Biological Properties of Vitamins of the B-Complex, Part 1: Vitamins B1, B2, B3, and B5
Language English Country Switzerland Media electronic
Document type Journal Article, Review
PubMed
35276844
PubMed Central
PMC8839250
DOI
10.3390/nu14030484
PII: nu14030484
Knihovny.cz E-resources
- Keywords
- essential, niacin, pantothenic acid, riboflavin, thiamine,
- MeSH
- Avitaminosis * MeSH
- Humans MeSH
- Thiamine MeSH
- Vitamin A MeSH
- Vitamin B Complex * MeSH
- Vitamin K MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Thiamine MeSH
- Vitamin A MeSH
- Vitamin B Complex * MeSH
- Vitamin K MeSH
This review summarizes the current knowledge on essential vitamins B1, B2, B3, and B5. These B-complex vitamins must be taken from diet, with the exception of vitamin B3, that can also be synthetized from amino acid tryptophan. All of these vitamins are water soluble, which determines their main properties, namely: they are partly lost when food is washed or boiled since they migrate to the water; the requirement of membrane transporters for their permeation into the cells; and their safety since any excess is rapidly eliminated via the kidney. The therapeutic use of B-complex vitamins is mostly limited to hypovitaminoses or similar conditions, but, as they are generally very safe, they have also been examined in other pathological conditions. Nicotinic acid, a form of vitamin B3, is the only exception because it is a known hypolipidemic agent in gram doses. The article also sums up: (i) the current methods for detection of the vitamins of the B-complex in biological fluids; (ii) the food and other sources of these vitamins including the effect of common processing and storage methods on their content; and (iii) their physiological function.
See more in PubMed
Spedding S. Vitamins are more Funky than Casimir thought. Australas. Med. J. 2013;6:104–106. doi: 10.4066/AMJ.2013.1588. PubMed DOI PMC
Tylicki A., Lotowski Z., Siemieniuk M., Ratkiewicz A. Thiamine and selected thiamine antivitamins-biological activity and methods of synthesis. Biosci. Rep. 2018;38:1–23. doi: 10.1042/BSR20171148. PubMed DOI PMC
Goodman L.S., Brunton L.L., Chabner B., Knollmann B.R.C. Goodman & Gilman’s Pharmacological Basis of Therapeutics. McGraw-Hill; New York, NY, USA: 2011.
Brown G. Defects of thiamine transport and metabolism. J. Inherit. Metab. Dis. 2014;37:577–585. doi: 10.1007/s10545-014-9712-9. PubMed DOI
Manzetti S., Zhang J., Van der Spoel D. Thiamin function, metabolism, uptake, and transport. Biochemistry. 2014;53:821–835. doi: 10.1021/bi401618y. PubMed DOI
Lonsdale D. A review of the biochemistry, metabolism and clinical benefits of thiamin(e) and its derivatives. Evid. Based Complement. Altern. Med. 2006;3:49–59. doi: 10.1093/ecam/nek009. PubMed DOI PMC
