances to foods. OJ L 404. 2006. [(accessed on 10 July 2021)]. pp. 26–38. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32006R1925.

Gomes F., Bergeron G., Bourassa M.W., Fischer P.R. Thiamine deficiency unrelated to alcohol consumption in high-income countries: A literature review. Ann. N. Y. Acad. Sci. 2021;1498:46–56. doi: 10.1111/nyas.14569. PubMed DOI PMC

GFD Global Fortification Data Exchange. [(accessed on 1 June 2021)]. Available online: https://fortificationdata.org/

FFI Food Fortification Initiative. [(accessed on 12 July 2021)]. Available online: https://www.ffinetwork.org/country-profiles.

De Pee S. Proposing nutrients and nutrient levels for rice fortification. Ann. N. Y. Acad. Sci. 2014;1324:55–66. doi: 10.1111/nyas.12478. PubMed DOI

Saha S., Roy A. Whole grain rice fortification as a solution to micronutrient deficiency: Technologies and need for more viable alternatives. Food Chem. 2020;326:127049. doi: 10.1016/j.foodchem.2020.127049. PubMed DOI

Steiger G., Muller-Fischer N., Cori H., Conde-Petit B. Fortification of rice: Technologies and nutrients. Ann. N. Y. Acad. Sci. 2014;1324:29–39. doi: 10.1111/nyas.12418. PubMed DOI

Alavi S., Bugusu B., Cramer G., Dary O., Lee T.-C., Martin L., McEntire J., Wailes E. Rice Fortification in Developing Countries: A Critical Review of the Technical and Economic Feasibility. Academy for Educational Development; Washington, DC, USA: 2008.

Strobbe S., Van Der Straeten D. Toward Eradication of B-Vitamin Deficiencies: Considerations for Crop Biofortification. Front. Plant Sci. 2018;9:443. doi: 10.3389/fpls.2018.00443. PubMed DOI PMC

Minhas A.P., Tuli R., Puri S. Pathway Editing Targets for Thiamine Biofortification in Rice Grains. Front. Plant Sci. 2018;9:975. doi: 10.3389/fpls.2018.00975. PubMed DOI PMC

Dong W., Thomas N., Ronald P.C., Goyer A. Overexpression of thiamin biosynthesis genes in rice increases leaf and unpolished grain thiamin content but not resistance to Xanthomonas oryzae pv. oryzae. Front. Plant Sci. 2016;7:616. doi: 10.3389/fpls.2016.00616. PubMed DOI PMC

Strobbe S., Verstraete J., Stove C., Van Der Straeten D. Metabolic engineering of rice endosperm towards higher vitamin B1 accumulation. Plant Biotechnol. J. 2021;19:1253–1267. doi: 10.1111/pbi.13545. PubMed DOI PMC

Goyer A. Thiamin biofortification of crops. Curr. Opin. Biotechnol. 2017;44:1–7. doi: 10.1016/j.copbio.2016.09.005. PubMed DOI

Smithline H.A., Donnino M., Greenblatt D.J. Pharmacokinetics of high-dose oral thiamine hydrochloride in healthy subjects. BMC Clin. Pharmacol. 2012;12:4. doi: 10.1186/1472-6904-12-4. PubMed DOI PMC

Gangolf M., Czerniecki J., Radermecker M., Detry O., Nisolle M., Jouan C., Martin D., Chantraine F., Lakaye B., Wins P., et al. Thiamine status in humans and content of phosphorylated thiamine derivatives in biopsies and cultured cells. PLoS ONE. 2010;5:e13616. doi: 10.1371/journal.pone.0013616. PubMed DOI PMC

Rindi G., Laforenza U. Thiamine intestinal transport and related issues: Recent aspects. Proc. Soc. Exp. Biol. Med. 2000;224:246–255. doi: 10.1046/j.1525-1373.2000.22428.x. PubMed DOI

Said H.M., Balamurugan K., Subramanian V.S., Marchant J.S. Expression and functional contribution of hTHTR-2 in thiamin absorption in human intestine. Am. J. Physiol. Gastrointest. Liver. Physiol. 2004;286:G491–G498. doi: 10.1152/ajpgi.00361.2003. PubMed DOI

Ganapathy V., Smith S.B., Prasad P.D. SLC19: The folate/thiamine transporter family. Pflug. Arch. 2004;447:641–646. doi: 10.1007/s00424-003-1068-1. PubMed DOI

Nabokina S.M., Said H.M. A high-affinity and specific carrier-mediated mechanism for uptake of thiamine pyrophosphate by human colonic epithelial cells. Am. J. Physiol. Gastrointest. Liver. Physiol. 2012;303:G389–G395. doi: 10.1152/ajpgi.00151.2012. PubMed DOI PMC

Ott M., Werneke U. Wernicke’s encephalopathy-from basic science to clinical practice. Part 1: Understanding the role of thiamine. Adv. Ther. Psychopharmacol. 2020;10:2045125320978106. doi: 10.1177/2045125320978106. PubMed DOI PMC

Lu J., Frank E.L. Rapid HPLC measurement of thiamine and its phosphate esters in whole blood. Clin. Chem. 2008;54:901–906. doi: 10.1373/clinchem.2007.099077. PubMed DOI

Labay V., Raz T., Baron D., Mandel H., Williams H., Barrett T., Szargel R., McDonald L., Shalata A., Nosaka K., et al. Mutations in SLC19A2 cause thiamine-responsive megaloblastic anaemia associated with diabetes mellitus and deafness. Nat. Genet. 1999;22:300–304. doi: 10.1038/10372. PubMed DOI

Zhao R., Gao F., Goldman I.D. Molecular cloning of human thiamin pyrophosphokinase. Biochim. Biophys. Acta. 2001;1517:320–322. doi: 10.1016/S0167-4781(00)00264-5. PubMed DOI

Bettendorff L. The compartmentation of phosphorylated thiamine derivatives in cultured neuroblastoma cells. Biochim. Biophys. Acta. 1994;1222:7–14. doi: 10.1016/0167-4889(94)90019-1. PubMed DOI

Eudy J.D., Spiegelstein O., Barber R.C., Wlodarczyk B.J., Talbot J., Finnell R.H. Identification and characterization of the human and mouse SLC19A3 gene: A novel member of the reduced folate family of micronutrient transporter genes. Mol. Genet. Metab. 2000;71:581–590. doi: 10.1006/mgme.2000.3112. PubMed DOI

Casteels M., Sniekers M., Fraccascia P., Mannaerts G.P., Van Veldhoven P.P. The role of 2-hydroxyacyl-CoA lyase, a thiamin pyrophosphate-dependent enzyme, in the peroxisomal metabolism of 3-methyl-branched fatty acids and 2-hydroxy straight-chain fatty acids. Biochem. Soc. Trans. 2007;35:876–880. doi: 10.1042/BST0350876. PubMed DOI

Ashokkumar B., Vaziri N.D., Said H.M. Thiamin uptake by the human-derived renal epithelial (HEK-293) cells: Cellular and molecular mechanisms. Am. J. Physiol. Ren. Physiol. 2006;291:F796–F805. doi: 10.1152/ajprenal.00078.2006. PubMed DOI

Patel M.S., Nemeria N.S., Furey W., Jordan F. The pyruvate dehydrogenase complexes: Structure-based function and regulation. J. Biol. Chem. 2014;289:16615–16623. doi: 10.1074/jbc.R114.563148. PubMed DOI PMC

Hutson S.M., Sweatt A.J., Lanoue K.F. Branched-chain amino acid metabolism: Implications for establishing safe intakes. J. Nutr. 2005;135:1557S–1564S. doi: 10.1093/jn/135.6.1557S. PubMed DOI

Sperringer J.E., Addington A., Hutson S.M. Branched-Chain Amino Acids and Brain Metabolism. Neurochem. Res. 2017;42:1697–1709. doi: 10.1007/s11064-017-2261-5. PubMed DOI

Schenk G., Duggleby R.G., Nixon P.F. Properties and functions of the thiamin diphosphate dependent enzyme transketolase. Int. J. Biochem. Cell Biol. 1998;30:1297–1318. doi: 10.1016/S1357-2725(98)00095-8. PubMed DOI

Foulon V., Sniekers M., Huysmans E., Asselberghs S., Mahieu V., Mannaerts G.P., Van Veldhoven P.P., Casteels M. Breakdown of 2-hydroxylated straight chain fatty acids via peroxisomal 2-hydroxyphytanoyl-CoA lyase: A revised pathway for the alpha-oxidation of straight chain fatty acids. J. Biol. Chem. 2005;280:9802–9812. doi: 10.1074/jbc.M413362200. PubMed DOI

Lonsdale D. Thiamin. Adv. Food. Nutr. Res. 2018;83:1–56. doi: 10.1016/bs.afnr.2017.11.001. PubMed DOI

Kelley R.I., Robinson D., Puffenberger E.G., Strauss K.A., Morton D.H. Amish lethal microcephaly: A new metabolic disorder with severe congenital microcephaly and 2-ketoglutaric aciduria. Am. J. Med. Genet. 2002;112:318–326. doi: 10.1002/ajmg.10529. PubMed DOI

Marce-Grau A., Marti-Sanchez L., Baide-Mairena H., Ortigoza-Escobar J.D., Perez-Duenas B. Genetic defects of thiamine transport and metabolism: A review of clinical phenotypes, genetics, and functional studies. J. Inherit. Metab. Dis. 2019;42:581–597. doi: 10.1002/jimd.12125. PubMed DOI

Shible A.A., Ramadurai D., Gergen D., Reynolds P.M. Dry Beriberi Due to Thiamine Deficiency Associated with Peripheral Neuropathy and Wernicke’s Encephalopathy Mimicking Guillain-Barre syndrome: A Case Report and Review of the Literature. Am. J. Case Rep. 2019;20:330–334. doi: 10.12659/AJCR.914051. PubMed DOI PMC

Chisolm-Straker M., Cherkas D. Altered and unstable: Wet beriberi, a clinical review. J. Emerg. Med. 2013;45:341–344. doi: 10.1016/j.jemermed.2013.04.022. PubMed DOI

DiNicolantonio J.J., Liu J., O’Keefe J.H. Thiamine and Cardiovascular Disease: A Literature Review. Prog. Cardiovasc. Dis. 2018;61:27–32. doi: 10.1016/j.pcad.2018.01.009. PubMed DOI

Greenspon J., Perrone E.E., Alaish S.M. Shoshin beriberi mimicking central line sepsis in a child with short bowel syndrome. World J. Pediatr. 2010;6:366–368. doi: 10.1007/s12519-010-0022-5. PubMed DOI

Dabar G., Harmouche C., Habr B., Riachi M., Jaber B. Shoshin Beriberi in Critically-Ill patients: Case series. Nutr. J. 2015;14:51. doi: 10.1186/s12937-015-0039-7. PubMed DOI PMC

Fattal-Valevski A., Bloch-Mimouni A., Kivity S., Heyman E., Brezner A., Strausberg R., Inbar D., Kramer U., Goldberg-Stern H. Epilepsy in children with infantile thiamine deficiency. Neurology. 2009;73:828–833. doi: 10.1212/WNL.0b013e3181b121f5. PubMed DOI

Nazir M., Lone R., Charoo B.A. Infantile Thiamine Deficiency: New Insights into an Old Disease. Indian Pediatr. 2019;56:673–681. doi: 10.1007/s13312-019-1592-5. PubMed DOI

Chandrakumar A., Bhardwaj A., Geert W., Jong G.W. Review of thiamine deficiency disorders: Wernicke encephalopathy and Korsakoff psychosis. J. Basic Clin. Physiol. Pharmacol. 2018;30:153–162. doi: 10.1515/jbcpp-2018-0075. PubMed DOI

Butterworth R.F. Thiamin deficiency and brain disorders. Nutr. Res. Rev. 2003;16:277–284. doi: 10.1079/NRR200367. PubMed DOI

Kopelman M.D., Thomson A.D., Guerrini I., Marshall E.J. The Korsakoff syndrome: Clinical aspects, psychology and treatment. Alcohol Alcohol. 2009;44:148–154. doi: 10.1093/alcalc/agn118. PubMed DOI

Arts N.J., Walvoort S.J., Kessels R.P. Korsakoff’s syndrome: A critical review. Neuropsychiatr. Dis. Treat. 2017;13:2875–2890. doi: 10.2147/NDT.S130078. PubMed DOI PMC

Kril J.J., Harper C.G. Neuroanatomy and neuropathology associated with Korsakoff’s syndrome. Neuropsychol. Rev. 2012;22:72–80. doi: 10.1007/s11065-012-9195-0. PubMed DOI PMC

Yates A.A., Schlicker S.A., Suitor C.W. Dietary Reference Intakes: The new basis for recommendations for calcium and related nutrients, B vitamins, and choline. J. Am. Diet Assoc. 1998;98:699–706. doi: 10.1016/S0002-8223(98)00160-6. PubMed DOI

Armah S., Ferruzzi M.G., Gletsu-Miller N. Feasibility of Mass-Spectrometry to Lower Cost and Blood Volume Requirements for Assessment of B Vitamins in Patients Undergoing Bariatric Surgery. Metabolites. 2020;10:240. doi: 10.3390/metabo10060240. PubMed DOI PMC

Bishop A.M., Fernandez C., Whitehead R.D., Jr., Morales A.P., Barr D.B., Wilder L.C., Baker S.E. Quantification of riboflavin in human urine using high performance liquid chromatography-tandem mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2011;879:1823–1826. doi: 10.1016/j.jchromb.2011.04.032. PubMed DOI

Diniz M., Dias N., Andrade F., Paulo B., Ferreira A. Isotope dilution method for determination of vitamin B2 in human plasma using liquid chromatography-tandem mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2019;1113:14–19. doi: 10.1016/j.jchromb.2019.03.001. PubMed DOI

Hampel D., York E.R., Allen L.H. Ultra-performance liquid chromatography tandem mass-spectrometry (UPLC-MS/MS) for the rapid, simultaneous analysis of thiamin, riboflavin, flavin adenine dinucleotide, nicotinamide and pyridoxal in human milk. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2012;903:7–13. doi: 10.1016/j.jchromb.2012.06.024. PubMed DOI

Cheng X., Ma D., Fei G., Ma Z., Xiao F., Yu Q., Pan X., Zhou F., Zhao L., Zhong C. A single-step method for simultaneous quantification of thiamine and its phosphate esters in whole blood sample by ultra-performance liquid chromatography-mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2018;1095:103–111. doi: 10.1016/j.jchromb.2018.07.030. PubMed DOI

Jeong Hyeon M., Shin Beom S., Shin S. Liquid Chromatography-Tandem Mass Spectrometry Analysis of Riboflavin in Beagle Dog Plasma for Pharmacokinetic Studies. Mass Spectrom. Lett. 2020;11:10–14. doi: 10.5478/MSL.2020.11.1.10. DOI

Kahoun D., Fojtíková P., Vácha F., Nováková E., Hypša V. Development and validation of an LC-MS/MS method for determination of B vitamins and some its derivatives in whole blood. bioRxiv. 2021 doi: 10.1101/2021.01.18.427110. PubMed DOI PMC

Khaksari M., Mazzoleni L.R., Ruan C.H., Song P., Hershey N.D., Kennedy R.T., Burns M.A., Minerick A.R. Detection and quantification of vitamins in microliter volumes of biological samples by LC-MS for clinical screening. Aiche J. 2018;64:3709–3718. doi: 10.1002/aic.16345. DOI

Meisser Redeuil K., Longet K., Benet S., Munari C., Campos-Gimenez E. Simultaneous quantification of 21 water soluble vitamin circulating forms in human plasma by liquid chromatography-mass spectrometry. J. Chromatogr. A. 2015;1422:89–98. doi: 10.1016/j.chroma.2015.09.049. PubMed DOI

Ren X.N., Yin S.A., Yang Z.Y., Yang X.G., Shao B., Ren Y.P., Zhang J. Application of UPLC-MS/MS Method for Analyzing B-vitamins in Human Milk. Biomed. Environ. Sci. 2015;28:738–750. doi: 10.3967/bes2015.104. PubMed DOI

Roelofsen-de Beer R., Van Zelst B.D., Wardle R., Kooij P.G., de Rijke Y.B. Simultaneous measurement of whole blood vitamin B1 and vitamin B6 using LC-ESI-MS/MS. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2017;1063:67–73. doi: 10.1016/j.jchromb.2017.08.011. PubMed DOI

Verstraete J., Stove C. Patient-Centric Assessment of Thiamine Status in Dried Blood Volumetric Absorptive Microsamples Using LC-MS/MS Analysis. Anal. Chem. 2021;93:2660–2668. doi: 10.1021/acs.analchem.0c05018. PubMed DOI

Zhang Q., Ford L.A., Goodman K.D., Freed T.A., Hauser D.M., Conner J.K., Vroom K.E., Toal D.R. LC-MS/MS method for quantitation of seven biomarkers in human plasma for the assessment of insulin resistance and impaired glucose tolerance. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2016;1038:101–108. doi: 10.1016/j.jchromb.2016.10.025. PubMed DOI

Huang Y., Gibson R.A., Green T.J. Measuring thiamine status in dried blood spots. Clin. Chim. Acta. 2020;509:52–59. doi: 10.1016/j.cca.2020.06.011. PubMed DOI

Jenčo J., Krčmová L.K., Sobotka L., Bláha V., Solich P., Švec F. Development of novel liquid chromatography method for clinical monitoring of vitamin B1 metabolites and B6 status in the whole blood. Talanta. 2020;211:120702. doi: 10.1016/j.talanta.2019.120702. PubMed DOI

Mathew E.M., Sakore P., Lewis L., Manokaran K., Rao P., Moorkoth S. Development and validation of a dried blood spot test for thiamine deficiency among infants by HPLC-fluorimetry. Biomed. Chromatogr. 2019;33:e4668. doi: 10.1002/bmc.4668. PubMed DOI

Nguyen V.L., Darman M., Ireland A., Fitzpatrick M. A high performance liquid chromatography fluorescence method for the analysis of both pyridoxal-5-phosphate and thiamine pyrophosphate in whole blood. Clin. Chim. Acta. 2020;506:129–134. doi: 10.1016/j.cca.2020.03.026. PubMed DOI

Petteys B.J., Frank E.L. Rapid determination of vitamin B(2) (riboflavin) in plasma by HPLC. Clin. Chim. Acta. 2011;412:38–43. doi: 10.1016/j.cca.2010.08.037. PubMed DOI

Stuetz W., Carrara V.I., McGready R., Lee S.J., Biesalski H.K., Nosten F.H. Thiamine diphosphate in whole blood, thiamine and thiamine monophosphate in breast-milk in a refugee population. PLoS ONE. 2012;7:e36280. doi: 10.1371/journal.pone.0036280. PubMed DOI PMC

Heydari R., Elyasi N.S. Ion-pair cloud-point extraction: A new method for the determination of water-soluble vitamins in plasma and urine. J. Sep. Sci. 2014;37:2724–2731. doi: 10.1002/jssc.201400642. PubMed DOI

Mandal S.M., Mandal M., Ghosh A.K., Dey S. Rapid determination of vitamin B2 and B12 in human urine by isocratic liquid chromatography. Anal. Chim. Acta. 2009;640:110–113. doi: 10.1016/j.aca.2009.03.009. PubMed DOI

Asgharian Marzabad M., Jafari B., Norouzi P. Determination of Riboflavin by Nanocomposite Modified Carbon Paste Electrode in Biological Fluids Using Fast Fourier Transform Square Wave Voltammetry. Int. J. Eng. 2020;33:1696–1702. doi: 10.5829/ije.2020.33.09c.01. DOI

Prasad B.B., Singh R., Singh K. Development of highly electrocatalytic and electroconducting imprinted film using Ni nanomer for ultra-trace detection of thiamine. Sens. Actuators B Chem. 2017;246:38–45. doi: 10.1016/j.snb.2017.02.033. DOI

Shankar S., John S.A. Sensitive and highly selective determination of vitamin B1 in the presence of other vitamin B complexes using functionalized gold nanoparticles as fluorophore. Rsc. Adv. 2015;5:49920–49925. doi: 10.1039/C5RA09165A. DOI

Song Z., Hou S. Determination of picomole amounts of thiamine through flow-injection analysis based on the suppression of luminol-KIO(4) chemiluminescence system. J. Pharm. Biomed. Anal. 2002;28:683–691. doi: 10.1016/S0731-7085(01)00655-0. PubMed DOI

Zhang H., Chen H., Li H., Pan S., Ran Y., Hu X. Construction of a novel turn-on-off fluorescence sensor used for highly selective detection of thiamine via its quenching effect on o-phen-Zn(2+) complex. Luminescence. 2018;33:1128–1135. doi: 10.1002/bio.3519. PubMed DOI

Immundiagnostik AG. ID-Vit® Pantothenic acid. [(accessed on 10 July 2021)]. Available online: https://www.immundiagnostik.com/media/pages/testkits/kif004/1c6c7f961a-1633917660/kif004_2019-05-23_pantothensaeure.pdf.

Immundiagnostik AG. ID-Vit® Niacin. [(accessed on 10 July 2021)]. Available online: https://www.immundiagnostik.com/media/pages/testkits/kif003/2d1c628e3b-1633917660/kif003_2019-05-23_niacin.pdf.

RECIPE Chemicals+Instruments GmbH VITAMIN B1, B2 AND B6 (COMBIKIT) [(accessed on 10 July 2021)]. Available online: https://recipe.de/products/combikit-vitamin-b1-b2-b6-whole-blood/

Immundiagnostik AG. Vitamin B1 HPLC Kit. [(accessed on 10 July 2021)]. Available online: https://www.immundiagnostik.com/media/pages/testkits/kc2201/59011e2c72-1633658467/vitamin-b1_kc2201.pdf.

RECIPE Chemicals+Instruments GmbH VITAMIN B1. [(accessed on 10 July 2021)]. Available online: https://recipe.de/products/vitamin-b1-whole-blood/

RECIPE Chemicals+Instruments GmbH VITAMIN B2. [(accessed on 10 July 2021)]. Available online: https://recipe.de/products/vitamin-b2-whole-blood/

MYBioSource Thiamine Elisa Kit: Human Thiamine ELISA Kit. [(accessed on 10 July 2021)]. Available online: https://www.mybiosource.com/human-elisa-kits/thiamine/167383.