Bettendorff L., Wirtzfeld B., Makarchikov A.F., Mazzucchelli G., Frederich M., Gigliobianco T., Gangolf M., De Pauw E., Angenot L., Wins P. Discovery of a natural thiamine adenine nucleotide. Nat. Chem. Biol. 2007;3:211–212. doi: 10.1038/nchembio867. PubMed DOI
Jurgenson C.T., Begley T.P., Ealick S.E. The structural and biochemical foundations of thiamin biosynthesis. Annu. Rev. Biochem. 2009;78:569–603. doi: 10.1146/annurev.biochem.78.072407.102340. PubMed DOI PMC
Bocobza S.E., Aharoni A. Switching the light on plant riboswitches. Trends Plant Sci. 2008;13:526–533. doi: 10.1016/j.tplants.2008.07.004. PubMed DOI
Du Q., Wang H., Xie J. Thiamin (vitamin B1) biosynthesis and regulation: A rich source of antimicrobial drug targets? Int. J. Biol. Sci. 2011;7:41–52. doi: 10.7150/ijbs.7.41. PubMed DOI PMC
Wolak N., Zawrotniak M., Gogol M., Kozik A., Rapala-Kozik M. Vitamins B1, B2, B3 and B9-Occurrence, Biosynthesis Pathways and Functions in Human Nutrition. Mini Rev. Med. Chem. 2017;17:1075–1111. doi: 10.2174/1389557516666160725095729. PubMed DOI
Fitzpatrick T.B., Chapman L.M. The importance of thiamine (vitamin B1) in plant health: From crop yield to biofortification. J. Biol. Chem. 2020;295:12002–12013. doi: 10.1074/jbc.REV120.010918. PubMed DOI PMC
Ejsmond M.J., Blackburn N., Fridolfsson E., Haecky P., Andersson A., Casini M., Belgrano A., Hylander S. Modeling vitamin B1 transfer to consumers in the aquatic food web. Sci. Rep. 2019;9:10045. doi: 10.1038/s41598-019-46422-2. PubMed DOI PMC
Yoshii K., Hosomi K., Sawane K., Kunisawa J. Metabolism of Dietary and Microbial Vitamin B Family in the Regulation of Host Immunity. Front. Nutr. 2019;6:48. doi: 10.3389/fnut.2019.00048. PubMed DOI PMC
Fattal-Valevski A. Thiamine (Vitamin B1) J. Evid. Based Integr. Med. 2011;16:12–20. doi: 10.1177/1533210110392941. DOI
Turck D., Bresson J.L., Burlingame B., Dean T., Fairweather-Tait S., Heinonen M., Hirsch-Ernst K.I., Mangelsdorf I., McArdle H.J., Naska A., et al. Dietary reference values for thiamin. EFSA J. 2016;14:e04653. doi: 10.2903/j.efsa.2016.4653. DOI
Chawla J., Kvarnberg D. Hydrosoluble Vitamins. Volume 120. Elsevier B.V.; Amsterdam, The Netherlands: 2014. pp. 891–914. PubMed
O’Connor A. An overview of the role of bread in the UK diet. Nutr. Bull. 2012;37:193–212. doi: 10.1111/j.1467-3010.2012.01975.x. DOI
Lockyer S., Spiro A. The role of bread in the UK diet: An update. Nutr. Bull. 2020;45:133–164. doi: 10.1111/nbu.12435. DOI
Bonku R., Yu J.M. Health aspects of peanuts as an outcome of its chemical composition. Food Sci. Hum. Wellness. 2020;9:21–30. doi: 10.1016/j.fshw.2019.12.005. DOI
Stuetz W., Schlormann W., Glei M. B-vitamins, carotenoids and alpha-/gamma-tocopherol in raw and roasted nuts. Food Chem. 2017;221:222–227. doi: 10.1016/j.foodchem.2016.10.065. PubMed DOI
Prinzo Z.W. Thiamine Deficiency and Its Prevention and Control in Major Emergencies. Department of Nutrition for Health and Development, World Health Organisation; Geneva, Switzerland: 1999.