LSBio Vitamin B2/Riboflavin (Competitive EIA) ELISA Kit-LS-F55485. [(accessed on 10 July 2021)]. Available online: https://www.lsbio.com/elisakits/vitamin-b2-riboflavin-competitive-eia-elisa-kit-ls-f55485/55485.

Antibodiesonline GmbH Vitamin B2 (Riboflavin) ELISA Kit. [(accessed on 10 July 2021)]. Available online: https://www.antibodies-online.com/kit/1059863/Vitamin+B2+Riboflavin+ELISA+Kit/

Amrein K., Oudemans-van Straaten H.M., Berger M.M. Vitamin therapy in critically ill patients: Focus on thiamine, vitamin C, and vitamin D. Intensive Care Med. 2018;44:1940–1944. doi: 10.1007/s00134-018-5107-y. PubMed DOI PMC

Russell R.M., Suter P.M. Vitamin requirements of elderly people: An update. Am. J. Clin. Nutr. 1993;58:4–14. doi: 10.1093/ajcn/58.1.4. PubMed DOI

Thomson A., Guerrini I., Marshall E.J. Incidence of Adverse Reactions to Parenteral Thiamine in the Treatment of Wernicke’s Encephalopathy, and Recommendations. Alcohol Alcohol. 2019;54:609–614. doi: 10.1093/alcalc/agy091. PubMed DOI

Claus D., Eggers R., Warecka K., Neundorfer B. Thiamine deficiency and nervous system function disturbances. Eur. Arch. Psych. Neurol. Sci. 1985;234:390–394. doi: 10.1007/BF00386056. PubMed DOI

Alaei Shahmiri F., Soares M.J., Zhao Y., Sherriff J. High-dose thiamine supplementation improves glucose tolerance in hyperglycemic individuals: A randomized, double-blind cross-over trial. Eur. J. Nutr. 2013;52:1821–1824. doi: 10.1007/s00394-013-0534-6. PubMed DOI

Gibson G.E., Hirsch J.A., Cirio R.T., Jordan B.D., Fonzetti P., Elder J. Abnormal thiamine-dependent processes in Alzheimer’s Disease. Lessons from diabetes. Mol. Cell. Neurosci. 2013;55:17–25. doi: 10.1016/j.mcn.2012.09.001. PubMed DOI PMC

Kv L.N., Nguyen L.T. The role of thiamine in HIV infection. Int. J. Infect. Dis. 2013;17:e221–e227. doi: 10.1016/j.ijid.2012.11.019. PubMed DOI

Volvert M.L., Seyen S., Piette M., Evrard B., Gangolf M., Plumier J.C., Bettendorff L. Benfotiamine, a synthetic S-acyl thiamine derivative, has different mechanisms of action and a different pharmacological profile than lipid-soluble thiamine disulfide derivatives. BMC Pharmacol. 2008;8:10. doi: 10.1186/1471-2210-8-10. PubMed DOI PMC

Loew D. Pharmacokinetics of thiamine derivatives especially of benfotiamine. Int. J. Clin. Pharmacol. Ther. 1996;34:47–50. PubMed

Nishikawa T., Edelstein D., Du X.L., Yamagishi S., Matsumura T., Kaneda Y., Yorek M.A., Beebe D., Oates P.J., Hammes H.P., et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature. 2000;404:787–790. doi: 10.1038/35008121. PubMed DOI

Raj V., Ojha S., Howarth F.C., Belur P.D., Subramanya S.B. Therapeutic potential of benfotiamine and its molecular targets. Eur. Rev. Med. Pharmacol. Sci. 2018;22:3261–3273. doi: 10.26355/eurrev_201805_15089. PubMed DOI

Babaei-Jadidi R., Karachalias N., Ahmed N., Battah S., Thornalley P.J. Prevention of incipient diabetic nephropathy by high-dose thiamine and benfotiamine. Diabetes. 2003;52:2110–2120. doi: 10.2337/diabetes.52.8.2110. PubMed DOI

Stracke H., Lindemann A., Federlin K. A benfotiamine-vitamin B combination in treatment of diabetic polyneuropathy. Exp. Clin. Endocrinol. Diabetes. 1996;104:311–316. doi: 10.1055/s-0029-1211460. PubMed DOI

Huang W.C., Huang H.Y., Hsu Y.J., Su W.H., Shen S.Y., Lee M.C., Lin C.L., Huang C.C. The Effects of Thiamine Tetrahydrofurfuryl Disulfide on Physiological Adaption and Exercise Performance Improvement. Nutrients. 2018;10:851. doi: 10.3390/nu10070851. PubMed DOI PMC

Scientific Committee on Food . Opinion of the Scientific Committee on Food on the Tolerable Upper Intake Level of Vitamin B1. European Commission; Brussels, Belgium: 2001.

Wrenn K.D., Murphy F., Slovis C.M. A toxicity study of parenteral thiamine hydrochloride. Ann. Emerg. Med. 1989;18:867–870. doi: 10.1016/S0196-0644(89)80215-X. PubMed DOI

Sica D.A. Loop diuretic therapy, thiamine balance, and heart failure. Congest. Heart Fail. 2007;13:244–247. doi: 10.1111/j.1527-5299.2007.06260.x. PubMed DOI

Schumann K. Interactions between drugs and vitamins at advanced age. Int. J. Vitam. Nutr. Res. 1999;69:173–178. doi: 10.1024/0300-9831.69.3.173. PubMed DOI

Vora B., Green E.A.E., Khuri N., Ballgren F., Sirota M., Giacomini K.M. Drug-nutrient interactions: Discovering prescription drug inhibitors of the thiamine transporter ThTR-2 (SLC19A3) Am. J. Clin. Nutr. 2020;111:110–121. doi: 10.1093/ajcn/nqz255. PubMed DOI PMC

Giacomini M.M., Hao J., Liang X., Chandrasekhar J., Twelves J., Whitney J.A., Lepist E.I., Ray A.S. Interaction of 2,4-Diaminopyrimidine-Containing Drugs Including Fedratinib and Trimethoprim with Thiamine Transporters. Drug Metab. Dispos. 2017;45:76–85. doi: 10.1124/dmd.116.073338. PubMed DOI

Hohmann H.P., Bretzel W., Hans M., Friedel A., Litta G., Lehmann M., Kurth R., Paust J., Haehnlein W. Ullmann’s Encyclopedia of Industrial Chemistry. John Wiley & Sons, Inc.; Hoboken, NJ, USA: 2020. Vitamins, 7. Vitamin B2 (Riboflavin) pp. 1–12.

Saedisomeolia A., Ashoori M. Riboflavin in Human Health: A Review of Current Evidences. Adv. Food Nutr. Res. 2018;83:57–81. doi: 10.1016/bs.afnr.2017.11.002. PubMed DOI

Powers H.J. Riboflavin (vitamin B-2) and health. Am. J. Clin. Nutr. 2003;77:1352–1360. doi: 10.1093/ajcn/77.6.1352. PubMed DOI

Mestdagh F., De Meulenaer B., De Clippeleer J., Devlieghere F., Huyghebaert A. Protective influence of several packaging materials on light oxidation of milk. J. Dairy Sci. 2005;88:499–510. doi: 10.3168/jds.S0022-0302(05)72712-0. PubMed DOI

Cardoso D.R., Libardi S.H., Skibsted L.H. Riboflavin as a photosensitizer. Effects on human health and food quality. Food Funct. 2012;3:487–502. doi: 10.1039/c2fo10246c. PubMed DOI

Sheraz M.A., Kazi S.H., Ahmed S., Anwar Z., Ahmad I. Photo, thermal and chemical degradation of riboflavin. Beilstein J. Org. Chem. 2014;10:1999–2012. doi: 10.3762/bjoc.10.208. PubMed DOI PMC

Choe E., Huang R.M., Min D.B. Chemical reactions and stability of riboflavin in foods. J. Food Sci. 2005;70:R28–R36. doi: 10.1111/j.1365-2621.2005.tb09055.x. DOI

Gaylord A.M., Warthesen J.J., Smith D.E. Influence of milk fat, milk solids, and light intensity on the light stability of vitamin A and riboflavin in lowfat milk. J. Dairy Sci. 1986;69:2779–2784. doi: 10.3168/jds.S0022-0302(86)80729-9. PubMed DOI

Semba R.D. The discovery of the vitamins. Int. J. Vitam. Nutr. Res. 2012;82:310–315. doi: 10.1024/0300-9831/a000124. PubMed DOI

Northrop-Clewes C.A., Thurnham D.I. The discovery and characterization of riboflavin. Ann. Nutr. Metab. 2012;61:224–230. doi: 10.1159/000343111. PubMed DOI

Fischer M., Bacher A. Biosynthesis of vitamin B2 and flavocoenzymes in plants. Adv. Bot. Res. 2011;58:93–152. doi: 10.1016/B978-0-12-386479-6.00003-2. DOI

Fischer M., Bacher A. Biosynthesis of vitamin B2: Structure and mechanism of riboflavin synthase. Arch. Biochem. Biophys. 2008;474:252–265. doi: 10.1016/j.abb.2008.02.008. PubMed DOI

Fischer M., Bacher A. Biosynthesis of vitamin B2: A unique way to assemble a xylene ring. Chembiochem. 2011;12:670–680. doi: 10.1002/cbic.201000681. PubMed DOI

Bacher A., Eberhardt S., Fischer M., Kis K., Richter G. Biosynthesis of vitamin b2 (riboflavin) Annu. Rev. Nutr. 2000;20:153–167. doi: 10.1146/annurev.nutr.20.1.153. PubMed DOI

Garcia-Angulo V.A. Overlapping riboflavin supply pathways in bacteria. Crit. Rev. Microbiol. 2017;43:196–209. doi: 10.1080/1040841X.2016.1192578. PubMed DOI

Gutierrez-Preciado A., Torres A.G., Merino E., Bonomi H.R., Goldbaum F.A., Garcia-Angulo V.A. Extensive Identification of Bacterial Riboflavin Transporters and Their Distribution across Bacterial Species. PLoS ONE. 2015;10:e0126124. doi: 10.1371/journal.pone.0126124. PubMed DOI PMC

Zylberman V., Klinke S., Haase I., Bacher A., Fischer M., Goldbaum F.A. Evolution of vitamin B2 biosynthesis: 6,7-dimethyl-8-ribityllumazine synthases of Brucella. J. Bacteriol. 2006;188:6135–6142. doi: 10.1128/JB.00207-06. PubMed DOI PMC

Schwechheimer S.K., Park E.Y., Revuelta J.L., Becker J., Wittmann C. Biotechnology of riboflavin. Appl. Microbiol. Biotechnol. 2016;100:2107–2119. doi: 10.1007/s00253-015-7256-z. PubMed DOI

Zhang J.-R., Ge Y.-Y., Liu P.-H., Wu D.-T., Liu H.-Y., Li H.-B., Corke H., Gan R.-Y. Biotechnological Strategies of Riboflavin Biosynthesis in Microbes. Engineering. 2021 doi: 10.1016/j.eng.2021.03.018. DOI

Revuelta J.L., Ledesma-Amaro R., Lozano-Martinez P., Diaz-Fernandez D., Buey R.M., Jimenez A. Bioproduction of riboflavin: A bright yellow history. J. Ind. Microbiol. Biotechnol. 2017;44:659–665. doi: 10.1007/s10295-016-1842-7. PubMed DOI

Auclair O., Han Y., Burgos S.A. Consumption of Milk and Alternatives and Their Contribution to Nutrient Intakes among Canadian Adults: Evidence from the 2015 Canadian Community Health Survey-Nutrition. Nutrients. 2019;11:1948. doi: 10.3390/nu11081948. PubMed DOI PMC

Mielgo-Ayuso J., Aparicio-Ugarriza R., Olza J., Aranceta-Bartrina J., Gil A., Ortega R.M., Serra-Majem L., Varela-Moreiras G., Gonzalez-Gross M. Dietary Intake and Food Sources of Niacin, Riboflavin, Thiamin and Vitamin B (6) in a Representative Sample of the Spanish Population. The Anthropometry, Intake, and Energy Balance in Spain (ANIBES) Study dagger. Nutrients. 2018;10:846. doi: 10.3390/nu10070846. PubMed DOI PMC

Gorska-Warsewicz H., Rejman K., Laskowski W., Czeczotko M. Milk and Dairy Products and Their Nutritional Contribution to the Average Polish Diet. Nutrients. 2019;11:1771. doi: 10.3390/nu11081771. PubMed DOI PMC

Efsa Panel on Dietetic Products. Nutrition and Allergies. Turck D., Bresson J.L., Burlingame B., Dean T., Fairweather-Tait S., Heinonen M., Hirsch-Ernst K.I., Mangelsdorf I., et al. Dietary Reference Values for riboflavin. EFSA J. 2017;15:e04919. doi: 10.2903/j.efsa.2017.4919. PubMed DOI PMC

Revuelta J.L., Ledesma-Amaro R., Jiménez A. Industrial Biotechnology of Vitamins, Biopigments, and Antioxidants. John Wiley & Sons, Inc.; Hoboken, NJ, USA: 2016. Industrial production of vitamin B2 by microbial fermentation; pp. 15–40.

Mosegaard S., Dipace G., Bross P., Carlsen J., Gregersen N., Olsen R.K.J. Riboflavin Deficiency-Implications for General Human Health and Inborn Errors of Metabolism. Int. J. Mol. Sci. 2020;21:3847. doi: 10.3390/ijms21113847. PubMed DOI PMC

Agarwal S., Fulgoni Iii V.L. Nutritional impact of adding a serving of mushrooms to USDA Food Patterns-a dietary modeling analysis. Food Nutr. Res. 2021;65 doi: 10.29219/fnr.v65.5618. PubMed DOI PMC

Škrovánková S., Sikorová P. Vitamin B2 (riboflavin) content in cereal products. Acta Univ. Agric. Silvic. Mendel. Brun. 2010 doi: 10.11118/actaun201058050377. DOI

Vidal-Valverde C., Prodanov M., Sierra I. Natural fermentation of lentils. Z. Lebensm. Unters. Forsch. 1997;205:464–469. doi: 10.1007/s002170050200. PubMed DOI

Melse-Boonstra A. Bioavailability of Micronutrients From Nutrient-Dense Whole Foods: Zooming in on Dairy, Vegetables, and Fruits. Front. Nutr. 2020;7:101. doi: 10.3389/fnut.2020.00101. PubMed DOI PMC

Kanno C., Kanehara N., Shirafuji K., Tanji R., Imai T. Binding form of vitamin B2 in bovine milk: Its concentration, distribution and binding linkage. J. Nutr. Sci. Vitam. 1991;37:15–27. doi: 10.3177/jnsv.37.15. PubMed DOI

Thielecke F., Lecerf J.M., Nugent A.P. Processing in the food chain: Do cereals have to be processed to add value to the human diet? Nutr. Res. Rev. 2021;34:159–173. doi: 10.1017/S0954422420000207. PubMed DOI

Pinheiro-Sant’Ana H.M., Stringheta P.C.P., Penteado M.V., Brandão S.C. Stability of B-vitamins in meats prepared by foodservice. 2.Riboflavin. Foodserv. Res. Int. 1999;11:53–67. doi: 10.1111/j.1745-4506.1999.tb00238.x. DOI

Guneser O., Karagul Yuceer Y. Effect of ultraviolet light on water- and fat-soluble vitamins in cow and goat milk. J. Dairy Sci. 2012;95:6230–6241. doi: 10.3168/jds.2011-5300. PubMed DOI

Asadullah, Khair-un-nisa, Tarar O.M., Ali S.A., Jamil K., Begum A. Study to evaluate the impact of heat treatment on water soluble vitamins in milk. J. Pak. Med. Assoc. 2010;60:909–912. PubMed

Golbach J.L., Ricke S.C., O’Bryan C.A., Crandall P.G. Riboflavin in nutrition, food processing, and analysis-A Review. J. Food Res. 2014;3:23. doi: 10.5539/jfr.v3n6p23. DOI

Sharabi S., Okun Z., Shpigelman A. Changes in the shelf life stability of riboflavin, vitamin C and antioxidant properties of milk after (ultra) high pressure homogenization: Direct and indirect effects. Innov. Food Sci. Emerg. Technol. 2018;47:161–169. doi: 10.1016/j.ifset.2018.02.014. DOI

Allen C., Parks O.W. Photodegradation of riboflavin in milks exposed to fluorescent light. J. Dairy Sci. 1979;62:1377–1379. doi: 10.3168/jds.S0022-0302(79)83431-1. PubMed DOI

Dror D.K., Allen L.H. Overview of Nutrients in Human Milk. Adv. Nutr. 2018;9:278S–294S. doi: 10.1093/advances/nmy022. PubMed DOI PMC

Bates C.J., Liu D.S., Fuller N.J., Lucas A. Susceptibility of riboflavin and vitamin A in breast milk to photodegradation and its implications for the use of banked breast milk in infant feeding. Acta Paediatr. Scand. 1985;74:40–44. doi: 10.1111/j.1651-2227.1985.tb10918.x. PubMed DOI

Lima H.K., Vogel K., Hampel D., Wagner-Gillespie M., Fogleman A.D. The Associations Between Light Exposure During Pumping and Holder Pasteurization and the Macronutrient and Vitamin Concentrations in Human Milk. J. Hum. Lact. 2020;36:254–263. doi: 10.1177/0890334420906828. PubMed DOI

Rico D., Penas E., Garcia M.D.C., Martinez-Villaluenga C., Rai D.K., Birsan R.I., Frias J., Martin-Diana A.B. Sprouted Barley Flour as a Nutritious and Functional Ingredient. Foods. 2020;9:296. doi: 10.3390/foods9030296. PubMed DOI PMC

Tishler M., Pfister K., 3rd, Babson R.D., Ladenburg K., Fleming A.J. The reaction between o-aminoazo compounds and barbituric acid; a new synthesis of riboflavin. J. Am. Chem. Soc. 1947;69:1487–1492. doi: 10.1021/ja01198a068. PubMed DOI

Tischler M., Wellman J.W., Ladenburg K. The preparation of riboflavin; the synthesis of alloxazines and isoalloxazines. J. Am. Chem. Soc. 1945;67:2165–2168. doi: 10.1021/ja01228a031. PubMed DOI

Liu S., Hu W., Wang Z., Chen T. Production of riboflavin and related cofactors by biotechnological processes. Microb. Cell Fact. 2020;19:31. doi: 10.1186/s12934-020-01302-7. PubMed DOI PMC

Revuelta J.L., Buey R.M., Ledesma-Amaro R., Vandamme E.J. Microbial biotechnology for the synthesis of (pro)vitamins, biopigments and antioxidants: Challenges and opportunities. Microb. Biotechnol. 2016;9:564–567. doi: 10.1111/1751-7915.12379. PubMed DOI PMC

Perkins J.B., Sloma A., Hermann T., Theriault K., Zachgo E., Erdenberger T., Hannett N., Chatterjee N.P., Williams V., Rufo G.A., et al. Genetic engineering of Bacillus subtilis for the commercial production of riboflavin. J. Ind. Microbiol. Biotechnol. 1999;22:8–18. doi: 10.1038/sj.jim.2900587. DOI

Aguiar T.Q., Silva R., Domingues L. Ashbya gossypii beyond industrial riboflavin production: A historical perspective and emerging biotechnological applications. Biotechnol. Adv. 2015;33:1774–1786. doi: 10.1016/j.biotechadv.2015.10.001. PubMed DOI

Man Z.W., Rao Z.M., Cheng Y.P., Yang T.W., Zhang X., Xu M.J., Xu Z.H. Enhanced riboflavin production by recombinant Bacillus subtilis RF1 through the optimization of agitation speed. World J. Microbiol. Biotechnol. 2014;30:661–667. doi: 10.1007/s11274-013-1492-0. PubMed DOI

Stahmann K.P., Revuelta J.L., Seulberger H. Three biotechnical processes using Ashbya gossypii, Candida famata, or Bacillus subtilis compete with chemical riboflavin production. Appl. Microbiol. Biotechnol. 2000;53:509–516. doi: 10.1007/s002530051649. PubMed DOI

Shi T., Wang Y., Wang Z., Wang G., Liu D., Fu J., Chen T., Zhao X. Deregulation of purine pathway in Bacillus subtilis and its use in riboflavin biosynthesis. Microb. Cell Fact. 2014;13:101. doi: 10.1186/s12934-014-0101-8. PubMed DOI PMC

Abbas C.A., Sibirny A.A. Genetic control of biosynthesis and transport of riboflavin and flavin nucleotides and construction of robust biotechnological producers. Microbiol. Mol. Biol. Rev. 2011;75:321–360. doi: 10.1128/MMBR.00030-10. PubMed DOI PMC

Wang G., Shi T., Chen T., Wang X., Wang Y., Liu D., Guo J., Fu J., Feng L., Wang Z., et al. Integrated whole-genome and transcriptome sequence analysis reveals the genetic characteristics of a riboflavin-overproducing Bacillus subtilis. Metab. Eng. 2018;48:138–149. doi: 10.1016/j.ymben.2018.05.022. PubMed DOI

Averianova L.A., Balabanova L.A., Son O.M., Podvolotskaya A.B., Tekutyeva L.A. Production of Vitamin B2 (Riboflavin) by Microorganisms: An Overview. Front. Bioeng. Biotechnol. 2020;8:570828. doi: 10.3389/fbioe.2020.570828. PubMed DOI PMC

Kato T., Park E.Y. Riboflavin production by Ashbya gossypii. Biotechnol. Lett. 2012;34:611–618. doi: 10.1007/s10529-011-0833-z. PubMed DOI

EU Commision E. Commission Directive 2006/125/EC of 5 December 2006 on Processed Cereal-Based Foods and Baby Foods for Infants and Young Children. [(accessed on 11 June 2021)]. Available online: https://eur-lex.europa.eu/eli/dir/2006/125/oj.

Levit R., Savoy de Giori G., de Moreno de LeBlanc A., LeBlanc J.G. Recent update on lactic acid bacteria producing riboflavin and folates: Application for food fortification and treatment of intestinal inflammation. J. Appl. Microbiol. 2021;130:1412–1424. doi: 10.1111/jam.14854. PubMed DOI

Capozzi V., Russo P., Duenas M.T., Lopez P., Spano G. Lactic acid bacteria producing B-group vitamins: A great potential for functional cereals products. Appl. Microbiol. Biotechnol. 2012;96:1383–1394. doi: 10.1007/s00253-012-4440-2. PubMed DOI

Thakur K., Tomar S.K., De S. Lactic acid bacteria as a cell factory for riboflavin production. Microb. Biotechnol. 2016;9:441–451. doi: 10.1111/1751-7915.12335. PubMed DOI PMC

LeBlanc J.G., Laino J.E., del Valle M.J., Vannini V., Van Sinderen D., Taranto M.P., de Valdez G.F., de Giori G.S., Sesma F. B-group vitamin production by lactic acid bacteria-current knowledge and potential applications. J. Appl. Microbiol. 2011;111:1297–1309. doi: 10.1111/j.1365-2672.2011.05157.x. PubMed DOI

LeBlanc J.G., Milani C., de Giori G.S., Sesma F., Van Sinderen D., Ventura M. Bacteria as vitamin suppliers to their host: A gut microbiota perspective. Curr. Opin. Biotechnol. 2013;24:160–168. doi: 10.1016/j.copbio.2012.08.005. PubMed DOI

Solopova A., Bottacini F., Venturi Degli Esposti E., Amaretti A., Raimondi S., Rossi M., Van Sinderen D. Riboflavin Biosynthesis and Overproduction by a Derivative of the Human Gut Commensal Bifidobacterium longum subsp. infantis ATCC 15697. Front. Microbiol. 2020;11:573335. doi: 10.3389/fmicb.2020.573335. PubMed DOI PMC

Burgess C.M., Smid E.J., Rutten G., van Sinderen D. A general method for selection of riboflavin-overproducing food grade micro-organisms. Microb. Cell Fact. 2006;5:24. doi: 10.1186/1475-2859-5-24. PubMed DOI PMC

del Valle M.J., Laiño J.E., de Giori G.S., LeBlanc J. Riboflavin producing lactic acid bacteria as a biotechnological strategy to obtain bio-enriched soymilk. Food Res. Int. 2014;62:1015–1019. doi: 10.1016/j.foodres.2014.05.029. DOI

Daniel H., Binninger E., Rehner G. Hydrolysis of FMN and FAD by alkaline phosphatase of the intestinal brush-border membrane. Int. J. Vitam. Nutr. Res. 1983;53:109–114. PubMed

LeBlanc J.G., Burgess C., Sesma F., de Giori G.S., van Sinderen D. Lactococcus lactis is capable of improving the riboflavin status in deficient rats. Br. J. Nutr. 2005;94:262–267. doi: 10.1079/BJN20051473. PubMed DOI

Kasper H. Vitamin absorption in the colon. Am. J. Proctol. 1970;21:341–345. PubMed

Iinuma S. Synthesis of riboflavin by intestinal bacteria. J. Vitam. 1955;1:6–13. doi: 10.5925/jnsv1954.1.2_6. PubMed DOI

Yonezawa A., Inui K. Novel riboflavin transporter family RFVT/SLC52: Identification, nomenclature, functional characterization and genetic diseases of RFVT/SLC52. Mol. Asp. Med. 2013;34:693–701. doi: 10.1016/j.mam.2012.07.014. PubMed DOI

Yonezawa A., Masuda S., Katsura T., Inui K. Identification and functional characterization of a novel human and rat riboflavin transporter, RFT1. Am. J. Physiol. Cell Physiol. 2008;295:C632–C641. doi: 10.1152/ajpcell.00019.2008. PubMed DOI

Yao Y., Yonezawa A., Yoshimatsu H., Masuda S., Katsura T., Inui K. Identification and comparative functional characterization of a new human riboflavin transporter hRFT3 expressed in the brain. J. Nutr. 2010;140:1220–1226. doi: 10.3945/jn.110.122911. PubMed DOI

Yamamoto S., Inoue K., Ohta K.Y., Fukatsu R., Maeda J.Y., Yoshida Y., Yuasa H. Identification and functional characterization of rat riboflavin transporter 2. J. Biochem. 2009;145:437–443. doi: 10.1093/jb/mvn181. PubMed DOI

Jaeger B., Bosch A.M. Clinical presentation and outcome of riboflavin transporter deficiency: Mini review after five years of experience. J. Inherit. Metab. Dis. 2016;39:559–564. doi: 10.1007/s10545-016-9924-2. PubMed DOI PMC

Barile M., Giancaspero T.A., Leone P., Galluccio M., Indiveri C. Riboflavin transport and metabolism in humans. J. Inherit. Metab. Dis. 2016;39:545–557. doi: 10.1007/s10545-016-9950-0. PubMed DOI

Hustad S., McKinley M.C., McNulty H., Schneede J., Strain J.J., Scott J.M., Ueland P.M. Riboflavin, flavin mononucleotide, and flavin adenine dinucleotide in human plasma and erythrocytes at baseline and after low-dose riboflavin supplementation. Clin. Chem. 2002;48:1571–1577. doi: 10.1093/clinchem/48.9.1571. PubMed DOI

Frago S., Martinez-Julvez M., Serrano A., Medina M. Structural analysis of FAD synthetase from Corynebacterium ammoniagenes. BMC Microbiol. 2008;8:160. doi: 10.1186/1471-2180-8-160. PubMed DOI PMC

Herguedas B., Martinez-Julvez M., Frago S., Medina M., Hermoso J.A. Oligomeric state in the crystal structure of modular FAD synthetase provides insights into its sequential catalysis in prokaryotes. J. Mol. Biol. 2010;400:218–230. doi: 10.1016/j.jmb.2010.05.018. PubMed DOI

Barile M., Giancaspero T.A., Brizio C., Panebianco C., Indiveri C., Galluccio M., Vergani L., Eberini I., Gianazza E. Biosynthesis of flavin cofactors in man: Implications in health and disease. Curr. Pharm. Des. 2013;19:2649–2675. doi: 10.2174/1381612811319140014. PubMed DOI

Serrano A., Ferreira P., Martinez-Julvez M., Medina M. The prokaryotic FAD synthetase family: A potential drug target. Curr. Pharm. Des. 2013;19:2637–2648. doi: 10.2174/1381612811319140013. PubMed DOI

Chastain J.L., McCormick D.B. Flavin catabolites: Identification and quantitation in human urine. Am. J. Clin. Nutr. 1987;46:830–834. doi: 10.1093/ajcn/46.5.830. PubMed DOI

Lienhart W.D., Gudipati V., Macheroux P. The human flavoproteome. Arch. Biochem. Biophys. 2013;535:150–162. doi: 10.1016/j.abb.2013.02.015. PubMed DOI PMC

Macheroux P., Kappes B., Ealick S.E. Flavogenomics–A genomic and structural view of flavin-dependent proteins. FEBS J. 2011;278:2625–2634. doi: 10.1111/j.1742-4658.2011.08202.x. PubMed DOI

Singal A.K., Anderson K.E. Variegate Porphyria. In: Adam M.P., Ardinger H.H., Pagon R.A., Wallace S.E., Bean L.J.H., Mirzaa G., Amemiya A., editors. GeneReviews®. University of Washington; Seattle, WA, USA: 1993. PubMed

Musayev F.N., Di Salvo M.L., Saavedra M.A., Contestabile R., Ghatge M.S., Haynes A., Schirch V., Safo M.K. Molecular basis of reduced pyridoxine 5′-phosphate oxidase catalytic activity in neonatal epileptic encephalopathy disorder. J. Biol. Chem. 2009;284:30949–30956. doi: 10.1074/jbc.M109.038372. PubMed DOI PMC

Manoj N., Ealick S.E. Unusual space-group pseudosymmetry in crystals of human phosphopantothenoylcysteine decarboxylase. Acta Cryst. D Biol. Cryst. 2003;59:1762–1766. doi: 10.1107/S0907444903016214. PubMed DOI

Di Meo I., Carecchio M., Tiranti V. Inborn errors of coenzyme A metabolism and neurodegeneration. J. Inherit. Metab. Dis. 2019;42:49–56. doi: 10.1002/jimd.12026. PubMed DOI

Heeringa S.F., Chernin G., Chaki M., Zhou W., Sloan A.J., Ji Z., Xie L.X., Salviati L., Hurd T.W., Vega-Warner V., et al. COQ6 mutations in human patients produce nephrotic syndrome with sensorineural deafness. J. Clin. Investig. 2011;121:2013–2024. doi: 10.1172/JCI45693. PubMed DOI PMC

Acosta M.J., Vazquez Fonseca L., Desbats M.A., Cerqua C., Zordan R., Trevisson E., Salviati L. Coenzyme Q biosynthesis in health and disease. Biochim. Biophys. Acta. 2016;1857:1079–1085. doi: 10.1016/j.bbabio.2016.03.036. PubMed DOI

Cao Q., Li G.M., Xu H., Shen Q., Sun L., Fang X.Y., Liu H.M., Guo W., Zhai Y.H., Wu B.B. Coenzyme Q(10) treatment for one child with COQ6 gene mutation induced nephrotic syndrome and literature review. Zhonghua Er Ke Za Zhi. 2017;55:135–138. doi: 10.3760/cma.j.issn.0578-1310.2017.02.016. PubMed DOI

Afink G., Kulik W., Overmars H., de Randamie J., Veenboer T., van Cruchten A., Craen M., Ris-Stalpers C. Molecular characterization of iodotyrosine dehalogenase deficiency in patients with hypothyroidism. J. Clin. Endocrinol. Metab. 2008;93:4894–4901. doi: 10.1210/jc.2008-0865. PubMed DOI

Friedman J.E., Watson J.A., Jr., Lam D.W., Rokita S.E. Iodotyrosine deiodinase is the first mammalian member of the NADH oxidase/flavin reductase superfamily. J. Biol. Chem. 2006;281:2812–2819. doi: 10.1074/jbc.M510365200. PubMed DOI

Moreno J.C., Klootwijk W., Van Toor H., Pinto G., D’Alessandro M., Leger A., Goudie D., Polak M., Gruters A., Visser T.J. Mutations in the iodotyrosine deiodinase gene and hypothyroidism. N. Engl. J. Med. 2008;358:1811–1818. doi: 10.1056/NEJMoa0706819. PubMed DOI

O’Brien M.M., Kiely M., Harrington K.E., Robson P.J., Strain J.J., Flynn A. The North/South Ireland Food Consumption Survey: Vitamin intakes in 18–64-year-old adults. Public Health Nutr. 2001;4:1069–1079. doi: 10.1079/PHN2001188. PubMed DOI

Thakur K., Tomar S.K., Singh A.K., Mandal S., Arora S. Riboflavin and health: A review of recent human research. Crit. Rev. Food Sci. Nutr. 2017;57:3650–3660. doi: 10.1080/10408398.2016.1145104. PubMed DOI

Hoppel C.L., Tandler B. Riboflavin and mouse hepatic cell structure and function. Mitochondrial oxidative metabolism in severe deficiency states. J. Nutr. 1975;105:562–570. doi: 10.1093/jn/105.5.562. PubMed DOI

Mushtaq S., Su H., Hill M.H., Powers H.J. Erythrocyte pyridoxamine phosphate oxidase activity: A potential biomarker of riboflavin status? Am. J. Clin. Nutr. 2009;90:1151–1159. doi: 10.3945/ajcn.2009.28338. PubMed DOI

Grunert S.C. Clinical and genetical heterogeneity of late-onset multiple acyl-coenzyme A dehydrogenase deficiency. Orphanet J. Rare Dis. 2014;9:117. doi: 10.1186/s13023-014-0117-5. PubMed DOI PMC

Balasubramaniam S., Christodoulou J., Rahman S. Disorders of riboflavin metabolism. J. Inherit. Metab. Dis. 2019;42:608–619. doi: 10.1002/jimd.12058. PubMed DOI

O’Callaghan B., Bosch A.M., Houlden H. An update on the genetics, clinical presentation, and pathomechanisms of human riboflavin transporter deficiency. J. Inherit. Metab. Dis. 2019;42:598–607. doi: 10.1002/jimd.12053. PubMed DOI

Hellebrekers D., Sallevelt S., Theunissen T.E.J., Hendrickx A.T.M., Gottschalk R.W., Hoeijmakers J.G.J., Habets D.D., Bierau J., Schoonderwoerd K.G., Smeets H.J.M. Novel SLC25A32 mutation in a patient with a severe neuromuscular phenotype. Eur. J. Hum. Genet. 2017;25:886–888. doi: 10.1038/ejhg.2017.62. PubMed DOI PMC

Schiff M., Veauville-Merllie A., Su C.H., Tzagoloff A., Rak M., Ogier de Baulny H., Boutron A., Smedts-Walters H., Romero N.B., Rigal O., et al. SLC25A32 Mutations and Riboflavin-Responsive Exercise Intolerance. N. Engl. J. Med. 2016;374:795–797. doi: 10.1056/NEJMc1513610. PubMed DOI PMC

Thompson D.F., Saluja H.S. Prophylaxis of migraine headaches with riboflavin: A systematic review. J. Clin. Pharmacol. Ther. 2017;42:394–403. doi: 10.1111/jcpt.12548. PubMed DOI

Namazi N., Heshmati J., Tarighat-Esfanjani A. Supplementation with Riboflavin (Vitamin B2) for Migraine Prophylaxis in Adults and Children: A Review. Int. J. Vitam. Nutr. Res. 2015;85:79–87. doi: 10.1024/0300-9831/a000225. PubMed DOI

Tripathi A.K., Dwivedi A., Pal M.K., Rastogi N., Gupta P., Ali S., Prabhu M.B., Kushwaha H.N., Ray R.S., Singh S.K., et al. Attenuated neuroprotective effect of riboflavin under UV-B irradiation via miR-203/c-Jun signaling pathway in vivo and in vitro. J. Biomed. Sci. 2014;21:39. doi: 10.1186/1423-0127-21-39. PubMed DOI PMC

Barbre A.B., Hoane M.R. Magnesium and riboflavin combination therapy following cortical contusion injury in the rat. Brain Res. Bull. 2006;69:639–646. doi: 10.1016/j.brainresbull.2006.03.009. PubMed DOI

Seekamp A., Hultquist D.E., Till G.O. Protection by vitamin B2 against oxidant-mediated acute lung injury. Inflammation. 1999;23:449–460. doi: 10.1023/A:1021965026580. PubMed DOI

Mack C.P., Hultquist D.E., Shlafer M. Myocardial flavin reductase and riboflavin: A potential role in decreasing reoxygenation injury. Biochem. Biophys. Res. Commun. 1995;212:35–40. doi: 10.1006/bbrc.1995.1932. PubMed DOI

Suwannasom N., Kao I., Pruss A., Georgieva R., Baumler H. Riboflavin: The Health Benefits of a Forgotten Natural Vitamin. Int. J. Mol. Sci. 2020;21:950. doi: 10.3390/ijms21030950. PubMed DOI PMC

George B.O., Ojegbemi O. Oxidative stress and the effect of riboflavin supplementation in individuals with uncomplicated malaria infection. Afr. J. Biotechnol. 2009;8:849–853.

Akompong T., Ghori N., Haldar K. In vitro activity of riboflavin against the human malaria parasite Plasmodium falciparum. Antimicrob. Agents Chemother. 2000;44:88–96. doi: 10.1128/AAC.44.1.88-96.2000. PubMed DOI PMC

Araki S., Suzuki M., Fujimoto M., Kimura M. Enhancement of resistance to bacterial infection in mice by vitamin B2. J. Vet. Med. Sci. 1995;57:599–602. doi: 10.1292/jvms.57.599. PubMed DOI

Mazur-Bialy A.I., Buchala B., Plytycz B. Riboflavin deprivation inhibits macrophage viability and activity-a study on the RAW 264.7 cell line. Br. J. Nutr. 2013;110:509–514. doi: 10.1017/S0007114512005351. PubMed DOI

Bertollo C.M., Oliveira A.C., Rocha L.T., Costa K.A., Nascimento E.B., Jr., Coelho M.M. Characterization of the antinociceptive and anti-inflammatory activities of riboflavin in different experimental models. Eur. J. Pharmacol. 2006;547:184–191. doi: 10.1016/j.ejphar.2006.07.045. PubMed DOI

Buehler B.A. Vitamin B2: Riboflavin. J. Evid. Based Integr. Med. 2011;16:88–90. doi: 10.1177/1533210110392943. DOI

Mazzotta C., Caragiuli S., Caporossi A. Riboflavin and the Cornea and Implications for Cataracts. In: Preedy V.R., editor. Handbook of Nutrition, Diet and the Eye. Academic Press; Cambridge, MA, USA: 2014. pp. 123–130.

Chocano-Bedoya P.O., Manson J.E., Hankinson S.E., Willett W.C., Johnson S.R., Chasan-Taber L., Ronnenberg A.G., Bigelow C., Bertone-Johnson E.R. Dietary B vitamin intake and incident premenstrual syndrome. Am. J. Clin. Nutr. 2011;93:1080–1086. doi: 10.3945/ajcn.110.009530. PubMed DOI PMC

Alam M.M., Iqbal S., Naseem I. Ameliorative effect of riboflavin on hyperglycemia, oxidative stress and DNA damage in type-2 diabetic mice: Mechanistic and therapeutic strategies. Arch. Biochem. Biophys. 2015;584:10–19. doi: 10.1016/j.abb.2015.08.013. PubMed DOI

Schoenen J., Lenaerts M., Bastings E. High-dose riboflavin as a prophylactic treatment of migraine: Results of an open pilot study. Cephalalgia. 1994;14:328–329. doi: 10.1046/j.1468-2982.1994.1405328.x. PubMed DOI

MacLennan S.C., Wade F.M., Forrest K.M., Ratanayake P.D., Fagan E., Antony J. High-dose riboflavin for migraine prophylaxis in children: A double-blind, randomized, placebo-controlled trial. J. Child Neurol. 2008;23:1300–1304. doi: 10.1177/0883073808318053. PubMed DOI

Pinto J.T., Rivlin R.S. Drugs that promote renal excretion of riboflavin. Drug Nutr. Interact. 1987;5:143–151. PubMed

Pinto J., Huang Y.P., McConnell R.J., Rivlin R.S. Increased urinary riboflavin excretion resulting from boric acid ingestion. J. Lab. Clin. Med. 1978;92:126–134. PubMed

Ogura R., Ueta H., Hino Y., Hidaka T., Sugiyama M. Riboflavin deficiency caused by treatment with adriamycin. J. Nutr. Sci. Vitam. 1991;37:473–477. doi: 10.3177/jnsv.37.473. PubMed DOI

Pinto J.T., Delman B.N., Dutta P., Nisselbaum J. Adriamycin-induced increase in serum aldosterone levels: Effects in riboflavin-sufficient and riboflavin-deficient rats. Endocrinology. 1990;127:1495–1501. doi: 10.1210/endo-127-3-1495. PubMed DOI

Pinto J., Wolinsky M., Rivlin R.S. Chlorpromazine antagonism of thyroxine-induced flavin formation. Biochem. Pharmacol. 1979;28:597–600. doi: 10.1016/0006-2952(79)90141-2. PubMed DOI

Rivlin R.S., Langdon R.G. Effects of thyroxine upon biosynthesis of flavin mononucleotide and flavin adenine dinucleotide. Endocrinology. 1969;84:584–588. doi: 10.1210/endo-84-3-584. PubMed DOI

Pinto J., Huang Y.P., Rivlin R.S. Inhibition of riboflavin metabolism in rat tissues by chlorpromazine, imipramine, and amitriptyline. J. Clin. Investig. 1981;67:1500–1506. doi: 10.1172/JCI110180. PubMed DOI PMC

Rivlin R.S., Menendez C., Langdon R.G. Biochemical similarities between hypothyroidism and riboflavin deficiency. Endocrinology. 1968;83:461–469. doi: 10.1210/endo-83-3-461. PubMed DOI

Pelliccione N., Pinto J., Huang Y.P., Rivlin R.S. Accelerated development of riboflavin deficiency by treatment with chlorpromazine. Biochem. Pharmacol. 1983;32:2949–2953. doi: 10.1016/0006-2952(83)90401-X. PubMed DOI

Lee S.S., McCormick D.B. Thyroid hormone regulation of flavocoenzyme biosynthesis. Arch. Biochem. Biophys. 1985;237:197–201. doi: 10.1016/0003-9861(85)90269-3. PubMed DOI

Pinto J., Huang Y.P., Pelliccione N., Rivlin R.S. Cardiac sensitivity to the inhibitory effects of chlorpromazine, imipramine and amitriptyline upon formation of flavins. Biochem. Pharmacol. 1982;31:3495–3499. doi: 10.1016/0006-2952(82)90632-3. PubMed DOI

Institute of Medicine (US) Standing Committee on the Scientific Evaluation of Dietary Reference Intakes and its Panel on Folate, Other B Vitamins, and Choline . Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline. National Academies Press; Washington, DC, USA: 1998. PubMed

Ross A.C., Caballero B., Cousins R.J., Tucker K.L., Ziegler T.R. Modern Nutrition in Health and Disease. 11th ed. Wolters Kluwer Health Adis; Philadelphia, PA, USA: 2012. pp. 1–1616.

Erdman J.W., Jr., MacDonald I.A., Zeisel S.H., Penberthy WT K.J. Present Knowledge in Nutrition. 10th ed. John Wiley & Sons, Inc.; Hoboken, NJ, USA: 2012. pp. 293–306.

Berry Ottaway P. Stability of vitamins during food processing and storage. In: Skibsted L.H., Risbo J., Andersen M.L., editors. Chemical Deterioration and Physical Instability of Food and Beverages. Woodhead Publishing; Cambridge, UK: 2010.

World Health Organization . Pellagra and Its Prevention and Control in Major Emergencies. World Health Organization; Geneva, Switzerland: 2000.

Bhalla T.C. Vitamin B3, Niacin. In: Vandamme E.J., Revuelta J.L., editors. Industrial Biotechnology of Vitamins, Biopigments, and Antioxidants. John Wiley & Sons, Inc.; Hoboken, NJ, USA: 2016.