Whitfield K.C., Bourassa M.W., Adamolekun B., Bergeron G., Bettendorff L., Brown K.H., Cox L., Fattal-Valevski A., Fischer P.R., Frank E.L., et al. Thiamine deficiency disorders: Diagnosis, prevalence, and a roadmap for global control programs. Ann. N. Y. Acad. Sci. 2018;1430:3–43. doi: 10.1111/nyas.13919. PubMed DOI PMC
Pacei F., Tesone A., Laudi N., Laudi E., Cretti A., Pnini S., Varesco F., Colombo C. The Relevance of Thiamine Evaluation in a Practical Setting. Nutrients. 2020;12:2810. doi: 10.3390/nu12092810. PubMed DOI PMC
Panijpan B., Ratanaubolchai K. Kinetics of thiamine-polyphenol interactions and mechanism of thiamine disulphide formation. Int. J. Vitam. Nutr. Res. 1980;50:247–253. PubMed
Dhir S., Tarasenko M., Napoli E., Giulivi C. Neurological, Psychiatric, and Biochemical Aspects of Thiamine Deficiency in Children and Adults. Front. Psychiatry. 2019;10:207. doi: 10.3389/fpsyt.2019.00207. PubMed DOI PMC
Hilker D.M., Somogyi J.C. Antithiamins of plant origin: Their chemical nature and mode of action. Ann. N. Y. Acad. Sci. 1982;378:137–145. doi: 10.1111/j.1749-6632.1982.tb31192.x. PubMed DOI
Frank L.L. Thiamin in Clinical Practice. JPEN J. Parenter Enter. Nutr. 2015;39:503–520. doi: 10.1177/0148607114565245. PubMed DOI
Vimokesant S., Kunjara S., Rungruangsak K., Nakornchai S., Panijpan B. Beriberi caused by antithiamin factors in food and its prevention. Ann. N. Y. Acad. Sci. 1982;378:123–136. doi: 10.1111/j.1749-6632.1982.tb31191.x. PubMed DOI
Fabre B., Geay B., Beaufils P. Thiaminase activity in Equisetum arvense and its extracts. Plant Méd. Phytothér. 1993;26:190–197.
Yang P.F., Pratt D.E. Antithiamin Activity of Polyphenolic Antioxidants. J. Food Sci. 1984;49:489–492. doi: 10.1111/j.1365-2621.1984.tb12448.x. DOI
Sannino D., Angert E.R. Genomic insights into the thiamin metabolism of Paenibacillus thiaminolyticus NRRL B-4156 and P. apiarius NRRL B-23460. Stand. Genom. Sci. 2017;12:59. doi: 10.1186/s40793-017-0276-9. PubMed DOI PMC
Wang R.S., Kies C. Niacin, thiamin, iron and protein status of humans as affected by the consumption of tea (Camellia sinensis) infusions. Plant Foods Hum. Nutr. 1991;41:337–353. doi: 10.1007/BF02310628. PubMed DOI
Nishimune T., Watanabe Y., Okazaki H., Akai H. Thiamin is decomposed due to Anaphe spp. entomophagy in seasonal ataxia patients in Nigeria. J. Nutr. 2000;130:1625–1628. doi: 10.1093/jn/130.6.1625. PubMed DOI
Ringe H., Schuelke M., Weber S., Dorner B.G., Kirchner S., Dorner M.B. Infant botulism: Is there an association with thiamine deficiency? Pediatrics. 2014;134:e1436–e1440. doi: 10.1542/peds.2013-3378. PubMed DOI
Taungbodhitham A.K. Thiamin Content and Activity of Antithiamin Factor in Vegetables of Southern Thailand. Food Chem. 1995;52:285–288. doi: 10.1016/0308-8146(95)92825-5. DOI
Somogyi J.C. On antithiamine factors of fern. J. Vitam. 1971;17:165–174. doi: 10.5925/jnsv1954.17.165. PubMed DOI
Murata K., Tanaka R., Yamaoka M. Reaction mechanisms of thiamine with thermostable factors. J. Nutr. Sci. Vitam. 1974;20:351–362. doi: 10.3177/jnsv.20.351. PubMed DOI
Rungruangsak K., Tosukhowong P., Panijpan B., Vimokesant S.L. Chemical interactions between thiamin and tannic acid. I. Kinetics, oxygen dependence and inhibition by ascorbic acid. Am. J. Clin. Nutr. 1977;30:1680–1685. doi: 10.1093/ajcn/30.10.1680. PubMed DOI
Wills R.B.H., McBrien K.J. Antithiamin activity of tea fractions. Food Chem. 1980;6:111–114. doi: 10.1016/0308-8146(80)90026-6. DOI