Allen L., Benoist B., Dary O., Hurrell R. WHO/FAO Guidelines on Food Fortification with Micronutrients. World Health Organization; Geneva, Switzerland: 2006.

Gazzaniga F., Stebbins R., Chang S.Z., McPeek M.A., Brenner C. Microbial NAD metabolism: Lessons from comparative genomics. Microbiol. Mol. Biol. Rev. 2009;73:529–541. doi: 10.1128/MMBR.00042-08. PubMed DOI PMC

Li Y.F., Bao W.G. Why do some yeast species require niacin for growth? Different modes of NAD synthesis. FEMS Yeast Res. 2007;7:657–664. doi: 10.1111/j.1567-1364.2007.00231.x. PubMed DOI

Kurnasov O., Goral V., Colabroy K., Gerdes S., Anantha S., Osterman A., Begley T.P. NAD biosynthesis: Identification of the tryptophan to quinolinate pathway in bacteria. Chem. Biol. 2003;10:1195–1204. doi: 10.1016/j.chembiol.2003.11.011. PubMed DOI

Noctor G., Hager J., Li S. Biosynthesis of NAD and Its Manipulation in Plants. In: Rébeillé F., Douce R., editors. Advances in Botanical Research. Volume 58. Academic Press; Cambridge, MA, USA: 2011. pp. 153–201.

Magnusdottir S., Ravcheev D., de Crecy-Lagard V., Thiele I. Systematic genome assessment of B-vitamin biosynthesis suggests co-operation among gut microbes. Front. Genet. 2015;6:148. doi: 10.3389/fgene.2015.00148. PubMed DOI PMC

Kirkland J.B., Meyer-Ficca M.L. Chapter Three-Niacin. Adv. Food. Nutr. Res. 2018;83:83–149. doi: 10.1016/bs.afnr.2017.11.003. PubMed DOI

Bauer J.E. Nutritional uniqueness of cats. Vet. Q. 1998;20:S78–S79. doi: 10.1080/01652176.1998.10807428. PubMed DOI

Reeds P.J. Dispensable and indispensable amino acids for humans. J. Nutr. 2000;130:1835S–1840S. doi: 10.1093/jn/130.7.1835S. PubMed DOI

Shibata K. Organ Co-Relationship in Tryptophan Metabolism and Factors That Govern the Biosynthesis of Nicotinamide from Tryptophan. J. Nutr. Sci. Vitam. 2018;64:90–98. doi: 10.3177/jnsv.64.90. PubMed DOI

Gasperi V., Sibilano M., Savini I., Catani M.V. Niacin in the Central Nervous System: An Update of Biological Aspects and Clinical Applications. Int. J. Mol. Sci. 2019;20:428. doi: 10.3390/ijms20040974. PubMed DOI PMC

Murray M.F. Tryptophan depletion and HIV infection: A metabolic link to pathogenesis. Lancet Infect. Dis. 2003;3:644–652. doi: 10.1016/S1473-3099(03)00773-4. PubMed DOI

Fukuwatari T., Shibata K. Nutritional aspect of tryptophan metabolism. Int. J. Tryptophan Res. 2013;6:3–8. doi: 10.4137/IJTR.S11588. PubMed DOI PMC

Meir Z., Osherov N. Vitamin Biosynthesis as an Antifungal Target. J. Fungi. 2018;4:72. doi: 10.3390/jof4020072. PubMed DOI PMC

EFSA Dietary Reference Values for Nutrients Summary report. EFSA Support. Publ. 2017;14:e15121. doi: 10.2903/sp.efsa.2017.e15121. DOI

Food and Drug Administration Converting Units of Measure for Folate, Niacin, and Vitamins A, D, and E on the Nutrition and Supplement Facts Labels: Guidance for Industry. [(accessed on 10 July 2021)]; Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/guidance-industry-converting-units-measure-folate-niacin-and-vitamins-d-and-e-nutrition-and.

Fukuwatari T., Ohta M., Kimtjra N., Sasaki R., Shibata K. Conversion ratio of tryptophan to niacin in Japanese women fed a purified diet conforming to the Japanese Dietary Reference Intakes. J. Nutr. Sci. Vitam. 2004;50:385–391. doi: 10.3177/jnsv.50.385. PubMed DOI

Combs G.F., McClung J.P., editors. The Vitamins. Academic Press; Cambridge, MA, USA: 2017. Niacin; pp. 331–350.

Lanska D.J. The discovery of niacin, biotin, and pantothenic acid. Ann. Nutr. Metab. 2012;61:246–253. doi: 10.1159/000343115. PubMed DOI

Henderson L.M., Koski R.E., D’Angeli F. The role of riboflavin and vitamin B6 in tryptophan metabolism. J. Biol. Chem. 1955;215:369–376. doi: 10.1016/S0021-9258(18)66045-4. PubMed DOI

Shibata K., Mushiage M., Kondo T., Hayakawa T., Tsuge H. Effects of vitamin B6 deficiency on the conversion ratio of tryptophan to niacin. Biosci. Biotechnol. Biochem. 1995;59:2060–2063. doi: 10.1271/bbb.59.2060. PubMed DOI

Shibata K., Kobayashi R., Fukuwatari T. Vitamin B1 deficiency inhibits the increased conversion of tryptophan to nicotinamide in severe food-restricted rats. Biosci. Biotechnol. Biochem. 2015;79:103–108. doi: 10.1080/09168451.2014.962473. PubMed DOI

Fukuwatari T., Shibata K. Effect of nicotinamide administration on the tryptophan-nicotinamide pathway in humans. Int. J. Vitam. Nutr. Res. 2007;77:255–262. doi: 10.1024/0300-9831.77.4.255. PubMed DOI

Lule V.K., Garg S., Gosewade S.C., Tomar S.K., Khedkar C.D. Niacin. In: Caballero B., Finglas P.M., Toldrá F., editors. Encyclopedia of Food and Health. Academic Press; Cambridge, MA, USA: 2016. pp. 63–72.

Wall J.S., Carpenter K.J. Variation in Availability of Niacin in Grain Products. Food Technol. 1988;42:198.

Blum R. Ullmann’s Encyclopedia of Industrial Chemistry. John Wiley & Sons, Inc.; Hoboken, NJ, USA: 2020. Vitamins, 8. Vitamin B3 (Niacin) pp. 1–9.

EFSA Scientific opinion on dietary reference values for niacin. EFSA J. 2014;12:3759. doi: 10.2903/j.efsa.2014.3759. DOI

Chawla J., Kvarnberg D. Chapter 59—Hydrosoluble vitamins. In: Biller J., Ferro J.M., editors. Handbook of Clinical Neurology. Volume 120. Elsevier; Amsterdam, The Netherlands: 2014. pp. 891–914. PubMed

Raman J., Jang K.Y., Oh Y.L., Oh M., Im J.H., Lakshmanan H., Sabaratnam V. Cultivation and Nutritional Value of Prominent Pleurotus spp.: An Overview. Mycobiology. 2020;49:1–14. doi: 10.1080/12298093.2020.1835142. PubMed DOI PMC

Kumar K. Nutraceutical Potential and Processing Aspects of Oyster Mushrooms (Pleurotus Species) Curr. Nutr. Food Sci. 2020;16:3–14. doi: 10.2174/1573401314666181015111724. DOI

Çatak J., Yaman M. Determination of Nicotinic Acid and Nicotinamide Forms of Vitamin B3 (Niacin) in Fruits and Vegetables by HPLC Using Postcolumn Derivatization System. Pak. J. Nutr. 2019;18:563–570. doi: 10.3923/pjn.2019.563.570. DOI

Prousky J., Millman C.G., Kirkland J.B. Pharmacologic Use of Niacin. J. Evid. Based Integr. Med. 2011;16:91–101. doi: 10.1177/2156587211399579. DOI

Angelino D., Tassotti M., Brighenti F., Del Rio D., Mena P. Niacin, alkaloids and (poly)phenolic compounds in the most widespread Italian capsule-brewed coffees. Sci. Rep. 2018;8:17874. doi: 10.1038/s41598-018-36291-6. PubMed DOI PMC

Lang R., Yagar E.F., Eggers R., Hofmann T. Quantitative investigation of trigonelline, nicotinic acid, and nicotinamide in foods, urine, and plasma by means of LC-MS/MS and stable isotope dilution analysis. J. Agric. Food Chem. 2008;56:11114–11121. doi: 10.1021/jf802838s. PubMed DOI

Carvalho A. Variability of the Niacin Content in Coffee. Nature. 1962;194:1096. doi: 10.1038/1941096a0. DOI

Stadler R.H., Varga N., Hau J., Vera F.A., Welti D.H. Alkylpyridiniums. 1. Formation in model systems via thermal degradation of trigonelline. J. Agric. Food Chem. 2002;50:1192–1199. doi: 10.1021/jf011234k. PubMed DOI

Kremer J.I., Gompel K., Bakuradze T., Eisenbrand G., Richling E. Urinary Excretion of Niacin Metabolites in Humans After Coffee Consumption. Mol. Nutr. Food Res. 2018;62:e1700735. doi: 10.1002/mnfr.201700735. PubMed DOI PMC

Ghafoorunissa, Rao B.S. Effect of leucine on enzymes of the tryptophan-niacin metabolic pathway in rat liver and kidney. Biochem. J. 1973;134:425–430. doi: 10.1042/bj1340425. PubMed DOI PMC

Badawy A.A., Lake S.L., Dougherty D.M. Mechanisms of the pellagragenic effect of leucine: Stimulation of hepatic tryptophan oxidation by administration of branched-chain amino acids to healthy human volunteers and the role of plasma free tryptophan and total kynurenines. Int. J. Tryptophan Res. 2014;7:23–32. doi: 10.4137/IJTR.S18231. PubMed DOI PMC

Badawy A.A. Kynurenine Pathway of Tryptophan Metabolism: Regulatory and Functional Aspects. Int. J. Tryptophan Res. 2017;10:1178646917691938. doi: 10.1177/1178646917691938. PubMed DOI PMC

Katz S.H., Hediger M.L., Valleroy L.A. Traditional maize processing techniques in the new world. Science. 1974;184:765–773. doi: 10.1126/science.184.4138.765. PubMed DOI

Bender D.A. Effects of a dietary excess of leucine on the metabolism of tryptophan in the rat: A mechanism for the pellagragenic action of leucine. Br. J. Nutr. 1983;50:25–32. doi: 10.1079/BJN19830068. PubMed DOI

Salter M., Bender D.A., Pogson C.I. Leucine and tryptophan metabolism in rats. Biochem. J. 1985;225:277–281. doi: 10.1042/bj2250277. PubMed DOI PMC

Bates C.J. Niacin and Pellagra. In: Caballero B., editor. Encyclopedia of Human Nutrition. Academic Press; Cambridge, MA, USA: 2013. pp. 182–188.

Cook N.E., Carpenter K.J. Leucine excess and niacin status in rats. J. Nutr. 1987;117:519–526. doi: 10.1093/jn/117.3.519. PubMed DOI

Manson J.A., Carpenter K.J. The effect of a high level of dietary leucine on the niacin status of dogs. J. Nutr. 1978;108:1889–1898. doi: 10.1093/jn/108.12.1889. PubMed DOI

Hegedus M., Pedersen B., Eggum B.O. The influence of milling on the nutritive value of flour from cereal grains. 7. Vitamins and tryptophan. Plant Foods Hum. Nutr. 1985;35:175–180. doi: 10.1007/BF01092134. DOI

Chamlagain B., Rautio S., Edelmann M., Ollilainen V., Piironen V. Niacin contents of cereal-milling products in food-composition databases need to be updated. J. Food Compos. Anal. 2020;91:103518. doi: 10.1016/j.jfca.2020.103518. DOI

Çatak J. Determination of niacin profiles in some animal and plant based foods by high performance liquid chromatography: Association with healthy nutrition. J. Anim. Sci. Technol. 2019;61:138–146. doi: 10.5187/jast.2019.61.3.138. PubMed DOI PMC

Saleh A.S.M., Wang P., Wang N., Yang L., Xiao Z. Brown Rice Versus White Rice: Nutritional Quality, Potential Health Benefits, Development of Food Products, and Preservation Technologies. Compr. Rev. Food Sci. Food Saf. 2019;18:1070–1096. doi: 10.1111/1541-4337.12449. PubMed DOI

Adebo O.A. African Sorghum-Based Fermented Foods: Past, Current and Future Prospects. Nutrients. 2020;12:1111. doi: 10.3390/nu12041111. PubMed DOI PMC

Wyness L. The role of red meat in the diet: Nutrition and health benefits. Proc. Nutr. Soc. 2016;75:227–232. doi: 10.1017/S0029665115004267. PubMed DOI

Feeney M.J., Dwyer J., Hasler-Lewis C.M., Milner J.A., Noakes M., Rowe S., Wach M., Beelman R.B., Caldwell J., Cantorna M.T., et al. Mushrooms and Health Summit proceedings. J. Nutr. 2014;144:1128S–1136S. doi: 10.3945/jn.114.190728. PubMed DOI PMC

Muehlhoff E., Bennett A., McMahon D. Milk and Dairy Products in Human Nutrition. FAO; Rome, Italy: 2013.

Biesalksi H.K., Back E.I. VITAMINS|Niacin, Nutritional Significance. In: Roginski H., editor. Encyclopedia of Dairy Sciences. Elsevier; Amsterdam, The Netherlands: 2002. pp. 2703–2707.

Satya S., Kaushik G., Naik S.N. Processing of food legumes: A boon to human nutrition. Med. J. Nutr. Metab. 2010;3:183–195. doi: 10.3233/s12349-010-0017-8. DOI

Sobral M.M.C., Cunha S.C., Faria M.A., Ferreira I.M. Domestic Cooking of Muscle Foods: Impact on Composition of Nutrients and Contaminants. Compr. Rev. Food Sci. Food Saf. 2018;17:309–333. doi: 10.1111/1541-4337.12327. PubMed DOI

Pinheiro-Sant’Ana H.M., Penteado M.V.C., Stringheta P.C., Chaves J.B.P. Stability of B-Vitamins in Meats Prepared by Foodservice. 3. Nicotinic Acid. Foodserv. Res. Int. 1999;11:69–82. doi: 10.1111/j.1745-4506.1999.tb00239.x. DOI

Meyer B.H., Hinman W.F., Halliday E.G. Retention of some vitamins of the B-complex in beef during cooking. Food Res. 1947;12:203–211. doi: 10.1111/j.1365-2621.1947.tb16411.x. PubMed DOI

Kilcast D. Effect of Irradiation on Vitamins. Food Chem. 1994;49:157–164. doi: 10.1016/0308-8146(94)90152-X. DOI

Yaman M., Catak J., Ugur H., Gurbuz M., Belli I., Tanyildiz S.N., Yildirim H., Cengiz S., Yavuz B.B., Kismiroglu C., et al. The bioaccessibility of water-soluble vitamins: A review. Trends Food Sci. Technol. 2021;109:552–563. doi: 10.1016/j.tifs.2021.01.056. DOI

Akça S.N., Sargın H.S., Mızrak Ö.F., Yaman M. Determination and assessment of the bioaccessibility of vitamins B1, B2, and B3 in commercially available cereal-based baby foods. Microchem. J. 2019;150:104192. doi: 10.1016/j.microc.2019.104192. DOI

Gregory J.F., 3rd Accounting for differences in the bioactivity and bioavailability of vitamers. Food Nutr. Res. 2012;56 doi: 10.3402/fnr.v56i0.5809. PubMed DOI PMC

Zaupa M., Scazzina F., Dall’Asta M., Calani L., Del Rio D., Bianchi M.A., Melegari C., De Albertis P., Tribuzio G., Pellegrini N., et al. In vitro bioaccessibility of phenolics and vitamins from durum wheat aleurone fractions. J. Agric. Food Chem. 2014;62:1543–1549. doi: 10.1021/jf404522a. PubMed DOI

Carter E.G., Carpenter K.J. The bioavailability for humans of bound niacin from wheat bran. Am. J. Clin. Nutr. 1982;36:855–861. doi: 10.1093/ajcn/36.5.855. PubMed DOI

Harper A.E., Punekar B.D., Elvehjem C.A. Effect of alkali treatment on the availability of niacin and amino acids in maize. J. Nutr. 1958;66:163–172. doi: 10.1093/jn/66.2.163. PubMed DOI

Carpenter K.J. The relationship of pellagra to corn and the low availability of niacin in cereals. Experientia Suppl. 1983;44:197–222. doi: 10.1007/978-3-0348-6540-1_12. PubMed DOI

Kodicek E., Braude R., Kon S.K., Mitchell K.G. The availability to pigs of nicotinic acid in tortilla baked from maize treated with lime-water. Br. J. Nutr. 1959;13:363–384. doi: 10.1079/BJN19590047. PubMed DOI

Kodicek E., Braude R., Kon S.K., Mitchell K.G. The effect of alkaline hydrolysis of maize on the availability of its nicotinic acid to the pig. Br. J. Nutr. 1956;10:51–67. doi: 10.1079/BJN19560010. PubMed DOI

Wacher C. Nixtamalization, a Mesoamerican technology to process maize at small-scale with great potential for improving the nutritional quality of maize based foods; Proceedings of the Food-Based Approaches for a Healthy Nutrition; Ouagadougou, Burkina Faso. 1 January 2003; pp. 735–743.

Escalante-Aburto A., Mariscal-Moreno R.M., Santiago-Ramos D., Ponce-García N. An Update of Different Nixtamalization Technologies, and Its Effects on Chemical Composition and Nutritional Value of Corn Tortillas. Food Rev. Int. 2020;36:456–498. doi: 10.1080/87559129.2019.1649693. DOI

Salazar R., Arambula-Villa G., Luna-Barcenas G., Figueroa-Cardenas J.D., Azuara E., Vazquez-Landaverde P.A. Effect of added calcium hydroxide during corn nixtamalization on acrylamide content in tortilla chips. LWT Food Sci. Technol. 2014;56:87–92. doi: 10.1016/j.lwt.2013.10.046. DOI

Maureen N., Kaaya A.N., Kauffman J., Narrod C., Atukwase A. Enhancing Nutritional Benefits and Reducing Mycotoxin Contamination of Maize through Nixtamalization. J. Biol. Sci. 2020;20:153–162. doi: 10.3923/jbs.2020.153.162. DOI

Sefa-Dedeh S., Cornelius B., Sakyi-Dawson E., Afoakwa E.O. Effect of nixtamalization on the chemical and functional properties of maize. Food Chem. 2004;86:317–324. doi: 10.1016/j.foodchem.2003.08.033. DOI

Kamau E.H., Nkhata S.G., Ayua E.O. Extrusion and nixtamalization conditions influence the magnitude of change in the nutrients and bioactive components of cereals and legumes. Food Sci. Nutr. 2020;8:1753–1765. doi: 10.1002/fsn3.1473. PubMed DOI PMC

de la Parra C., Saldivar S.O., Liu R.H. Effect of processing on the phytochemical profiles and antioxidant activity of corn for production of masa, tortillas, and tortilla chips. J. Agric. Food Chem. 2007;55:4177–4183. doi: 10.1021/jf063487p. PubMed DOI

Schaarschmidt S., Fauhl-Hassek C. Mycotoxins during the Processes of Nixtamalization and Tortilla Production. Toxins. 2019;11:227. doi: 10.3390/toxins11040227. PubMed DOI PMC

FAO . Maize in Human Nutrition. Food and Agriculture Organization of the United Nations; Rome, Italy: 1992. PubMed

Bressani R., Paz y Paz R., Scrimshaw N.S. Corn Nutrient Losses, Chemical Changes in Corn during Preparation of Tortillas. J. Agric. Food Chem. 1958;6:770–774. doi: 10.1021/jf60092a009. DOI

Carter E.G., Carpenter K.J. The available niacin values of foods for rats and their relation to analytical values. J. Nutr. 1982;112:2091–2103. doi: 10.1093/jn/112.11.2091. PubMed DOI

Dunn M.L., Jain V., Klein B.P. Stability of key micronutrients added to fortified maize flours and corn meal. Ann. N. Y. Acad. Sci. 2014;1312:15–25. doi: 10.1111/nyas.12310. PubMed DOI

Laguna J., Carpenter K.J. Raw versus processed corn in niacin-deficient diets. J. Nutr. 1951;45:21–28. doi: 10.1093/jn/45.1.21. PubMed DOI

Braham J.E., Villarreal A., Bressani R. Effect of lime treatment of corn on the availability of niacin for cats. J. Nutr. 1962;76:183–186. doi: 10.1093/jn/76.2.183. PubMed DOI

Kodicek E., Ashby D.R., Muller M., Carpenter K.J. The conversion of bound nicotinic acid to free nicotinamide on roasting sweet corn. Proc. Nutr. Soc. 1974;33:105A–106A. PubMed

Buckel L., Kremer J.I., Stegmüller S., Richling E. Fast, Sensitive and Robust Determination of Nicotinic Acid (Vitamin B3) Contents in Coffee Beverages Depending on the Degree of Roasting and Brewing Technique. Proceedings. 2019;11:13. doi: 10.3390/proceedings2019011013. DOI

Taguchi H., Sakaguchi M., Shimabayashi Y. Trigonelline Content in Coffee Beans and the Thermal-Conversion of Trigonelline into Nicotinic-Acid during the Roasting of Coffee Beans. Agr. Biol. Chem. 1985;49:3467–3471. doi: 10.1080/00021369.1985.10867295. DOI

Bressani R., Navarrete D.A. Niacin Content of Coffee in Central America. J. Food Sci. 1959;24:344–351. doi: 10.1111/j.1365-2621.1959.tb17282.x. DOI

Teply L.J., Prier R.F. Nutrients in Coffee-Nutritional Evaluation of Coffee Including Niacin Bioassay. J. Agric. Food Chem. 1957;5:375–377. doi: 10.1021/jf60075a010. DOI

Caprioli G., Cortese M., Maggi F., Minnetti C., Odello L., Sagratini G., Vittori S. Quantification of caffeine, trigonelline and nicotinic acid in espresso coffee: The influence of espresso machines and coffee cultivars. Int. J. Food Sci. Nutr. 2014;65:465–469. doi: 10.3109/09637486.2013.873890. PubMed DOI

Chaturvedi A., Geervani P. Bioavailability of niacin from processed groundnuts. J. Nutr. Sci. Vitam. 1986;32:327–334. doi: 10.3177/jnsv.32.327. PubMed DOI

Nurit E., Lyan B., Pujos-Guillot E., Branlard G., Piquet A. Change in B and E vitamin and lutein, β-sitosterol contents in industrial milling fractions and during toasted bread production. J. Cereal Sci. 2016;69:290–296. doi: 10.1016/j.jcs.2016.04.005. DOI

Asiedu M., Lied E., Nilsen R., Sandnes K. Effect of processing (sprouting and/or fermentation) on sorghum and maize: II. Vitamins and amino acid composition. Biological utilization of maize protein. Food Chem. 1993;48:201–204. doi: 10.1016/0308-8146(93)90058-N. DOI

Žilić S., Basić Z., Hadži-Tašković Šukalović V., Maksimović V., Janković M., Filipović M. Can the sprouting process applied to wheat improve the contents of vitamins and phenolic compounds and antioxidant capacity of the flour? Int. J. Food Sci. Technol. 2014;49:1040–1047. doi: 10.1111/ijfs.12397. DOI

Lay M.M.G., Fields M.L. Nutritive-Value of Germinated Corn and Corn Fermented after Germination. J. Food Sci. 1981;46:1069–1073. doi: 10.1111/j.1365-2621.1981.tb02993.x. DOI

Mihhalevski A., Nisamedtinov I., Halvin K., Oseka A., Paalme T. Stability of B-complex vitamins and dietary fiber during rye sourdough bread production. J. Cereal Sci. 2013;57:30–38. doi: 10.1016/j.jcs.2012.09.007. DOI

Mani I. Microbial Production of Vitamins. Springer; Berlin/Heidelberg, Germany: 2020.

Kumar S., Babu B.V. Process Intensification of Nicotinic Acid Production via Enzymatic Conversion using Reactive Extraction. Chem. Biochem. Eng. Q. 2009;23:367–376. doi: 10.1002/chin.201021258. DOI

Chuck R. Sustainable Industrial Chemistry. Wiley-VCH; Weinheim, Germany: 2009. Green Sustainable Chemistry in the Production of Nicotinates; pp. 541–550.

Chuck R. A catalytic green process for the production of niacin. Chimia. 2000;54:508–513.

Eschenmoser W. 100 years of progress with LONZA. Chimia. 1997;51:259–269.

Chuck R. Technology development in nicotinate production. Appl. Catal. A-Gen. 2005;280:75–82. doi: 10.1016/j.apcata.2004.08.029. DOI

Gong J.S., Zhang Q., Gu B.C., Dong T.T., Li H., Li H., Lu Z.M., Shi J.S., Xu Z.H. Efficient biocatalytic synthesis of nicotinic acid by recombinant nitrilase via high density culture. Bioresour. Technol. 2018;260:427–431. doi: 10.1016/j.biortech.2018.03.109. PubMed DOI

Shaw N.M., Robins K.T., Kiener A. Lonza: 20 years of biotransformations. Adv. Synth. Catal. 2003;345:425–435. doi: 10.1002/adsc.200390049. DOI

de Carvalho C.C. Whole cell biocatalysts: Essential workers from Nature to the industry. Microb. Biotechnol. 2017;10:250–263. doi: 10.1111/1751-7915.12363. PubMed DOI PMC

Wang Z., Liu Z., Cui W., Zhou Z. Establishment of Bioprocess for Synthesis of Nicotinamide by Recombinant Escherichia coli Expressing High-Molecular-Mass Nitrile Hydratase. Appl. Biochem. Biotechnol. 2017;182:1458–1466. doi: 10.1007/s12010-017-2410-y. PubMed DOI

Prasad S., Raj J., Bhalla T.C. Bench scale conversion of 3-cyanopyidine to nicotinamide using resting cells of Rhodococcus rhodochrous PA-34. Indian J. Microbiol. 2007;47:34–41. doi: 10.1007/s12088-007-0007-9. PubMed DOI PMC

Shen J.D., Cai X., Liu Z.Q., Zheng Y.G. Nitrilase: A promising biocatalyst in industrial applications for green chemistry. Crit. Rev. Biotechnol. 2021;41:72–93. doi: 10.1080/07388551.2020.1827367. PubMed DOI

Mathew C.D., Nagasawa T., Kobayashi M., Yamada H. Nitrilase-Catalyzed Production of Nicotinic Acid from 3-Cyanopyridine in Rhodococcus rhodochrous J1. Appl. Environ. Microbiol. 1988;54:1030–1032. doi: 10.1128/aem.54.4.1030-1032.1988. PubMed DOI PMC

Prasad S., Bhalla T.C. Nitrile hydratases (NHases): At the interface of academia and industry. Biotechnol. Adv. 2010;28:725–741. doi: 10.1016/j.biotechadv.2010.05.020. PubMed DOI

Nagasawa T., Mathew C.D., Mauger J., Yamada H. Nitrile Hydratase-Catalyzed Production of Nicotinamide from 3-Cyanopyridine in Rhodococcus rhodochrous J1. Appl. Environ. Microbiol. 1988;54:1766–1769. doi: 10.1128/aem.54.7.1766-1769.1988. PubMed DOI PMC

Bhalla T.C., Kumar V., Kumar V., Thakur N., Savitri Nitrile Metabolizing Enzymes in Biocatalysis and Biotransformation. Appl. Biochem. Biotechnol. 2018;185:925–946. doi: 10.1007/s12010-018-2705-7. PubMed DOI

Gong J.S., Lu Z.M., Li H., Shi J.S., Zhou Z.M., Xu Z.H. Nitrilases in nitrile biocatalysis: Recent progress and forthcoming research. Microb. Cell Fact. 2012;11:142. doi: 10.1186/1475-2859-11-142. PubMed DOI PMC

Gong J.S., Shi J.S., Lu Z.M., Li H., Zhou Z.M., Xu Z.H. Nitrile-converting enzymes as a tool to improve biocatalysis in organic synthesis: Recent insights and promises. Crit. Rev. Biotechnol. 2017;37:69–81. doi: 10.3109/07388551.2015.1120704. PubMed DOI

Cheng Z., Xia Y., Zhou Z. Recent Advances and Promises in Nitrile Hydratase: From Mechanism to Industrial Applications. Front. Bioeng. Biotechnol. 2020;8:352. doi: 10.3389/fbioe.2020.00352. PubMed DOI PMC

Busch H., Hagedoorn P.L., Hanefeld U. Rhodococcus as a Versatile Biocatalyst in Organic Synthesis. Int. J. Mol. Sci. 2019;20:4787. doi: 10.3390/ijms20194787. PubMed DOI PMC

Berner L.A., Clydesdale F.M., Douglass J.S. Fortification contributed greatly to vitamin and mineral intakes in the United States, 1989–1991. J. Nutr. 2001;131:2177–2183. doi: 10.1093/jn/131.8.2177. PubMed DOI

Muthayya S., Hall J., Bagriansky J., Sugimoto J., Gundry D., Matthias D., Prigge S., Hindle P., Moench-Pfanner R., Maberly G. Rice fortification: An emerging opportunity to contribute to the elimination of vitamin and mineral deficiency worldwide. Food Nutr. Bull. 2012;33:296–307. doi: 10.1177/156482651203300410. PubMed DOI

Meyer-Ficca M., Kirkland J.B. Niacin. Adv. Nutr. 2016;7:556–558. doi: 10.3945/an.115.011239. PubMed DOI PMC

De Dios Figueroa Cardenas J., Godinez M.G., Mendez N.L., Guzman A.L., Acosta L.M. Nutritional quality of nixtamal tortillas fortified with vitamins and soy proteins. Int. J. Food Sci. Nutr. 2003;54:189–200. doi: 10.1080/09637480120091991. PubMed DOI

Shewry P.R., Hawkesford M.J., Piironen V., Lampi A.M., Gebruers K., Boros D., Andersson A.A., Aman P., Rakszegi M., Bedo Z., et al. Natural variation in grain composition of wheat and related cereals. J. Agric. Food Chem. 2013;61:8295–8303. doi: 10.1021/jf3054092. PubMed DOI

Shewry P.R., Van Schaik F., Ravel C., Charmet G., Rakszegi M., Bedo Z., Ward J.L. Genotype and environment effects on the contents of vitamins B1, B2, B3, and B6 in wheat grain. J. Agric. Food Chem. 2011;59:10564–10571. doi: 10.1021/jf202762b. PubMed DOI

Kim G.R., Jung E.S., Lee S., Lim S.H., Ha S.H., Lee C.H. Combined mass spectrometry-based metabolite profiling of different pigmented rice (Oryza sativa L.) seeds and correlation with antioxidant activities. Molecules. 2014;19:15673–15686. doi: 10.3390/molecules191015673. PubMed DOI PMC

Gerdes S., Lerma-Ortiz C., Frelin O., Seaver S.M., Henry C.S., de Crecy-Lagard V., Hanson A.D. Plant B vitamin pathways and their compartmentation: A guide for the perplexed. J. Exp. Bot. 2012;63:5379–5395. doi: 10.1093/jxb/ers208. PubMed DOI

Nuss E.T., Tanumihardjo S.A. Quality protein maize for Africa: Closing the protein inadequacy gap in vulnerable populations. Adv. Nutr. 2011;2:217–224. doi: 10.3945/an.110.000182. PubMed DOI PMC

Prasanna B.M., Vasal S.K., Kassahun B., Singh N.N. Quality protein maize. Curr. Sci. 2001;81:1308–1319.

Prasanna B.M., Palacios-Rojas N., Hossain F., Muthusamy V., Menkir A., Dhliwayo T., Ndhlela T., San Vicente F., Nair S.K., Vivek B.S., et al. Molecular Breeding for Nutritionally Enriched Maize: Status and Prospects. Front. Genet. 2019;10:1392. doi: 10.3389/fgene.2019.01392. PubMed DOI PMC

Goredema-Matongera N., Ndhlela T., Magorokosho C., Kamutando C.N., Van Biljon A., Labuschagne M. Multinutrient Biofortification of Maize (Zea mays L.) in Africa: Current Status, Opportunities and Limitations. Nutrients. 2021;13:1039. doi: 10.3390/nu13031039. PubMed DOI PMC

Maqbool M.A., Issa A.B., Khokhar E.S. Quality protein maize (QPM): Importance, genetics, timeline of different events, breeding strategies and varietal adoption. Plant Breed. 2021;140:375–399. doi: 10.1111/pbr.12923. DOI

Bhat J.S., Patil B.S., Hariprasanna K., Hossain F., Muthusamy V., Mukri G., Mallikarjuna M.G., Zunjare R., Singh S.P., Sankar S.M., et al. Genetic Enhancement of Micronutrient Content in Cereals. SABRAO J. Breed. Genet. 2018;50:373–429.

Coates P.M., Betz J.M., Blackman M.R., Cragg G.M., Levine M., Moss J., White J.D. Encyclopedia of Dietary Supplements. Informa Healthcare; Boca Raton, FL, USA: 2010.

Bechgaard H., Jespersen S. GI absorption of niacin in humans. J. Pharm. Sci. 1977;66:871–872. doi: 10.1002/jps.2600660635. PubMed DOI

Lan S.J., Henderson L.M. Uptake of nicotinic acid and nicotinamide by rat erythrocytes. J. Biol. Chem. 1968;243:3388–3394. doi: 10.1016/S0021-9258(18)93320-X. PubMed DOI

Revollo J.R., Grimm A.A., Imai S. The NAD biosynthesis pathway mediated by nicotinamide phosphoribosyltransferase regulates Sir2 activity in mammalian cells. J. Biol. Chem. 2004;279:50754–50763. doi: 10.1074/jbc.M408388200. PubMed DOI

Van der Veer E., Ho C., O’Neil C., Barbosa N., Scott R., Cregan S.P., Pickering J.G. Extension of human cell lifespan by nicotinamide phosphoribosyltransferase. J. Biol. Chem. 2007;282:10841–10845. doi: 10.1074/jbc.C700018200. PubMed DOI

Ramsey K.M., Yoshino J., Brace C.S., Abrassart D., Kobayashi Y., Marcheva B., Hong H.K., Chong J.L., Buhr E.D., Lee C., et al. Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis. Science. 2009;324:651–654. doi: 10.1126/science.1171641. PubMed DOI PMC

Savitz J. The kynurenine pathway: A finger in every pie. Mol. Psychiatry. 2020;25:131–147. doi: 10.1038/s41380-019-0414-4. PubMed DOI PMC

Li R., Yu K., Wang Q., Wang L., Mao J., Qian J. Pellagra Secondary to Medication and Alcoholism: A Case Report and Review of the Literature. Nutr. Clin. Pract. 2016;31:785–789. doi: 10.1177/0884533616660991. PubMed DOI

Yang H., Yang T., Baur J.A., Perez E., Matsui T., Carmona J.J., Lamming D.W., Souza-Pinto N.C., Bohr V.A., Rosenzweig A., et al. Nutrient-sensitive mitochondrial NAD+ levels dictate cell survival. Cell. 2007;130:1095–1107. doi: 10.1016/j.cell.2007.07.035. PubMed DOI PMC

Agledal L., Niere M., Ziegler M. The phosphate makes a difference: Cellular functions of NADP. Redox Rep. 2010;15:2–10. doi: 10.1179/174329210X12650506623122. PubMed DOI PMC

Piepho R.W. The pharmacokinetics and pharmacodynamics of agents proven to raise high-density lipoprotein cholesterol. Am. J. Cardiol. 2000;86:35L–40L. doi: 10.1016/S0002-9149(00)01468-5. PubMed DOI

Pieper J.A. Overview of niacin formulations: Differences in pharmacokinetics, efficacy, and safety. Am. J. Health Syst. Pharm. 2003;60:S9–S14. doi: 10.1093/ajhp/60.suppl_2.S9. PubMed DOI

Wilkin J.K., Wilkin O., Kapp R., Donachie R., Chernosky M.E., Buckner J. Aspirin blocks nicotinic acid-induced flushing. Clin. Pharmacol. Ther. 1982;31:478–482. doi: 10.1038/clpt.1982.63. PubMed DOI

Lenglet A., Liabeuf S., Bodeau S., Louvet L., Mary A., Boullier A., Lemaire-Hurtel A.S., Jonet A., Sonnet P., Kamel S., et al. N-methyl-2-pyridone-5-carboxamide (2PY)-Major Metabolite of Nicotinamide: An Update on an Old Uremic Toxin. Toxins. 2016;8:339. doi: 10.3390/toxins8110339. PubMed DOI PMC

Breen L.T., Smyth L.M., Yamboliev I.A., Mutafova-Yambolieva V.N. beta-NAD is a novel nucleotide released on stimulation of nerve terminals in human urinary bladder detrusor muscle. Am. J. Physiol. Ren. Physiol. 2006;290:F486–F495. doi: 10.1152/ajprenal.00314.2005. PubMed DOI

Mutafova-Yambolieva V.N. Neuronal and extraneuronal release of ATP and NAD(+) in smooth muscle. IUBMB Life. 2012;64:817–824. doi: 10.1002/iub.1076. PubMed DOI PMC

Gruenbacher G., Gander H., Rahm A., Dobler G., Drasche A., Troppmair J., Nussbaumer W., Thurnher M. The Human G Protein-Coupled ATP Receptor P2Y11 Is Associated With IL-10 Driven Macrophage Differentiation. Front. Immunol. 2019;10:1870. doi: 10.3389/fimmu.2019.01870. PubMed DOI PMC

Durnin L., Dai Y., Aiba I., Shuttleworth C.W., Yamboliev I.A., Mutafova-Yambolieva V.N. Release, neuronal effects and removal of extracellular beta-nicotinamide adenine dinucleotide (beta-NAD(+)) in the rat brain. Eur. J. Neurosci. 2012;35:423–435. doi: 10.1111/j.1460-9568.2011.07957.x. PubMed DOI PMC

Durnin L., Kurahashi M., Sanders K.M., Mutafova-Yambolieva V.N. Extracellular metabolism of the enteric inhibitory neurotransmitter beta-nicotinamide adenine dinucleotide (beta-NAD) in the murine colon. J. Physiol. 2020;598:4509–4521. doi: 10.1113/JP280051. PubMed DOI PMC

Umapathy N.S., Zemskov E.A., Gonzales J., Gorshkov B.A., Sridhar S., Chakraborty T., Lucas R., Verin A.D. Extracellular beta-nicotinamide adenine dinucleotide (beta-NAD) promotes the endothelial cell barrier integrity via PKA- and EPAC1/Rac1-dependent actin cytoskeleton rearrangement. J. Cell Physiol. 2010;223:215–223. doi: 10.1002/jcp.22029. PubMed DOI PMC

Hiller S.D., Heldmann S., Richter K., Jurastow I., Kullmar M., Hecker A., Wilker S., Fuchs-Moll G., Manzini I., Schmalzing G., et al. beta-Nicotinamide Adenine Dinucleotide (beta-NAD) Inhibits ATP-Dependent IL-1beta Release from Human Monocytic Cells. Int. J. Mol. Sci. 2018;19:1126. doi: 10.3390/ijms19041126. PubMed DOI PMC

Nikiforov A., Kulikova V., Ziegler M. The human NAD metabolome: Functions, metabolism and compartmentalization. Crit. Rev. Biochem. Mol. Biol. 2015;50:284–297. doi: 10.3109/10409238.2015.1028612. PubMed DOI PMC

Pollak N., Dolle C., Ziegler M. The power to reduce: Pyridine nucleotides—Small molecules with a multitude of functions. Biochem. J. 2007;402:205–218. doi: 10.1042/BJ20061638. PubMed DOI PMC

Edenberg H.J. The genetics of alcohol metabolism: Role of alcohol dehydrogenase and aldehyde dehydrogenase variants. Alcohol Res. Health. 2007;30:5–13. PubMed PMC

Nakahata Y., Sahar S., Astarita G., Kaluzova M., Sassone-Corsi P. Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1. Science. 2009;324:654–657. doi: 10.1126/science.1170803. PubMed DOI PMC

Frederick D.W., Davis J.G., Davila A., Jr., Agarwal B., Michan S., Puchowicz M.A., Nakamaru-Ogiso E., Baur J.A. Increasing NAD synthesis in muscle via nicotinamide phosphoribosyltransferase is not sufficient to promote oxidative metabolism. J. Biol. Chem. 2015;290:1546–1558. doi: 10.1074/jbc.M114.579565. PubMed DOI PMC

Canto C., Menzies K.J., Auwerx J. NAD(+) Metabolism and the Control of Energy Homeostasis: A Balancing Act between Mitochondria and the Nucleus. Cell Metab. 2015;22:31–53. doi: 10.1016/j.cmet.2015.05.023. PubMed DOI PMC

Guse A.H., Lee H.C. NAADP: A universal Ca2+ trigger. Sci. Signal. 2008;1:re10. doi: 10.1126/scisignal.144re10. PubMed DOI

Ferrero E., Lo Buono N., Horenstein A.L., Funaro A., Malavasi F. The ADP-ribosyl cyclases—The current evolutionary state of the ARCs. Front. Biosci. 2014;19:986–1002. doi: 10.2741/4262. PubMed DOI

Partida-Sanchez S., Cockayne D.A., Monard S., Jacobson E.L., Oppenheimer N., Garvy B., Kusser K., Goodrich S., Howard M., Harmsen A., et al. Cyclic ADP-ribose production by CD38 regulates intracellular calcium release, extracellular calcium influx and chemotaxis in neutrophils and is required for bacterial clearance in vivo. Nat. Med. 2001;7:1209–1216. doi: 10.1038/nm1101-1209. PubMed DOI

Chong A., Malavasi F., Israel S., Khor C.C., Yap V.B., Monakhov M., Chew S.H., Lai P.S., Ebstein R.P. ADP ribosyl-cyclases (CD38/CD157), social skills and friendship. Psychoneuroendocrinology. 2017;78:185–192. doi: 10.1016/j.psyneuen.2017.01.011. PubMed DOI

Leung A.K.L. PARPs. Curr. Biol. 2017;27:R1256–R1258. doi: 10.1016/j.cub.2017.09.054. PubMed DOI

Perina D., Mikoc A., Ahel J., Cetkovic H., Zaja R., Ahel I. Distribution of protein poly (ADP-ribosyl) ation systems across all domains of life. DNA Repair. 2014;23:4–16. doi: 10.1016/j.dnarep.2014.05.003. PubMed DOI PMC

Aravind L., Zhang D., de Souza R.F., Anand S., Iyer L.M. The natural history of ADP-ribosyltransferases and the ADP-ribosylation system. Curr. Top. Microbiol. Immunol. 2015;384:3–32. doi: 10.1007/82_2014_414. PubMed DOI PMC

Trucco C., Rolli V., Oliver F.J., Flatter E., Masson M., Dantzer F., Niedergang C., Dutrillaux B., Menissier-de Murcia J., de Murcia G. A dual approach in the study of poly (ADP-ribose) polymerase: In vitro random mutagenesis and generation of deficient mice. Mol. Cell. Biochem. 1999;193:53–60. doi: 10.1023/A:1006947707713. PubMed DOI

Shall S., de Murcia G. Poly (ADP-ribose) polymerase-1: What have we learned from the deficient mouse model? Mutat. Res. 2000;460:1–15. doi: 10.1016/S0921-8777(00)00016-1. PubMed DOI

Herceg Z., Wang Z.Q. Functions of poly (ADP-ribose) polymerase (PARP) in DNA repair, genomic integrity and cell death. Mutat. Res. 2001;477:97–110. doi: 10.1016/S0027-5107(01)00111-7. PubMed DOI

Berger N.A., Besson V.C., Boulares A.H., Burkle A., Chiarugi A., Clark R.S., Curtin N.J., Cuzzocrea S., Dawson T.M., Dawson V.L., et al. Opportunities for the repurposing of PARP inhibitors for the therapy of non-oncological diseases. Br. J. Pharmacol. 2018;175:192–222. doi: 10.1111/bph.13748. PubMed DOI PMC

Buisson R., Dion-Cote A.M., Coulombe Y., Launay H., Cai H., Stasiak A.Z., Stasiak A., Xia B., Masson J.Y. Cooperation of breast cancer proteins PALB2 and piccolo BRCA2 in stimulating homologous recombination. Nat. Struct. Mol. Biol. 2010;17:1247–1254. doi: 10.1038/nsmb.1915. PubMed DOI PMC

Bochum S., Berger S., Martens U.M. Olaparib. Recent Results Cancer Res. 2018;211:217–233. doi: 10.1007/978-3-319-91442-8_15. PubMed DOI

Lord C.J., Ashworth A. PARP inhibitors: Synthetic lethality in the clinic. Science. 2017;355:1152–1158. doi: 10.1126/science.aam7344. PubMed DOI PMC

Palazzo L., Mikoc A., Ahel I. ADP-ribosylation: New facets of an ancient modification. FEBS J. 2017;284:2932–2946. doi: 10.1111/febs.14078. PubMed DOI PMC

Moraes D.S., Moreira D.C., Andrade J.M.O., Santos S.H.S. Sirtuins, brain and cognition: A review of resveratrol effects. IBRO Rep. 2020;9:46–51. doi: 10.1016/j.ibror.2020.06.004. PubMed DOI PMC

Tanner K.G., Landry J., Sternglanz R., Denu J.M. Silent information regulator 2 family of NAD- dependent histone/protein deacetylases generates a unique product, 1-O-acetyl-ADP-ribose. Proc. Natl. Acad. Sci. USA. 2000;97:14178–14182. doi: 10.1073/pnas.250422697. PubMed DOI PMC

Asher G., Gatfield D., Stratmann M., Reinke H., Dibner C., Kreppel F., Mostoslavsky R., Alt F.W., Schibler U. SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell. 2008;134:317–328. doi: 10.1016/j.cell.2008.06.050. PubMed DOI

Nakahata Y., Kaluzova M., Grimaldi B., Sahar S., Hirayama J., Chen D., Guarente L.P., Sassone-Corsi P. The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell. 2008;134:329–340. doi: 10.1016/j.cell.2008.07.002. PubMed DOI PMC

Imai S.I., Guarente L. It takes two to tango: NAD(+) and sirtuins in aging/longevity control. NPJ Aging Mech. Dis. 2016;2:16017. doi: 10.1038/npjamd.2016.17. PubMed DOI PMC

Jiang Y., Liu J., Chen D., Yan L., Zheng W. Sirtuin Inhibition: Strategies, Inhibitors, and Therapeutic Potential. Trends Pharmacol. Sci. 2017;38:459–472. doi: 10.1016/j.tips.2017.01.009. PubMed DOI

Van de Ven R.A.H., Santos D., Haigis M.C. Mitochondrial Sirtuins and Molecular Mechanisms of Aging. Trends Mol. Med. 2017;23:320–331. doi: 10.1016/j.molmed.2017.02.005. PubMed DOI PMC

Bayele H.K. Sirtuins transduce STACs signals through steroid hormone receptors. Sci. Rep. 2020;10:5338. doi: 10.1038/s41598-020-62162-0. PubMed DOI PMC

Gaal Z., Csernoch L. Impact of Sirtuin Enzymes on the Altered Metabolic Phenotype of Malignantly Transformed Cells. Front. Oncol. 2020;10:45. doi: 10.3389/fonc.2020.00045. PubMed DOI PMC

Carpenter K.J. Pellagra. Hutchinson Ross; Stroudsburg, PA, USA: 1981.