Somogyi J.C., Bonicke R. Connection between chemical structure and antithiamine activity of various phenol derivatives. Bibl. Nutr. Dieta. 1970;15:180. PubMed
Somogyi J.C., Nageli U. Antithiamine effect of coffee. Int. J. Vitam. Nutr. Res. 1976;46:149–153. PubMed
Hilker D.M. Antithiamine factors in blueberries. Int. Z. Vitam. 1968;38:387–391. PubMed
Schaller K., Holler H. Thiamine absorption in the rat. IV. Effects of caffeic acid (3,4-dihydroxycinnamic acid) upon absorption and active transport of thiamine. Int. J. Vitam. Nutr. Res. 1976;46:143–148. PubMed
Beruter J., Somogyi J.C. 3,4-Dihydroxycinnamic acid, an antithiamine factor of fern. Experientia. 1967;23:996–997. doi: 10.1007/BF02136405. PubMed DOI
Horman I., Brambilla E., Stalder R. Evidence against the reported antithiamine effect of caffeic and chlorogenic acids. Int. J. Vitam. Nutr. Res. 1981;51:385–390. PubMed
Zhang F., Masania J., Anwar A., Xue M., Zehnder D., Kanji H., Rabbani N., Thornalley P.J. The uremic toxin oxythiamine causes functional thiamine deficiency in end-stage renal disease by inhibiting transketolase activity. Kidney Int. 2016;90:396–403. doi: 10.1016/j.kint.2016.03.010. PubMed DOI
Burns A., Gleadow R., Cliff J., Zacarias A., Cavagnaro T. Cassava: The Drought, War and Famine Crop in a Changing World. Sustainability. 2010;2:3572–3607. doi: 10.3390/su2113572. DOI
Leichter J., Joslyn M.A. Kinetics of thiamin cleavage by sulphite. Biochem. J. 1969;113:611–615. doi: 10.1042/bj1130611. PubMed DOI PMC
Vanier N.L., Paraginski R.T., Berrios J.D., Oliveira L.D., Elias M.C. Thiamine content and technological quality properties of parboiled rice treated with sodium bisulfite: Benefits and food safety risk. J. Food Compos. Anal. 2015;41:98–103. doi: 10.1016/j.jfca.2015.02.008. DOI
Ottaway P.B. Stability of Vitamins during Food Processing and Storage. Woodhead Publishing Ltd.; Cambridge, UK: 2010. pp. 545–548, 553–556.
Yagi N., Itokawa Y. Cleavage of thiamine by chlorine in tap water. J. Nutr. Sci. Vitam. 1979;25:281–287. doi: 10.3177/jnsv.25.281. PubMed DOI
Kimura M., Itokawa Y., Fujiwara M. Cooking losses of thiamin in food and its nutritional significance. J. Nutr. Sci. Vitam. 1990;36:S17–S24. doi: 10.3177/jnsv.36.4-SupplementI_S17. PubMed DOI
Dwivedi B.K., Arnold R.G. Chemistry of thiamine degradation in food products and model systems: A review. J. Agric. Food Chem. 1973;21:54–60. doi: 10.1021/jf60185a004. PubMed DOI
Kaplan Evlice A., Özkaya H. Effects of wheat cultivar, cooking method, and bulgur type on nutritional quality characteristics of bulgur. J. Cereal Sci. 2020;96:103124. doi: 10.1016/j.jcs.2020.103124. DOI
Calinoiu L.F., Vodnar D.C. Whole Grains and Phenolic Acids: A Review on Bioactivity, Functionality, Health Benefits and Bioavailability. Nutrients. 2018;10:1615. doi: 10.3390/nu10111615. PubMed DOI PMC
Oghbaei M., Prakash J., Yildiz F. Effect of primary processing of cereals and legumes on its nutritional quality: A comprehensive review. Cogent. Food Agric. 2016;2:1136015. doi: 10.1080/23311932.2015.1136015. DOI
Batifoulier F., Verny M.A., Chanliaud E., Remesy C., Demigne C. Variability of B vitamin concentrations in wheat grain, milling fractions and bread products. Eur. J. Agron. 2006;25:163–169. doi: 10.1016/j.eja.2006.04.009. DOI
Létinois U., Moine G., Hohmann H.P. Ullmann’s Encyclopedia of Industrial Chemistry. John Wiley & Sons, Inc.; Hoboken, NJ, USA: 2020. 6. Vitamin B1(Thiamin) pp. 1–22.
Liu K.L., Zheng J.B., Chen F.S. Relationships between degree of milling and loss of Vitamin B, minerals, and change in amino acid composition of brown rice. LWT Food Sci. Technol. 2017;82:429–436. doi: 10.1016/j.lwt.2017.04.067. DOI
Tiozon R.N., Fernie A.R., Sreenivasulu N. Meeting human dietary vitamin requirements in the staple rice via strategies of biofortification and post-harvest fortification. Trends Food Sci. Technol. 2021;109:65–82. doi: 10.1016/j.tifs.2021.01.023. DOI
Suri D.J., Tanumihardjo S.A. Effects of Different Processing Methods on the Micronutrient and Phytochemical Contents of Maize: From A to Z. Compr. Rev. Food Sci. Food Saf. 2016;15:912–926. doi: 10.1111/1541-4337.12216. PubMed DOI
Gwirtz J.A., Garcia-Casal M.N. Processing maize flour and corn meal food products. Ann. N. Y. Acad. Sci. 2014;1312:66–75. doi: 10.1111/nyas.12299. PubMed DOI PMC
Voelker A.L., Miller J., Running C.A., Taylor L.S., Mauer L.J. Chemical stability and reaction kinetics of two thiamine salts (thiamine mononitrate and thiamine chloride hydrochloride) in solution. Food Res. Int. 2018;112:443–456. doi: 10.1016/j.foodres.2018.06.056. PubMed DOI
Rekha P.N., Singhal S., Pandit A.B. A study on degradation kinetics of thiamine in red gram splits (Cajanus cajan L.) Food Chem. 2004;85:591–598. doi: 10.1016/j.foodchem.2003.08.004. DOI
European Food Safety Authority Benfotiamine, thiamine monophosphate chloride and thiamine pyrophosphate chloride, as sources of vitamin B1 added for nutritional purposes to food supplements-Scientific Opinion of the Panel on Food Additives and Nutrient Sources added to Food (ANS) EFSA J. 2008;6:864. doi: 10.2903/j.efsa.2008.864. DOI
Voelker A.L., Taylor L.S., Mauer L.J. Chemical stability and reaction kinetics of thiamine mononitrate in the aqueous phase of bread dough. Food Res. Int. 2021;140:110084. doi: 10.1016/j.foodres.2020.110084. PubMed DOI
Dionísio A.P., Gomes R.T., Oetterer M. Ionizing radiation effects on food vitamins: A review. Braz. Arch. Biol. Technol. 2009;52:1267–1278. doi: 10.1590/S1516-89132009000500026. DOI
Godoy H.T., Amaya-Farfan J., Rodriguez-Amaya D.B. Degradation of vitamins. In: Rodriguez-Amaya D.B., Amaya-Farfan J., editors. Chemical Changes During Processing and Storage of Foods. Academic Press; Cambridge, MA, USA: 2021. pp. 329–383.
Bognár A. Tables on Weight Yield of Food and Retention Factors of Food Constituents for the Calculation of Nutrient Composition of Cooked Foods (Dishes) Bundesforschungsanstalt für Ernährung; Karlsruhe, Germany: 2002.
Öhrvik V., Carlsen M.H., Källman A., Martinsen T.A. Improving Food Composition Data by Standardizing Calculation Methods. Nordisk Ministerråd; Copenhagen, Denmark: 2015. p. 56.
USDA USDA Table of Nutrient Retention Factors. [(accessed on 10 July 2021)]; Available online: https://www.ars.usda.gov/ARSUserFiles/80400525/Data/retn/retn06.pdf.