Prabhu D., Dawe R.S., Mponda K. Pellagra a review exploring causes and mechanisms, including isoniazid-induced pellagra. Photodermatol. Photoimmunol. Photomed. 2021;37:99–104. doi: 10.1111/phpp.12659. PubMed DOI

Williams A.C., Hill L.J. The 4 D’s of Pellagra and Progress. Int. J. Tryptophan Res. 2020;13:1178646920910159. doi: 10.1177/1178646920910159. PubMed DOI PMC

Ramirez-Cabral N.Y.Z., Kumar L., Shabani F. Global alterations in areas of suitability for maize production from climate change and using a mechanistic species distribution model (CLIMEX) Sci. Rep. 2017;7:5910. doi: 10.1038/s41598-017-05804-0. PubMed DOI PMC

Schmid M.A., Salomeyesudas B., Satheesh P., Hanley J., Kuhnlein H.V. Intervention with traditional food as a major source of energy, protein, iron, vitamin C and vitamin A for rural Dalit mothers and young children in Andhra Pradesh, South India. Asia Pac. J. Clin. Nutr. 2007;16:84–93. PubMed

Malfait P., Moren A., Dillon J.C., Brodel A., Begkoyian G., Etchegorry M.G., Malenga G., Hakewill P. An outbreak of pellagra related to changes in dietary niacin among Mozambican refugees in Malawi. Int. J. Epidemiol. 1993;22:504–511. doi: 10.1093/ije/22.3.504. PubMed DOI

Altschul R., Hoffer A., Stephen J.D. Influence of nicotinic acid on serum cholesterol in man. Arch. Biochem. Biophys. 1955;54:558–559. doi: 10.1016/0003-9861(55)90070-9. PubMed DOI

Carlson L.A. Nicotinic acid: The broad-spectrum lipid drug. A 50th anniversary review. J. Intern. Med. 2005;258:94–114. doi: 10.1111/j.1365-2796.2005.01528.x. PubMed DOI

Wise A., Foord S.M., Fraser N.J., Barnes A.A., Elshourbagy N., Eilert M., Ignar D.M., Murdock P.R., Steplewski K., Green A., et al. Molecular identification of high and low affinity receptors for nicotinic acid. J. Biol. Chem. 2003;278:9869–9874. doi: 10.1074/jbc.M210695200. PubMed DOI

Soga T., Kamohara M., Takasaki J., Matsumoto S., Saito T., Ohishi T., Hiyama H., Matsuo A., Matsushime H., Furuichi K. Molecular identification of nicotinic acid receptor. Biochem. Biophys. Res. Commun. 2003;303:364–369. doi: 10.1016/S0006-291X(03)00342-5. PubMed DOI

Taggart A.K., Kero J., Gan X., Cai T.Q., Cheng K., Ippolito M., Ren N., Kaplan R., Wu K., Wu T.J., et al. (D)-beta-Hydroxybutyrate inhibits adipocyte lipolysis via the nicotinic acid receptor PUMA-G. J. Biol. Chem. 2005;280:26649–26652. doi: 10.1074/jbc.C500213200. PubMed DOI

Gille A., Bodor E.T., Ahmed K., Offermanns S. Nicotinic acid: Pharmacological effects and mechanisms of action. Annu. Rev. Pharmacol. Toxicol. 2008;48:79–106. doi: 10.1146/annurev.pharmtox.48.113006.094746. PubMed DOI

Carlson L.A., Oro L., Ostman J. Effect of a single dose of nicotinic acid on plasma lipids in patients with hyperlipoproteinemia. Acta Med. Scand. 1968;183:457–465. doi: 10.1111/j.0954-6820.1968.tb10508.x. PubMed DOI

Ganji S.H., Tavintharan S., Zhu D., Xing Y., Kamanna V.S., Kashyap M.L. Niacin noncompetitively inhibits DGAT2 but not DGAT1 activity in HepG2 cells. J. Lipid Res. 2004;45:1835–1845. doi: 10.1194/jlr.M300403-JLR200. PubMed DOI

Jin F.Y., Kamanna V.S., Kashyap M.L. Niacin accelerates intracellular ApoB degradation by inhibiting triacylglycerol synthesis in human hepatoblastoma (HepG2) cells. Arter. Thromb. Vasc. Biol. 1999;19:1051–1059. doi: 10.1161/01.ATV.19.4.1051. PubMed DOI

Svedmyr N., Harthon L., Lundholm L. The relationship between the plasma concentration of free nicotinic acid and some of its pharmacologic effects in man. Clin. Pharmacol. Ther. 1969;10:559–570. doi: 10.1002/cpt1969104559. PubMed DOI

Barter P.J., Brewer H.B., Jr., Chapman M.J., Hennekens C.H., Rader D.J., Tall A.R. Cholesteryl ester transfer protein: A novel target for raising HDL and inhibiting atherosclerosis. Arter. Thromb. Vasc. Biol. 2003;23:160–167. doi: 10.1161/01.ATV.0000054658.91146.64. PubMed DOI

Hernandez M., Wright S.D., Cai T.Q. Critical role of cholesterol ester transfer protein in nicotinic acid-mediated HDL elevation in mice. Biochem. Biophys. Res. Commun. 2007;355:1075–1080. doi: 10.1016/j.bbrc.2007.02.079. PubMed DOI

Le Goff W., Guerin M., Chapman M.J. Pharmacological modulation of cholesteryl ester transfer protein, a new therapeutic target in atherogenic dyslipidemia. Pharmacol. Ther. 2004;101:17–38. doi: 10.1016/j.pharmthera.2003.10.001. PubMed DOI

Mousa S.S., Block R.C., Mousa S.A. High Density Lipoprotein (HDL) Modulation Targets. Drugs Future. 2010;35:33–39. doi: 10.1358/dof.2010.035.01.1452012. PubMed DOI PMC

Olsson A.G. Nicotinic Acid and Derivatives. In: Schettler G., Habenicht A.J.R., editors. Principles and Treatment of Lipoprotein Disorders. Springer; Berlin/Heidelberg, Germany: 1994. pp. 349–400. Handbook of Experimental, Pharmacology.

Jin F.Y., Kamanna V.S., Kashyap M.L. Niacin decreases removal of high-density lipoprotein apolipoprotein A-I but not cholesterol ester by Hep G2 cells. Implication for reverse cholesterol transport. Arter. Thromb. Vasc. Biol. 1997;17:2020–2028. doi: 10.1161/01.ATV.17.10.2020. PubMed DOI

Meyers C.D., Kashyap M.L. Pharmacologic elevation of high-density lipoproteins: Recent insights on mechanism of action and atherosclerosis protection. Curr. Opin. Cardiol. 2004;19:366–373. doi: 10.1097/01.hco.0000126582.27767.87. PubMed DOI

Wu Z.H., Zhao S.P. Niacin promotes cholesterol efflux through stimulation of the PPARgamma-LXRalpha-ABCA1 pathway in 3T3-L1 adipocytes. Pharmacology. 2009;84:282–287. doi: 10.1159/000242999. PubMed DOI

Knowles H.J., te Poele R.H., Workman P., Harris A.L. Niacin induces PPARgamma expression and transcriptional activation in macrophages via HM74 and HM74a-mediated induction of prostaglandin synthesis pathways. Biochem. Pharmacol. 2006;71:646–656. doi: 10.1016/j.bcp.2005.11.019. PubMed DOI

Oram J.F., Lawn R.M., Garvin M.R., Wade D.P. ABCA1 is the cAMP-inducible apolipoprotein receptor that mediates cholesterol secretion from macrophages. J. Biol. Chem. 2000;275:34508–34511. doi: 10.1074/jbc.M006738200. PubMed DOI

Yvan-Charvet L., Wang N., Tall A.R. Role of HDL, ABCA1, and ABCG1 transporters in cholesterol efflux and immune responses. Arter. Thromb. Vasc. Biol. 2010;30:139–143. doi: 10.1161/ATVBAHA.108.179283. PubMed DOI PMC

Takahashi Y., Miyata M., Zheng P., Imazato T., Horwitz A., Smith J.D. Identification of cAMP analogue inducible genes in RAW264 macrophages. Biochim. Biophys. Acta. 2000;1492:385–394. doi: 10.1016/S0167-4781(00)00133-0. PubMed DOI

Zhao S.P., Yang J., Li J., Dong S.Z., Wu Z.H. Effect of niacin on LXRalpha and PPARgamma expression and HDL-induced cholesterol efflux in adipocytes of hypercholesterolemic rabbits. Int. J. Cardiol. 2008;124:172–178. doi: 10.1016/j.ijcard.2006.12.032. PubMed DOI

Johnson S., Imai S.I. NAD(+) biosynthesis, aging, and disease. F1000Research. 2018;7:132. doi: 10.12688/f1000research.12120.1. PubMed DOI PMC

Imai S. From heterochromatin islands to the NAD World: A hierarchical view of aging through the functions of mammalian Sirt1 and systemic NAD biosynthesis. Biochim. Biophys. Acta. 2009;1790:997–1004. doi: 10.1016/j.bbagen.2009.03.005. PubMed DOI PMC

Imai S. Dissecting systemic control of metabolism and aging in the NAD World: The importance of SIRT1 and NAMPT-mediated NAD biosynthesis. FEBS Lett. 2011;585:1657–1662. doi: 10.1016/j.febslet.2011.04.060. PubMed DOI PMC

Rehan L., Laszki-Szczachor K., Sobieszczanska M., Polak-Jonkisz D. SIRT1 and NAD as regulators of ageing. Life Sci. 2014;105:1–6. doi: 10.1016/j.lfs.2014.03.015. PubMed DOI

Poljsak B. NAMPT-Mediated NAD Biosynthesis as the Internal Timing Mechanism: In NAD+ World, Time Is Running in Its Own Way. Rejuvenation Res. 2018;21:210–224. doi: 10.1089/rej.2017.1975. PubMed DOI

Massudi H., Grant R., Braidy N., Guest J., Farnsworth B., Guillemin G.J. Age-associated changes in oxidative stress and NAD+ metabolism in human tissue. PLoS ONE. 2012;7:e42357. doi: 10.1371/journal.pone.0042357. PubMed DOI PMC

Schultz M.B., Sinclair D.A. Why NAD(+) Declines during Aging: It’s Destroyed. Cell Metab. 2016;23:965–966. doi: 10.1016/j.cmet.2016.05.022. PubMed DOI PMC

Camacho-Pereira J., Tarrago M.G., Chini C.C.S., Nin V., Escande C., Warner G.M., Puranik A.S., Schoon R.A., Reid J.M., Galina A., et al. CD38 Dictates Age-Related NAD Decline and Mitochondrial Dysfunction through an SIRT3-Dependent Mechanism. Cell Metab. 2016;23:1127–1139. doi: 10.1016/j.cmet.2016.05.006. PubMed DOI PMC

Mao K., Zhang G. The role of PARP1 in neurodegenerative diseases and aging. FEBS J. 2021 doi: 10.1111/febs.15716. PubMed DOI

Covarrubias A.J., Perrone R., Grozio A., Verdin E. NAD(+) metabolism and its roles in cellular processes during ageing. Nat. Rev. Mol. Cell Biol. 2021;22:119–141. doi: 10.1038/s41580-020-00313-x. PubMed DOI PMC

Bai P., Canto C., Oudart H., Brunyanszki A., Cen Y., Thomas C., Yamamoto H., Huber A., Kiss B., Houtkooper R.H., et al. PARP-1 inhibition increases mitochondrial metabolism through SIRT1 activation. Cell Metab. 2011;13:461–468. doi: 10.1016/j.cmet.2011.03.004. PubMed DOI PMC

Belenky P., Racette F.G., Bogan K.L., McClure J.M., Smith J.S., Brenner C. Nicotinamide riboside promotes Sir2 silencing and extends lifespan via Nrk and Urh1/Pnp1/Meu1 pathways to NAD+ Cell. 2007;129:473–484. doi: 10.1016/j.cell.2007.03.024. PubMed DOI

Canto C., Houtkooper R.H., Pirinen E., Youn D.Y., Oosterveer M.H., Cen Y., Fernandez-Marcos P.J., Yamamoto H., Andreux P.A., Cettour-Rose P., et al. The NAD(+) precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity. Cell Metab. 2012;15:838–847. doi: 10.1016/j.cmet.2012.04.022. PubMed DOI PMC

Wang X., Li H., Ding S. The effects of NAD+ on apoptotic neuronal death and mitochondrial biogenesis and function after glutamate excitotoxicity. Int. J. Mol. Sci. 2014;15:20449–20468. doi: 10.3390/ijms151120449. PubMed DOI PMC

Yaku K., Okabe K., Hikosaka K., Nakagawa T. NAD Metabolism in Cancer Therapeutics. Front. Oncol. 2018;8:622. doi: 10.3389/fonc.2018.00622. PubMed DOI PMC

Kennedy B.E., Sharif T., Martell E., Dai C., Kim Y., Lee P.W., Gujar S.A. NAD(+) salvage pathway in cancer metabolism and therapy. Pharmacol. Res. 2016;114:274–283. doi: 10.1016/j.phrs.2016.10.027. PubMed DOI

Wakade C., Chong R., Bradley E., Thomas B., Morgan J. Upregulation of GPR109A in Parkinson’s disease. PLoS ONE. 2014;9:e109818. doi: 10.1371/journal.pone.0109818. PubMed DOI PMC

Wakade C., Chong R., Bradley E., Morgan J.C. Low-dose niacin supplementation modulates GPR109A, niacin index and ameliorates Parkinson’s disease symptoms without side effects. Clin. Case Rep. 2015;3:635–637. doi: 10.1002/ccr3.232. PubMed DOI PMC

Jia H., Li X., Gao H., Feng Z., Li X., Zhao L., Jia X., Zhang H., Liu J. High doses of nicotinamide prevent oxidative mitochondrial dysfunction in a cellular model and improve motor deficit in a Drosophila model of Parkinson’s disease. J. Neurosci. Res. 2008;86:2083–2090. doi: 10.1002/jnr.21650. PubMed DOI

Nimmagadda V.K., Makar T.K., Chandrasekaran K., Sagi A.R., Ray J., Russell J.W., Bever C.T., Jr. SIRT1 and NAD+ precursors: Therapeutic targets in multiple sclerosis a review. J. Neuroimmunol. 2017;304:29–34. doi: 10.1016/j.jneuroim.2016.07.007. PubMed DOI PMC

Kim S.Y., Cohen B.M., Chen X., Lukas S.E., Shinn A.K., Yuksel A.C., Li T., Du F., Ongur D. Redox Dysregulation in Schizophrenia Revealed by in vivo NAD+/NADH Measurement. Schizophr. Bull. 2017;43:197–204. doi: 10.1093/schbul/sbw129. PubMed DOI PMC

Benavente C.A., Schnell S.A., Jacobson E.L. Effects of niacin restriction on sirtuin and PARP responses to photodamage in human skin. PLoS ONE. 2012;7:e42276. doi: 10.1371/journal.pone.0042276. PubMed DOI PMC

Gensler H.L., Williams T., Huang A.C., Jacobson E.L. Oral niacin prevents photocarcinogenesis and photoimmunosuppression in mice. Nutr. Cancer. 1999;34:36–41. doi: 10.1207/S15327914NC340105. PubMed DOI

Gehring W. Nicotinic acid/niacinamide and the skin. J. Cosmet. Dermatol. 2004;3:88–93. doi: 10.1111/j.1473-2130.2004.00115.x. PubMed DOI

Levine D., Even-Chen Z., Lipets I., Pritulo O.A., Svyatenko T.V., Andrashko Y., Lebwohl M., Gottlieb A. Pilot, multicenter, double-blind, randomized placebo-controlled bilateral comparative study of a combination of calcipotriene and nicotinamide for the treatment of psoriasis. J. Am. Acad. Dermatol. 2010;63:775–781. doi: 10.1016/j.jaad.2009.10.016. PubMed DOI

Park S.M., Li T., Wu S., Li W.Q., Weinstock M., Qureshi A.A., Cho E. Niacin intake and risk of skin cancer in US women and men. Int. J. Cancer. 2017;140:2023–2031. doi: 10.1002/ijc.30630. PubMed DOI PMC

Oberwittler H., Baccara-Dinet M. Clinical evidence for use of acetyl salicylic acid in control of flushing related to nicotinic acid treatment. Int. J. Clin. Pract. 2006;60:707–715. doi: 10.1111/j.1368-5031.2006.00957.x. PubMed DOI

Benyo Z., Gille A., Bennett C.L., Clausen B.E., Offermanns S. Nicotinic acid-induced flushing is mediated by activation of epidermal langerhans cells. Mol. Pharmacol. 2006;70:1844–1849. doi: 10.1124/mol.106.030833. PubMed DOI

Hanson J., Gille A., Zwykiel S., Lukasova M., Clausen B.E., Ahmed K., Tunaru S., Wirth A., Offermanns S. Nicotinic acid- and monomethyl fumarate-induced flushing involves GPR109A expressed by keratinocytes and COX-2-dependent prostanoid formation in mice. J. Clin. Investig. 2010;120:2910–2919. doi: 10.1172/JCI42273. PubMed DOI PMC

Hay D.L., Poyner D.R. Calcitonin gene-related peptide, adrenomedullin and flushing. Maturitas. 2009;64:104–108. doi: 10.1016/j.maturitas.2009.08.011. PubMed DOI

Wierzbicki A.S. Niacin: The only vitamin that reduces cardiovascular events. Int. J. Clin. Pr. 2011;65:379–385. doi: 10.1111/j.1742-1241.2011.02630.x. PubMed DOI

McKenney J.M., Proctor J.D., Harris S., Chinchili V.M. A comparison of the efficacy and toxic effects of sustained-vs immediate-release niacin in hypercholesterolemic patients. JAMA. 1994;271:672–677. doi: 10.1001/jama.1994.03510330050033. PubMed DOI

Dalton T.A., Berry R.S. Hepatotoxicity associated with sustained-release niacin. Am. J. Med. 1992;93:102–104. doi: 10.1016/0002-9343(92)90689-9. PubMed DOI

Lawrence S.P. Transient focal hepatic defects related to sustained-release niacin. J. Clin. Gastroenterol. 1993;16:234–236. doi: 10.1097/00004836-199304000-00015. PubMed DOI

Cheng K., Wu T.J., Wu K.K., Sturino C., Metters K., Gottesdiener K., Wright S.D., Wang Z., O’Neill G., Lai E., et al. Antagonism of the prostaglandin D2 receptor 1 suppresses nicotinic acid-induced vasodilation in mice and humans. Proc. Natl. Acad. Sci. USA. 2006;103:6682–6687. doi: 10.1073/pnas.0601574103. PubMed DOI PMC

Parsons W.B., Jr. Activation of peptic ulcer by nicotinic acid. Report of five cases. JAMA. 1960;173:1466–1470. doi: 10.1001/jama.1960.03020310054016. PubMed DOI

McCulloch D.K., Kahn S.E., Schwartz M.W., Koerker D.J., Palmer J.P. Effect of nicotinic acid-induced insulin resistance on pancreatic B cell function in normal and streptozocin-treated baboons. J. Clin. Investig. 1991;87:1395–1401. doi: 10.1172/JCI115145. PubMed DOI PMC

Garg A., Grundy S.M. Nicotinic acid as therapy for dyslipidemia in non-insulin-dependent diabetes mellitus. JAMA. 1990;264:723–726. doi: 10.1001/jama.1990.03450060069031. PubMed DOI

Canner P.L., Furberg C.D., Terrin M.L., McGovern M.E. Benefits of niacin by glycemic status in patients with healed myocardial infarction (from the Coronary Drug Project) Am. J. Cardiol. 2005;95:254–257. doi: 10.1016/j.amjcard.2004.09.013. PubMed DOI

Elam M.B., Hunninghake D.B., Davis K.B., Garg R., Johnson C., Egan D., Kostis J.B., Sheps D.S., Brinton E.A. Effect of niacin on lipid and lipoprotein levels and glycemic control in patients with diabetes and peripheral arterial disease: The ADMIT study: A randomized trial. Arterial Disease Multiple Intervention Trial. JAMA. 2000;284:1263–1270. doi: 10.1001/jama.284.10.1263. PubMed DOI

Grundy S.M., Vega G.L., McGovern M.E., Tulloch B.R., Kendall D.M., Fitz-Patrick D., Ganda O.P., Rosenson R.S., Buse J.B., Robertson D.D., et al. Efficacy, safety, and tolerability of once-daily niacin for the treatment of dyslipidemia associated with type 2 diabetes: Results of the assessment of diabetes control and evaluation of the efficacy of niaspan trial. Arch. Intern. Med. 2002;162:1568–1576. doi: 10.1001/archinte.162.14.1568. PubMed DOI

Hwang E.S., Song S.B. Possible Adverse Effects of High-Dose Nicotinamide: Mechanisms and Safety Assessment. Biomolecules. 2020;10:687. doi: 10.3390/biom10050687. PubMed DOI PMC

Williams R.J., Bradway E.M. The further fractination of yeast nutrilites and their relationship to vitamin B and Wildiers’ "bios". J. Am. Chem. Soc. 1931;53:783–789. doi: 10.1021/ja01353a051. DOI

Williams R.J., Lyman C.M., Goodyear G.H., Truesdail J.H., Holaday D. “Pantothenic Acid,” a Growth Determinant of Universal Biological Occurrence. J. Am. Chem. Soc. 1933;55:2912–2927. doi: 10.1021/ja01334a049. DOI

Müller M.A., Medlock J., Prágai Z., Warnke I., Litta G., Kleefeldt A., Kaiser K., De Potzolli B. Ullmann’s Encyclopedia of Industrial Chemistry. John Wiley & Sons, Inc.; Hoboken, NJ, USA: 2019. Vitamins, 9. Vitamin B5; pp. 1–16.