Bell S., Becker W., Vásquez-Caicedo A., Hartmann B., Møller A., Butriss J. Report on Nutrient Losses and Gains Factors Used in European Food Composition Databases. Federal Research Centre for Nutrition and Food; Karlsruhe, Germany: 2006.
Lešková E., Kubíková J., Kováčiková E., Košická M., Porubská J., Holčíková K. Vitamin losses: Retention during heat treatment and continual changes expressed by mathematical models. J. Food Compos. Anal. 2006;19:252–276. doi: 10.1016/j.jfca.2005.04.014. DOI
Kumar S., Aalbersberg B. Nutrient retention in foods after earth-oven cooking compared to other forms of domestic cooking-2. Vitamins. J. Food Compos. Anal. 2006;19:311–320. doi: 10.1016/j.jfca.2005.06.007. DOI
Aktas-Akyildiz E., Koksel H. Minimisation of vitamin losses in fortified cookies by response surface methodology and validation of the determination methods. Eur. Food Res. Technol. 2021;247:1345–1354. doi: 10.1007/s00217-021-03712-2. DOI
Fillion L., Henry C.J. Nutrient losses and gains during frying: A review. Int. J. Food Sci. Nutr. 1998;49:157–168. doi: 10.3109/09637489809089395. PubMed DOI
Lombardi-Boccia G., Lanzi S., Aguzzi A. Aspects of meat quality: Trace elements and B vitamins in raw and cooked meats. J. Food Compos. Anal. 2005;18:39–46. doi: 10.1016/j.jfca.2003.10.007. DOI
Bognar A. Comparative study of frying to other cooking techniques influence on the nutritive value. Grasas Aceites. 1998;49:250–260. doi: 10.3989/gya.1998.v49.i3-4.746. DOI
Silveira C.M., Moreira A.V., Martino H.S., Gomide R.S., Pinheiro S.S., Della Lucia C.M., Pinheiro-Sant’ana H.M. Effect of cooking methods on the stability of thiamin and folic acid in fortified rice. Int. J. Food Sci. Nutr. 2017;68:179–187. doi: 10.1080/09637486.2016.1226273. PubMed DOI
Jaworska G., Bernas E. The effect of preliminary processing and period of storage on the quality of frozen Boletus edulis (Bull: Fr.) mushrooms. Food Chem. 2009;113:936–943. doi: 10.1016/j.foodchem.2008.08.023. DOI
Liu K., Zheng J., Wang X., Chen F. Effects of household cooking processes on mineral, vitamin B, and phytic acid contents and mineral bioaccessibility in rice. Food Chem. 2019;280:59–64. doi: 10.1016/j.foodchem.2018.12.053. PubMed DOI
Szymandera-Buszka K., Piechocka J., Zaremba A., Przeor M., Jedrusek-Golinska A. Pumpkin, Cauliflower and Broccoli as New Carriers of Thiamine Compounds for Food Fortification. Foods. 2021;10:578. doi: 10.3390/foods10030578. PubMed DOI PMC
Özdemir M., Açkurt F., Yildiz M., Biringen G., Gürcan T., Löker M. Effect of roasting on some nutrients of hazelnuts (Corylus avellena L.) Food Chem. 2001;73:185–190. doi: 10.1016/S0308-8146(00)00260-0. DOI
Pinheiro-Sant’Ana H.M., Penteado M., Brandão S., Stringheta P. Stability of B-vitamin in meats prepared by foodservice. 1. Thiamin. Foodserv. Res. Int. 1999;11:33–52.
Williams P.G. Vitamin retention in cook/chill and cook/hot-hold hospital food-services. J. Am. Diet Assoc. 1996;96:490–498. doi: 10.1016/S0002-8223(96)00135-6. PubMed DOI
Ryley J., Kajda P. Vitamins in Thermal-Processing. Food Chem. 1994;49:119–129. doi: 10.1016/0308-8146(94)90148-1. DOI
Hill M.A. Vitamin Retention in Microwave Cooking and Cook-Chill Foods. Food Chem. 1994;49:131–136. doi: 10.1016/0308-8146(94)90149-X. DOI
Severi S., Bedogni G., Manzieri A.M., Poli M., Battistini N. Effects of cooking and storage methods on the micronutrient content of foods. Eur. J. Cancer Prev. 1997;6:S21–S24. doi: 10.1097/00008469-199703001-00005. PubMed DOI
Hubner F., Arendt E.K. Germination of cereal grains as a way to improve the nutritional value: A review. Crit. Rev. Food Sci. Nutr. 2013;53:853–861. doi: 10.1080/10408398.2011.562060. PubMed DOI
Freitag S., Verrall S.R., Pont S.D.A., McRae D., Sungurtas J.A., Palau R., Hawes C., Alexander C.J., Allwood J.W., Foito A., et al. Impact of Conventional and Integrated Management Systems on the Water-Soluble Vitamin Content in Potatoes, Field Beans, and Cereals. J. Agric. Food Chem. 2018;66:831–841. doi: 10.1021/acs.jafc.7b03509. PubMed DOI
Titcomb T.J., Tanumihardjo S.A. Global Concerns with B Vitamin Statuses: Biofortification, Fortification, Hidden Hunger, Interactions, and Toxicity. Compr. Rev. Food Sci. Food Saf. 2019;18:1968–1984. doi: 10.1111/1541-4337.12491. PubMed DOI
FAO . FAO Food and Nutrition Series. FAO; Rome, Italy: 1995. Sorghum and millets in human nutrition; pp. 52, 121–124.
Malleshi N.G., Klopfenstein C.E. Nutrient composition, amino acid and vitamin contents of malted sorghum, pearl millet, finger millet and their rootlets. Int. J. Food Sci. Technol. 1998;49:415–422. doi: 10.3109/09637489809086420. DOI
Pinheiro S.S., Anunciacao P.C., Cardoso L.M., Della Lucia C.M., de Carvalho C.W.P., Queiroz V.A.V., Pinheiro Sant’Ana H.M. Stability of B vitamins, vitamin E, xanthophylls and flavonoids during germination and maceration of sorghum (Sorghum bicolor L.) Food Chem. 2021;345:128775. doi: 10.1016/j.foodchem.2020.128775. PubMed DOI
Prodanov M., Sierra I., Vidal-Valverde C. Effect of germination on the thiamine, riboflavin and niacin contents in legumes. Eur. Food Res. Technol. 1997;205:48–52. doi: 10.1007/s002170050122. DOI
Frias J., Prodanov M., Sierra I., Vidal-Valverde C. Effect of Light on Carbohydrates and Hydrosoluble Vitamins of Lentils during Soaking. J. Food Prot. 1995;58:692–695. doi: 10.4315/0362-028X-58.6.692. PubMed DOI
Roe M., Church S., Pinchen H., Finglas P. Nutrient Analysis of Fruit and Vegetables. Institute of Food Research; Norwich, UK: 2013. pp. 17–76. Analytical Report.
Garg M., Sharma A., Vats S., Tiwari V., Kumari A., Mishra V., Krishania M. Vitamins in Cereals: A Critical Review of Content, Health Effects, Processing Losses, Bioaccessibility, Fortification, and Biofortification Strategies for Their Improvement. Front. Nutr. 2021;8:586815. doi: 10.3389/fnut.2021.586815. PubMed DOI PMC
Maskova E.R., Fiedlerova V., Holasova M. Vitamin and mineral retention in meat in various cooking methods. Czech J. Food Sci. 1994;12:407–416.
USDA USDA Food Composition Databases. [(accessed on 12 June 2021)]; Available online: https://fdc.nal.usda.gov/
Roe M., Church S., Pinchen H., Finglas P. Nutrient Analysis of Fish and Fish Products. Institute of Food Research; Norwich, UK: 2013. pp. 14–69. Analytical Report.