Gonzalez-Lopez J., Aliaga L., Gonzalez-Martinez A., Martinez-Toledo M.V. Industrial Biotechnology of Vitamins, Biopigments, and Antioxidants. John Wiley & Sons, Inc.; Hoboken, NJ, USA: 2016. Pantothenic Acid; pp. 67–101.

Schnellbaecher A., Binder D., Bellmaine S., Zimmer A. Vitamins in cell culture media: Stability and stabilization strategies. Biotechnol. Bioeng. 2019;116:1537–1555. doi: 10.1002/bit.26942. PubMed DOI PMC

Webb M.E., Smith A.G., Abell C. Biosynthesis of pantothenate. Nat. Prod. Rep. 2004;21:695–721. doi: 10.1039/b316419p. PubMed DOI

Leonardi R., Jackowski S. Biosynthesis of Pantothenic Acid and Coenzyme A. EcoSal Plus. 2007;2 doi: 10.1128/ecosalplus.3.6.3.4. PubMed DOI PMC

Martinez D.L., Tsuchiya Y., Gout I. Coenzyme A biosynthetic machinery in mammalian cells. Biochem. Soc. Trans. 2014;42:1112–1117. doi: 10.1042/BST20140124. PubMed DOI

Leonardi R., Zhang Y.M., Rock C.O., Jackowski S. Coenzyme A: Back in action. Prog. Lipid Res. 2005;44:125–153. doi: 10.1016/j.plipres.2005.04.001. PubMed DOI

Ottenhof H.H., Ashurst J.L., Whitney H.M., Saldanha S.A., Schmitzberger F., Gweon H.S., Blundell T.L., Abell C., Smith A.G. Organisation of the pantothenate (vitamin B5) biosynthesis pathway in higher plants. Plant J. 2004;37:61–72. doi: 10.1046/j.1365-313X.2003.01940.x. PubMed DOI

Chakauya E., Coxon K.M., Whitney H.M., Ashurst J.L., Abell C., Smith A.G. Pantothenate biosynthesis in higher plants: Advances and challenges. Physiol. Plant. 2006;126:319–329. doi: 10.1111/j.1399-3054.2006.00683.x. DOI

Webb M.E., Smith A.G. Pantothenate Biosynthesis in Higher Plants. In: Rébeillé F., Douce R., editors. Advances in Botanical Research. Volume 58. Academic Press; Cambridge, MA, USA: 2011. pp. 203–255.

Webb M.E., Marquet A., Mendel R.R., Rebeille F., Smith A.G. Elucidating biosynthetic pathways for vitamins and cofactors. Nat. Prod. Rep. 2007;24:988–1008. doi: 10.1039/b703105j. PubMed DOI

White W.H., Gunyuzlu P.L., Toyn J.H. Saccharomyces cerevisiae is capable of de Novo pantothenic acid biosynthesis involving a novel pathway of beta-alanine production from spermine. J. Biol. Chem. 2001;276:10794–10800. doi: 10.1074/jbc.M009804200. PubMed DOI

Spry C., Kirk K., Saliba K.J. Coenzyme A biosynthesis: An antimicrobial drug target. FEMS Microbiol. Rev. 2008;32:56–106. doi: 10.1111/j.1574-6976.2007.00093.x. PubMed DOI

Smith C.M., Song W.O. Comparative nutrition of pantothenic acid. J. Nutr. Biochem. 1996;7:312–321. doi: 10.1016/0955-2863(96)00034-4. DOI

Roje S. Vitamin B biosynthesis in plants. Phytochemistry. 2007;68:1904–1921. doi: 10.1016/j.phytochem.2007.03.038. PubMed DOI

Coxon K.M., Chakauya E., Ottenhof H.H., Whitney H.M., Blundell T.L., Abell C., Smith A.G. Pantothenate biosynthesis in higher plants. Biochem. Soc. Trans. 2005;33:743–746. doi: 10.1042/BST0330743. PubMed DOI

Miller J.W., Rucker R.B. Present Knowledge in Nutrition. John Wiley & Sons, Inc.; Hoboken, NJ, USA: 2012. Pantothenic Acid; pp. 375–390.

Walsh J.H., Wyse B.W., Hansen R.G. Pantothenic acid content of 75 processed and cooked foods. J. Am. Diet. Assoc. 1981;78:140–144. doi: 10.1016/S0002-8223(21)04766-0. PubMed DOI

Scientific Committee on Food . Tolerable Upper Intake Levels for Vitamins and Minerals. EFSA; Parma, Italy: 2006.

Kelly G.S. Pantothenic acid. Monograph. Altern. Med. Rev. 2011;16:263–274. PubMed

Willerton E., Cromwell H. Microbiologic Assay of Natural Pantothenic Acid in Yeast and Liver. Influence of Clarase Digestion. Ind. Eng. Chem. Anal. Ed. 2002;14:603–604. doi: 10.1021/i560107a034. DOI

Ball G.F.M. Bioavailability and Analysis of Vitamins in Foods. Springer US; Boston, MA, USA: 1998. Pantothenic acid; pp. 409–422.

Hall A.P., Moore J.G., Morgan A.F. B Vitamin content of avocados: Studies reveal California-grown avocados are in superior group of foods as source of pantothenic acid and vitamin B. Calif. Agric. 1956;10:13–14.

EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA) Scientific Opinion on Dietary Reference Values for pantothenic acid. EFSA J. 2014;12:3581. doi: 10.2903/j.efsa.2014.3581. DOI

Ciulu M., Floris I., Nurchi V.M., Panzanelli A., Pilo M.I., Spano N., Sanna G. HPLC determination of pantothenic acid in royal jelly. Anal. Methods. 2013;5:6682–6685. doi: 10.1039/c3ay41284a. DOI

Kunugi H., Mohammed Ali A. Royal Jelly and Its Components Promote Healthy Aging and Longevity: From Animal Models to Humans. Int. J. Mol. Sci. 2019;20:4662. doi: 10.3390/ijms20194662. PubMed DOI PMC

Pearson P.B., Burgin C.J. The Pantothenic Acid Content of Royal Jelly. Exp. Biol. Med. 1941;48:415–417. doi: 10.3181/00379727-48-13338. DOI

Uebanso T., Shimohata T., Mawatari K., Takahashi A. Functional Roles of B-Vitamins in the Gut and Gut Microbiome. Mol. Nutr. Food Res. 2020;64:e2000426. doi: 10.1002/mnfr.202000426. PubMed DOI

Bates C.J. Pantothenic Acid. In: Caballero B., editor. Encyclopedia of Human Nutrition. Academic Press; Cambridge, MA, USA: 2013. pp. 1–5.

Said H.M., Mohammed Z.M. Intestinal absorption of water-soluble vitamins: An update. Curr. Opin. Gastroenterol. 2006;22:140–146. doi: 10.1097/01.mog.0000203870.22706.52. PubMed DOI

Said H.M., Ortiz A., McCloud E., Dyer D., Moyer M.P., Rubin S. Biotin uptake by human colonic epithelial NCM460 cells: A carrier-mediated process shared with pantothenic acid. Am. J. Physiol. 1998;275:C1365–C1371. doi: 10.1152/ajpcell.1998.275.5.C1365. PubMed DOI

Ghosal A., Lambrecht N., Subramanya S.B., Kapadia R., Said H.M. Conditional knockout of the Slc5a6 gene in mouse intestine impairs biotin absorption. Am. J. Physiol. Gastrointest. Liver Physiol. 2013;304:G64–G71. doi: 10.1152/ajpgi.00379.2012. PubMed DOI PMC

Said H.M. Intestinal absorption of water-soluble vitamins in health and disease. Biochem J. 2011;437:357–372. doi: 10.1042/BJ20110326. PubMed DOI PMC

MacDonald R., Reitmeier C., editors. Understanding Food Systems. Academic Press; Cambridge, MA, USA: 2017. Food Processing; pp. 179–225.

Schroeder H.A. Losses of vitamins and trace minerals resulting from processing and preservation of foods. Am. J. Clin. Nutr. 1971;24:562–573. doi: 10.1093/ajcn/24.5.562. PubMed DOI

Bodwell C., Anderson B. Nutritional Composition and Value of Meat and Meat Products. Academic Press; Cambridge, MA, USA: 1986. pp. 321–369.

Engler P.P., Bowers J.A. B-vitamin retention in meat during storage and preparation. A review. J. Am. Diet. Assoc. 1976;69:253–257. doi: 10.1016/S0002-8223(21)06708-0. PubMed DOI

Meyer B.H., Mysinger M.A., Wodarski L.A. Pantothenic acid and vitamin B6 in beef. J. Am. Diet Assoc. 1969;54:122–125. doi: 10.1016/S0002-8223(21)12596-9. PubMed DOI

Cheng T.S., Eitenmiller R.R. Effects of Processing and Storage on the Pantothenic-Acid Content of Spinach and Broccoli. J. Food Process. Preserv. 1988;12:115–123. doi: 10.1111/j.1745-4549.1988.tb00071.x. DOI

Hoppner K., Lampi B. Pantothenic-Acid and Biotin Retention in Cooked Legumes. J. Food Sci. 1993;58:1084–1085. doi: 10.1111/j.1365-2621.1993.tb06119.x. DOI

Khalil A.H., Mansour E.H. The Effect of Cooking, Autoclaving and Germination on the Nutritional Quality of Faba Beans. Food Chem. 1995;54:177–182. doi: 10.1016/0308-8146(95)00024-D. DOI

Kilgore S.M., Sistrunk W.A. Effects of Soaking Treatments and Cooking Upon Selected B-Vitamins and the Quality of Blackeyed Peas. J. Food Sci. 1981;46:909–911. doi: 10.1111/j.1365-2621.1981.tb15378.x. DOI

Rolls B.A., Porter J.W.G. Some effects of processing and storage on the nutritive value of milk and milk products. Proc. Nutr Soc. 1973;32:9–15. doi: 10.1079/PNS19730003. PubMed DOI

King J.C., Blumberg J., Ingwersen L., Jenab M., Tucker K.L. Tree nuts and peanuts as components of a healthy diet. J. Nutr. 2008;138:1736S–1740S. doi: 10.1093/jn/138.9.1736S. PubMed DOI

Arya S.S., Salve A.R., Chauhan S. Peanuts as functional food: A review. J. Food Sci. Technol. 2016;53:31–41. doi: 10.1007/s13197-015-2007-9. PubMed DOI PMC

Sathe S.K., Monaghan E.K., Kshirsagar H.H., Venkatachalam M. Tree Nuts: Composition, Phytochemicals, and Health Effects. CRC Press; Boca Raton, FL, USA: 2009. Chemical composition of edible nut seeds and its implications in human health; pp. 11–35. DOI

Dreher M.L., Davenport A.J. Hass avocado composition and potential health effects. Crit. Rev. Food Sci. Nutr. 2013;53:738–750. doi: 10.1080/10408398.2011.556759. PubMed DOI PMC

Chen C.Y., Lapsley K., Blumberg J. A nutrition and health perspective on almonds. J. Sci. Food Agric. 2006;86:2245–2250. doi: 10.1002/jsfa.2659. DOI

Yada S., Lapsley K., Huang G.W. A review of composition studies of cultivated almonds: Macronutrients and micronutrients. J. Food Compos. Anal. 2011;24:469–480. doi: 10.1016/j.jfca.2011.01.007. DOI

Barreca D., Nabavi S.M., Sureda A., Rasekhian M., Raciti R., Silva A.S., Annunziata G., Arnone A., Tenore G.C., Suntar I., et al. Almonds (Prunus Dulcis Mill. D. A. Webb): A Source of Nutrients and Health-Promoting Compounds. Nutrients. 2020;12:672. doi: 10.3390/nu12030672. PubMed DOI PMC

Roncero J.M., Alvarez-Orti M., Pardo-Gimenez A., Rabadan A., Pardo J.E. Review about Non-Lipid Components and Minor Fat-Soluble Bioactive Compounds of Almond Kernel. Foods. 2020;9:1646. doi: 10.3390/foods9111646. PubMed DOI PMC

Ahmad R.S., Imran A., Hussain M.B. Nutritional Composition of Meat. Volume 61 IntechOpen Limited; London, UK: 2018.

Li C. Ensuring Safety and Quality in the Production of Beef. Volume 2. Burleigh Dodds Series in Agricultural Science; Cambridge, UK: 2017. The role of beef in human nutrition and health; pp. 329–338.

Probst Y. Nutrient Compostion of Chicken Meat. Rural Industries Research and Development Corporation; Kingston, Australia: 2009.

Van Heerden S.M., Schönfeldt H.C., Smith M.F., Jansen van Rensburg D.M. Nutrient Content of South African Chickens. J. Food Compos. Anal. 2002;15:47–64. doi: 10.1006/jfca.2001.1040. DOI

Dunn K.R., Goddard V.R. Effect of heat upon the nutritive values of peanuts; riboflavin and pantothenic acid content. Food Res. 1948;13:512–517. doi: 10.1111/j.1365-2621.1948.tb16652.x. PubMed DOI

Muhamad N., Yusoff M.M., Gimbun J. Thermal degradation kinetics of nicotinic acid, pantothenic acid and catechin derived from Averrhoa bilimbi fruits. RSC Adv. 2015;5:74132–74137. doi: 10.1039/C5RA11950B. DOI

Ford J.E., Hurrell R.F., Finot P.A. Storage of milk powders under adverse conditions. 2. Influence on the content of water-soluble vitamins. Br. J. Nutr. 1983;49:355–364. doi: 10.1079/BJN19830044. PubMed DOI

Gutzeit D., Klaubert B., Rychlik M., Winterhalter P., Jerz G. Effects of processing and of storage on the stability of pantothenic acid in sea buckthorn products (Hippophae rhamnoides L. ssp. rhamnoides) assessed by stable isotope dilution assay. J. Agric. Food Chem. 2007;55:3978–3984. doi: 10.1021/jf070223+. PubMed DOI

Pearson A., West R., Luecke R. The vitamin and amino acid content of drip obtained upon defrosting frozen pork. Food Res. 1959;24:515–519. doi: 10.1111/j.1365-2621.1959.tb17302.x. DOI

Pearson A.M., Burnside J.E., Edwards H.M., Glasscock R.S., Cunha T.J., Novak A.F. Vitamin losses in drip obtained upon defrosting frozen meat. Food Res. 1951;16:85–87. doi: 10.1111/j.1365-2621.1951.tb17354.x. PubMed DOI

Ledesma-Amaro R., Santos M.A., Jiménez A., Revuelta J.L. Microbial production of vitamins. In: McNeil B., Archer D., Giavasis I., Harvey L., editors. Microbial Production of Food Ingredients, Enzymes and Nutraceuticals. Woodhead Publishing; Cambridge, UK: 2013. pp. 571–594.

Shimizu S. Biotechnology. Wiley-VCH; Weinheim, Germany: 2001. Vitamins and Related Compounds: Microbial Production; pp. 318–340.

Shimizu S., Kataoka M., Honda K., Sakamoto K. Lactone-ring-cleaving enzymes of microorganisms: Their diversity and applications. J. Biotechnol. 2001;92:187–194. doi: 10.1016/S0168-1656(01)00359-5. PubMed DOI

Li H., Lu X., Chen K., Yang J., Zhang A., Wang X., Ouyang P. β-alanine production using whole-cell biocatalysts in recombinant Escherichia coli. Mol. Catal. 2018;449:93–98. doi: 10.1016/j.mcat.2018.02.008. DOI

Shen Y., Zhao L., Li Y., Zhang L., Shi G. Synthesis of beta-alanine from L-aspartate using L-aspartate-alpha-decarboxylase from Corynebacterium glutamicum. Biotechnol. Lett. 2014;36:1681–1686. doi: 10.1007/s10529-014-1527-0. PubMed DOI

Wang L., Mao Y., Wang Z., Ma H., Chen T. Advances in biotechnological production of beta-alanine. World J. Microbiol. Biotechnol. 2021;37:79. doi: 10.1007/s11274-021-03042-1. PubMed DOI

Laudert D., Hohmann H.P. Application of Enzymes and Microbes for the Industrial Production of Vitamins and Vitamin-like Compounds. In: Moo-Young M., editor. Comprehensive Biotechnology. Academic Press; Cambridge, MA, USA: 2011. pp. 583–602.

Bonrath W., Netscher T., Eggersdorfer M., Adam G. troduction. In Ullmann’s Encyclopedia of Industrial Chemistry. John Wiley & Sons, Inc.; Hoboken, NJ, USA: 2019. Vitamins, 1; pp. 1–5.

Zu Berstenhorst S.M., Hohmann H.P., Stahmann K.P. Vitamins and Vitamin-like Compounds: Microbial Production. In: Schaechter M., editor. Encyclopedia of Microbiology. Academic Press; Cambridge, MA, USA: 2009. pp. 549–561.

Wang Y., Liu L., Jin Z., Zhang D. Microbial Cell Factories for Green Production of Vitamins. Front. Bioeng. Biotechnol. 2021;9:661562. doi: 10.3389/fbioe.2021.661562. PubMed DOI PMC

Dusch N., Puhler A., Kalinowski J. Expression of the Corynebacterium glutamicum panD gene encoding L-aspartate-alpha-decarboxylase leads to pantothenate overproduction in Escherichia coli. Appl. Environ. Microbiol. 1999;65:1530–1539. doi: 10.1128/AEM.65.4.1530-1539.1999. PubMed DOI PMC

Huser A.T., Chassagnole C., Lindley N.D., Merkamm M., Guyonvarch A., Elisakova V., Patek M., Kalinowski J., Brune I., Puhler A., et al. Rational design of a Corynebacterium glutamicum pantothenate production strain and its characterization by metabolic flux analysis and genome-wide transcriptional profiling. Appl. Environ. Microbiol. 2005;71:3255–3268. doi: 10.1128/AEM.71.6.3255-3268.2005. PubMed DOI PMC

Tigu F., Zhang J., Liu G., Cai Z., Li Y. A highly active pantothenate synthetase from Corynebacterium glutamicum enables the production of D-pantothenic acid with high productivity. Appl. Microbiol. Biotechnol. 2018;102:6039–6046. doi: 10.1007/s00253-018-9017-2. PubMed DOI

Chassagnole C., Diano A., Letisse F., Lindley N.D. Metabolic network analysis during fed-batch cultivation of Corynebacterium glutamicum for pantothenic acid production: First quantitative data and analysis of by-product formation. J. Biotechnol. 2003;104:261–272. doi: 10.1016/S0168-1656(03)00146-9. PubMed DOI

Zhang B., Zhang X.M., Wang W., Liu Z.Q., Zheng Y.G. Metabolic engineering of Escherichia coli for d-pantothenic acid production. Food Chem. 2019;294:267–275. doi: 10.1016/j.foodchem.2019.05.044. PubMed DOI

Zou S.P., Wang Z.J., Zhao K., Zhang B., Niu K., Liu Z.Q., Zheng Y.G. High-level production of d-pantothenic acid from glucose by fed-batch cultivation of Escherichia coli. Biotechnol. Appl. Biochem. 2020;68:1227–1235. doi: 10.1002/bab.2044. PubMed DOI

Zou S.P., Zhao K., Wang Z.J., Zhang B., Liu Z.Q., Zheng Y.G. Overproduction of D-pantothenic acid via fermentation conditions optimization and isoleucine feeding from recombinant Escherichia coli W3110. 3 Biotech. 2021;11:295. doi: 10.1007/s13205-021-02773-0. PubMed DOI PMC

Woollard D.C., Indyk H.E., Christiansen S.K. The analysis of pantothenic acid in milk and infant formulas by HPLC. Food Chem. 2000;69:201–208. doi: 10.1016/S0308-8146(99)00255-1. DOI

Romera J.M., Ramirez M., Gil A. Determination of pantothenic acid in infant milk formulas by high performance liquid chromatography. J. Dairy Sci. 1996;79:523–526. doi: 10.3168/jds.S0022-0302(96)76394-4. PubMed DOI

Mittermayr R., Kalman A., Trisconi M.J., Heudi O. Determination of vitamin B5 in a range of fortified food products by reversed-phase liquid chromatography-mass spectrometry with electrospray ionisation. J. Chromatogr. A. 2004;1032:1–6. doi: 10.1016/j.chroma.2003.11.062. PubMed DOI

Andrieux P., Fontannaz P., Kilinc T., Gimenez E.C. Pantothenic acid (vitamin B5) in fortified foods: Comparison of a novel ultra-performance liquid chromatography-tandem mass spectrometry method and a microbiological assay (AOAC Official Method 992.07) J. AOAC Int. 2012;95:143–148. doi: 10.5740/jaoacint.10-333. PubMed DOI

Lu B., Ren Y., Huang B., Liao W., Cai Z., Tie X. Simultaneous determination of four water-soluble vitamins in fortified infant foods by ultra-performance liquid chromatography coupled with triple quadrupole mass spectrometry. J. Chromatogr. Sci. 2008;46:225–232. doi: 10.1093/chromsci/46.3.225. PubMed DOI

Chakauya E., Coxon K.M., Wei M., Macdonald M.V., Barsby T., Abell C., Smith A.G. Towards engineering increased pantothenate (vitamin B(5)) levels in plants. Plant Mol. Biol. 2008;68:493–503. doi: 10.1007/s11103-008-9386-5. PubMed DOI

Rucker R.B. Pantothenic Acid. Academic Press; Cambridge, MA, USA: 2016.

Czumaj A., Szrok-Jurga S., Hebanowska A., Turyn J., Swierczynski J., Sledzinski T., Stelmanska E. The Pathophysiological Role of CoA. Int. J. Mol. Sci. 2020;21:9057. doi: 10.3390/ijms21239057. PubMed DOI PMC

Mindrebo J.T., Patel A., Misson L.E., Kim W.E., Davis T.D., Ni Q.Z., La Clair J.J., Burkart M.D. 1.04-Structural Basis of Acyl-Carrier Protein Interactions in Fatty Acid and Polyketide Biosynthesis. In: Hung-Wen L., Begley T.P., editors. Comprehensive Natural Products III. Elsevier; Amsterdam, The Netherlands: 2020.

Naquet P., Kerr E.W., Vickers S.D., Leonardi R. Regulation of coenzyme A levels by degradation: The “Ins and Outs”. Prog. Lipid Res. 2020;78:101028. doi: 10.1016/j.plipres.2020.101028. PubMed DOI PMC

Goding J.W., Grobben B., Slegers H. Physiological and pathophysiological functions of the ecto-nucleotide pyrophosphatase/phosphodiesterase family. Biochim. Biophys. Acta. 2003;1638:1–19. doi: 10.1016/S0925-4439(03)00058-9. PubMed DOI

Shibata K., Gross C.J., Henderson L.M. Hydrolysis and absorption of pantothenate and its coenzymes in the rat small intestine. J. Nutr. 1983;113:2107–2115. doi: 10.1093/jn/113.10.2107. PubMed DOI

Bartucci R., Salvati A., Olinga P., Boersma Y.L. Vanin 1: Its Physiological Function and Role in Diseases. Int. J. Mol. Sci. 2019;20:3891. doi: 10.3390/ijms20163891. PubMed DOI PMC

Turner J.B., Hughes D.E. The absorption of some B-group vitamins by surviving rat intestine preparations. Q. J. Exp. Physiol. Cogn. Med. Sci. 1962;47:107–133. doi: 10.1113/expphysiol.1962.sp001582. PubMed DOI

Prasad P.D., Wang H., Huang W., Fei Y.J., Leibach F.H., Devoe L.D., Ganapathy V. Molecular and functional characterization of the intestinal Na+-dependent multivitamin transporter. Arch. Biochem. Biophys. 1999;366:95–106. doi: 10.1006/abbi.1999.1213. PubMed DOI

Ono S., Kameda K., Abiko Y. Metabolism of panthethine in the rat. J. Nutr. Sci. Vitam. 1974;20:203–213. doi: 10.3177/jnsv.20.203. PubMed DOI

Wittwer C.T., Gahl W.A., Butler J.D., Zatz M., Thoene J.G. Metabolism of pantethine in cystinosis. J. Clin. Investig. 1985;76:1665–1672. doi: 10.1172/JCI112152. PubMed DOI PMC

Karnitz L.M., Gross C.J., Henderson L.M. Transport and metabolism of pantothenic acid by rat kidney. Biochim. Biophys. Acta. 1984;769:486–492. doi: 10.1016/0005-2736(84)90334-1. PubMed DOI

Eissenstat B.R., Wyse B.W., Hansen R.G. Pantothenic acid status of adolescents. Am. J. Clin. Nutr. 1986;44:931–937. doi: 10.1093/ajcn/44.6.931. PubMed DOI

Annous K.F., Song W.O. Pantothenic acid uptake and metabolism by red blood cells of rats. J. Nutr. 1995;125:2586–2593. doi: 10.1093/jn/125.10.2586. PubMed DOI

Vadlapudi A.D., Vadlapatla R.K., Mitra A.K. Sodium dependent multivitamin transporter (SMVT): A potential target for drug delivery. Curr. Drug Targets. 2012;13:994–1003. doi: 10.2174/138945012800675650. PubMed DOI PMC

Grassl S.M. Human placental brush-border membrane Na(+)-pantothenate cotransport. J. Biol. Chem. 1992;267:22902–22906. doi: 10.1016/S0021-9258(18)50032-6. PubMed DOI

Uchida Y., Ito K., Ohtsuki S., Kubo Y., Suzuki T., Terasaki T. Major involvement of Na(+) -dependent multivitamin transporter (SLC5A6/SMVT) in uptake of biotin and pantothenic acid by human brain capillary endothelial cells. J. Neurochem. 2015;134:97–112. doi: 10.1111/jnc.13092. PubMed DOI

Boger W.P., Bayne G.M., Gylfe J., Wright L.D. Renal clearance of pantothenic acid in man; inhibition by probenecid (benemid) Proc. Soc. Exp. Biol. Med. 1953;82:604–608. doi: 10.3181/00379727-82-20191. PubMed DOI

Spector H., Hamilton T.S., Mitchell H.H. The effect of pantothenic acid dosage and environmental temperature and humidity upon the dermal and renal excretion of pantothenic acid. J. Biol. Chem. 1945;161:145–152. doi: 10.1016/S0021-9258(17)41531-6. PubMed DOI

Tsuji T., Fukuwatari T., Sasaki S., Shibata K. Urinary excretion of vitamin B1, B2, B6, niacin, pantothenic acid, folate, and vitamin C correlates with dietary intakes of free-living elderly, female Japanese. Nutr. Res. 2010;30:171–178. doi: 10.1016/j.nutres.2010.02.001. PubMed DOI

Tsuji T., Fukuwatari T., Sasaki S., Shibata K. Twenty-four-hour urinary water-soluble vitamin levels correlate with their intakes in free-living Japanese university students. Eur. J. Clin. Nutr. 2010;64:800–807. doi: 10.1038/ejcn.2010.72. PubMed DOI

Hodges R.E., Ohlson M.A., Bean W.B. Pantothenic acid deficiency in man. J. Clin. Investig. 1958;37:1642–1657. doi: 10.1172/JCI103756. PubMed DOI PMC

Hodges R.E., Bean W.B., Ohlson M.A., Bleiler R. Human pantothenic acid deficiency produced by omega-methyl pantothenic acid. J. Clin. Investig. 1959;38:1421–1425. doi: 10.1172/JCI103918. PubMed DOI PMC

Drell W., Dunn M.S. Production of pantothenic acid deficiency syndrome in mice with-methylpantothenic acid. Arch. Biochem. Biophys. 1951;33:110–119. doi: 10.1016/0003-9861(51)90085-9. PubMed DOI

Pudelkewicz C., Roderuck C. Pantothenic acid deficiency in the young guinea pig. J. Nutr. 1960;70:348–352. doi: 10.1093/jn/70.3.348. PubMed DOI

Bean W.B., Hodges R.E., Daum K. Pantothenic acid deficiency induced in human subjects. J. Clin. Investig. 1955;34:1073–1084. doi: 10.1172/JCI103156. PubMed DOI PMC

Nelson M.M., Evans H.M. Pantothenic acid deficiency and reproduction in the rat. J. Nutr. 1946;31:497–507. doi: 10.1093/jn/31.4.497. PubMed DOI

Chen M.-C., Song Y., Song W.O. Fetal growth retardation and death in pantothenic acid-deficient rats is due to imparired placental function. J. Nutr. Biochem. 1996;7:451–456. doi: 10.1016/0955-2863(96)00078-2. DOI

Olson R.E., Kaplan N.O. The effect of pantothenic acid deficiency upon the coenzyme A content and pyruvate utilization of rat and duck tissues. J. Biol. Chem. 1948;175:515–529. doi: 10.1016/S0021-9258(18)57172-6. PubMed DOI

Schaefer A.E., McKibbin J.M., Elvehjem C.A. Pantothenic acid deficiency studies in the dog. J. Biol. Chem. 1942;143:321–330. doi: 10.1016/S0021-9258(18)72619-7. DOI

Guehring R.R., Hurley L.S., Morgan A.F. Cholesterol metabolism in pantothenic acid deficiency. J. Biol. Chem. 1952;197:485–493. doi: 10.1016/S0021-9258(18)55603-9. PubMed DOI

Fry P.C., Fox H.M., Tao H.G. Metabolic response to a pantothenic acid deficient diet in humans. J. Nutr. Sci. Vitam. 1976;22:339–346. doi: 10.3177/jnsv.22.339. PubMed DOI

Xu J., Patassini S., Begley P., Church S., Waldvogel H.J., Faull R.L.M., Unwin R.D., Cooper G.J.S. Cerebral deficiency of vitamin B5 (d-pantothenic acid; pantothenate) as a potentially-reversible cause of neurodegeneration and dementia in sporadic Alzheimer’s disease. Biochem. Biophys. Res. Commun. 2020;527:676–681. doi: 10.1016/j.bbrc.2020.05.015. PubMed DOI

Johnson M.A., Kuo Y.M., Westaway S.K., Parker S.M., Ching K.H., Gitschier J., Hayflick S.J. Mitochondrial localization of human PANK2 and hypotheses of secondary iron accumulation in pantothenate kinase-associated neurodegeneration. Ann. N. Y. Acad. Sci. 2004;1012:282–298. doi: 10.1196/annals.1306.023. PubMed DOI

Kurian M.A., McNeill A., Lin J.P., Maher E.R. Childhood disorders of neurodegeneration with brain iron accumulation (NBIA) Dev. Med. Child Neurol. 2011;53:394–404. doi: 10.1111/j.1469-8749.2011.03955.x. PubMed DOI

Pratini N.R., Sweeters N., Vichinsky E., Neufeld J.A. Treatment of classic pantothenate kinase-associated neurodegeneration with deferiprone and intrathecal baclofen. Am. J. Phys. Med. Rehabil. 2013;92:728–733. doi: 10.1097/PHM.0b013e318282d209. PubMed DOI PMC

Gregory A., Hayflick S.J. Pantothenate Kinase-Associated Neurodegeneration. In: Adam M.P., Ardinger H.H., Pagon R.A., Wallace S.E., Bean L.J.H., Mirzaa G., Amemiya A., editors. GeneReviews®. University of Washington; Seattle, WA, USA: 1993. PubMed

Hatano M. Pantothenic acid deficiency in rats. J. Vitam. 1962;8:143–159. doi: 10.5925/jnsv1954.8.143. PubMed DOI

Seronde J., Jr. The Pathogenesis of Duodenal Ulcer Disease in the Pantothenate-Deficient Rat. Yale J. Biol. Med. 1963;36:141–156. PubMed PMC

Jones J.H., Foster C., Dorfman F., Hunter G.L., Quinby M.E., Alexander D.L. Effects on the Albino Mouse of Feeding Diets Very Deficient in Each of Several Vitamin B Factors. J. Nutr. 1945;29:127–136. doi: 10.1093/jn/29.2.127. DOI

Berg B.N. Duodenitis and duodenal ulcers produced in rats by pantothenic acid deficiency. Br. J. Exp. Pathol. 1959;40:371–374. PubMed PMC

Osborn M.O., Weaver C., Anderson J. Cholesterol in blood and tissues of adult pantothenic acid-deficient rats. J. Nutr. 1958;64:313–319. doi: 10.1093/jn/64.2.313. PubMed DOI

Groody T.C., Groody M.E. Feather Depigmentation and Pantothenic Acid Deficiency in Chicks. Science. 1942;95:655–656. doi: 10.1126/science.95.2478.655. PubMed DOI

Gries C.L., Scott M.L. The pathology of thiamin, riboflavin, pantothenic acid and niacin deficiencies in the chick. J. Nutr. 1972;102:1269–1285. doi: 10.1093/jn/102.10.1269. PubMed DOI

Jukes T.H. Pantothenic acid and the filtrate (chick anti-dermatitis) factor. J. Am. Chem. Soc. 1939;61:975–976. doi: 10.1021/ja01873a515. DOI

Wintrobe M.M., Follis R.H., Jr., Alcayaga R., Paulson M., Humphreys S. Pantothenic acid deficiency in swine with particular reference to the effects on growth and on the alimentary tract. Bul. Johns Hopkins Hosp. 1943;73:313–341.

Follis R.H., Wintrobe M.M. A Comparison of the Effects of Pyridoxine and Pantothenic Acid Deficiencies on the Nervous Tissues of Swine. J. Exp. Med. 1945;81:539–552. doi: 10.1084/jem.81.6.539. PubMed DOI PMC

Nelson R.A. Intestinal transport, coenzyme A, and colitis in pantothenic acid deficiency. Am. J. Clin. Nutr. 1968;21:495–501. doi: 10.1093/ajcn/21.5.495. PubMed DOI

Silber R.H. Studies of Pantothenic Acid Deficiency in Dogs: Three Figures. J. Nutr. 1944;27:425–433. doi: 10.1093/jn/27.5.25. DOI

Wittwer C.T., Graves C.P., Peterson M.A., Jorgensen E., Wilson D.E., Thoene J.G., Wyse B.W., Windham C.T., Hansen R.G. Pantethine lipomodulation: Evidence for cysteamine mediation in vitro and in vivo. Atherosclerosis. 1987;68:41–49. doi: 10.1016/0021-9150(87)90092-X. PubMed DOI

Evans M., Rumberger J.A., Azumano I., Napolitano J.J., Citrolo D., Kamiya T. Pantethine, a derivative of vitamin B5, favorably alters total, LDL and non-HDL cholesterol in low to moderate cardiovascular risk subjects eligible for statin therapy: A triple-blinded placebo and diet-controlled investigation. Vasc. Health Risk Manag. 2014;10:89–100. doi: 10.2147/VHRM.S57116. PubMed DOI PMC

Gaddi A., Descovich G.C., Noseda G., Fragiacomo C., Colombo L., Craveri A., Montanari G., Sirtori C.R. Controlled evaluation of pantethine, a natural hypolipidemic compound, in patients with different forms of hyperlipoproteinemia. Atherosclerosis. 1984;50:73–83. doi: 10.1016/0021-9150(84)90009-1. PubMed DOI

Arsenio L., Caronna S., Lateana M., Magnati G., Strata A., Zammarchi G. Hyperlipidemia, diabetes and atherosclerosis: Efficacy of treatment with pantethine. Acta Biomed. Ateneo Parm. 1984;55:25–42. PubMed

Donati C., Bertieri R.S., Barbi G. Pantethine, diabetes mellitus and atherosclerosis. Clinical study of 1045 patients. Clin. Ter. 1989;128:411–422. PubMed

Coronel F., Tornero F., Torrente J., Naranjo P., De Oleo P., Macia M., Barrientos A. Treatment of hyperlipemia in diabetic patients on dialysis with a physiological substance. Am. J. Nephrol. 1991;11:32–36. doi: 10.1159/000168269. PubMed DOI

Orloff S., Butler J.D., Towne D., Mukherjee A.B., Schulman J.D. Pantetheinase activity and cysteamine content in cystinotic and normal fibroblasts and leukocytes. Pediatr. Res. 1981;15:1063–1067. doi: 10.1203/00006450-198107000-00018. PubMed DOI

Capodice J.L. Feasibility, Tolerability, Safety and Efficacy of a Pantothenic Acid Based Dietary Supplement in Subjects with Mild to Moderate Facial Acne Blemishes. J. Cosmet. Dermatol. Sci. Appl. 2012;2:132–135. doi: 10.4236/jcdsa.2012.23026. DOI

Yang M., Moclair B., Hatcher V., Kaminetsky J., Mekas M., Chapas A., Capodice J. A randomized, double-blind, placebo-controlled study of a novel pantothenic Acid-based dietary supplement in subjects with mild to moderate facial acne. Dermatol. Ther. 2014;4:93–101. doi: 10.1007/s13555-014-0052-3. PubMed DOI PMC

Proksch E., de Bony R., Trapp S., Boudon S. Topical use of dexpanthenol: A 70th anniversary article. J. Dermatol. Treat. 2017;28:766–773. doi: 10.1080/09546634.2017.1325310. PubMed DOI

Wollina U., Kubicki J. Dexpanthenol supports healing of superficial wounds and injuries. Kosm. Med. 2006;27:240–249.

Proksch E., Nissen H.P. Dexpanthenol enhances skin barrier repair and reduces inflammation after sodium lauryl sulphate-induced irritation. J. Dermatol. Treat. 2002;13:173–178. doi: 10.1080/09546630212345674. PubMed DOI

Stettler H., Kurka P., Lunau N., Manger C., Bohling A., Bielfeldt S., Wilhelm K.P., Dahnhardt-Pfeiffer S., Dahnhardt D., Brill F.H., et al. A new topical panthenol-containing emollient: Results from two randomized controlled studies assessing its skin moisturization and barrier restoration potential, and the effect on skin microflora. J. Dermatol. Treat. 2017;28:173–180. doi: 10.1080/09546634.2016.1214235. PubMed DOI

Heise R., Schmitt L., Huth L., Krings L., Kluwig D., Katsoulari K.V., Steiner T., Holzle F., Baron J.M., Huth S. Accelerated wound healing with a dexpanthenol-containing ointment after fractional ablative CO2 laser resurfacing of photo-damaged skin in a randomized prospective clinical trial. Cutan. Ocul. Toxicol. 2019;38:274–278. doi: 10.1080/15569527.2019.1597879. PubMed DOI

Wananukul S., Limpongsanuruk W., Singalavanija S., Wisuthsarewong W. Comparison of dexpanthenol and zinc oxide ointment with ointment base in the treatment of irritant diaper dermatitis from diarrhea: A multicenter study. J. Med. Assoc. Thai. 2006;89:1654–1658. PubMed

Olsavszky R., Nanu E.A., Macura-Biegun A., Kurka P., Trapp S. Skin barrier restoration upon topical use of two 5% dexpanthenol water-in-oil formulations on freshly tattooed skin: Results from a single-blind prospective study. Wounds Int. 2019;10:33–39.

Udompataikul M., Limpa-o-vart D. Comparative trial of 5% dexpanthenol in water-in-oil formulation with 1% hydrocortisone ointment in the treatment of childhood atopic dermatitis: A pilot study. J. Drugs Dermatol. 2012;11:366–374. PubMed

Shanazi M., Farshbaf Khalili A., Kamalifard M., Asghari Jafarabadi M., Masoudin K., Esmaeli F. Comparison of the Effects of Lanolin, Peppermint, and Dexpanthenol Creams on Treatment of Traumatic Nipples in Breastfeeding Mothers. J. Caring Sci. 2015;4:297–307. doi: 10.15171/jcs.2015.030. PubMed DOI PMC

Hamdi I.M. Effect of D-Panthenol on Corneal Epithelial Healing after Surface Laser Ablation. J. Ophthalmol. 2018;2018:6537413. doi: 10.1155/2018/6537413. PubMed DOI PMC

Gobbels M., Gross D. Clinical study of the effectiveness of a dexpanthenol containing artificial tears solution (Siccaprotect) in treatment of dry eyes. Klin. Monbl. Augenheilkd. 1996;209:84–88. doi: 10.1055/s-2008-1035283. PubMed DOI

Jagade M.V., Langade D.G., Pophale R.R., Prabhu A. Oxymetazoline plus dexpanthenol in nasal congestion. Indian J. Otolaryngol. Head Neck Surg. 2008;60:393–397. doi: 10.1007/s12070-008-0125-7. PubMed DOI PMC

Kehrl W., Sonnemann U., Dethlefsen U. Advance in therapy of acute rhinitis—Comparison of efficacy and safety of xylometazoline in combination xylometazoline-dexpanthenol in patients with acute rhinitis. Laryngo-Rhino-Otologie. 2003;82:266–271. doi: 10.1055/s-2003-38941. PubMed DOI

Kehrl W., Sonnemann U. Improving wound healing after nose surgery by combined administration of xylometazoline and dexpanthenol. Laryngo-Rhino-Otologie. 2000;79:151–154. doi: 10.1055/s-2000-295. PubMed DOI

Unna K., Greslin J.G. Studies on the toxicity and pharmacology of pantothenic acid. J. Pharmacol. Exp. Ther. 1941;76:85–90.

Flodin N.W. Pharmacology of Micronutrients. A.R. Liss; New York, NY, USA: 1988. 340p

Debourdeau P.M., Djezzar S., Estival J.L., Zammit C.M., Richard R.C., Castot A.C. Life-threatening eosinophilic pleuropericardial effusion related to vitamins B5 and H. Ann. Pharmacother. 2001;35:424–426. doi: 10.1345/aph.10213. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...