Mattila P., Konko K., Eurola M., Pihlava J.M., Astola J., Vahteristo L., Hietaniemi V., Kumpulainen J., Valtonen M., Piironen V. Contents of vitamins, mineral elements, and some phenolic compounds in cultivated mushrooms. J. Agric. Food Chem. 2001;49:2343–2348. doi: 10.1021/jf001525d. PubMed DOI
Sałata A., Lemieszek M., Parzymies M. The Nutritional and Health Properties of an Oyster Mushroom (Pleurotus ostreatus (Jacq. Fr) P. Kumm.) Acta Sci. Pol. Hortorum Cultus. 2018;17:185–197. doi: 10.24326/asphc.2018.2.16. DOI
Bernaś E., Jaworska G. Vitamins profile as an indicator of the quality of frozen Agaricus bisporus mushrooms. J. Food Compos. Anal. 2016;49:1–8. doi: 10.1016/j.jfca.2016.03.002. DOI
Hashemi Gahruie H., Eskandari M.H., Mesbahi G., Hanifpour M.A. Scientific and technical aspects of yogurt fortification: A review. Food Sci. Hum. Wellness. 2015;4:1–8. doi: 10.1016/j.fshw.2015.03.002. DOI
Roe M., Church S., Pinchen H., Finglas P. Nutrient Analysis of Eggs. Institute of Food Research; Norwich, UK: 2013. pp. 1–44. Analytical Report.
Awonorin S.O., Rotimi D.K. Effects of oven temperature and time on the losses of some B vitamins in roasted beef and pork. Foodserv. Res. Int. 1991;6:89–105. doi: 10.1111/j.1745-4506.1991.tb00287.x. DOI
Kyritsi A., Tzia C., Karathanos V.T. Vitamin fortified rice grain using spraying and soaking methods. LWT Food Sci. Technol. 2011;44:312–320. doi: 10.1016/j.lwt.2010.06.001. DOI
Atungulu G.G., Pan Z. Rice industrial processing worldwide and impact on macro- and micronutrient content, stability, and retention. Ann. N. Y. Acad. Sci. 2014;1324:15–28. doi: 10.1111/nyas.12492. PubMed DOI
Rumm-Kreuter D., Demmel I. Comparison of vitamin losses in vegetables due to various cooking methods. J. Nutr. Sci. Vitaminol. 1990;36:S7–S15. doi: 10.3177/jnsv.36.4-SupplementI_S7. PubMed DOI
Díaz-Gómez J., Twyman R.M., Zhu C., Farré G., Serrano J.C., Portero-Otin M., Muñoz P., Sandmann G., Capell T., Christou P. Biofortification of crops with nutrients: Factors affecting utilization and storage. Curr. Opin. Biotechnol. 2017;44:115–123. doi: 10.1016/j.copbio.2016.12.002. PubMed DOI
Prodanov M., Sierra I., Vidal-Valverde C. Influence of soaking and cooking on the thiamin, riboflavin and niacin contents of legumes. Food Chem. 2004;84:271–277. doi: 10.1016/S0308-8146(03)00211-5. DOI
Batifoulier F., Verny M.A., Chanliaud E., Remesy C., Demigne C. Effect of different breadmaking methods on thiamine, riboflavin and pyridoxine contents of wheat bread. J. Cereal Sci. 2005;42:101–108. doi: 10.1016/j.jcs.2005.03.003. DOI
Martinez-Villaluenga C., Michalska A., Frias J., Piskula M.K., Vidal-Valverde C., Zielinski H. Effect of flour extraction rate and baking on thiamine and riboflavin content and antioxidant capacity of traditional rye bread. J. Food Sci. 2009;74:C49–C55. doi: 10.1111/j.1750-3841.2008.01008.x. PubMed DOI
Haddad G.S., Loewenstein M. Effect of several heat treatments and frozen storage on thiamine, riboflavin, and ascorbic acid content of milk. J. Dairy Sci. 1983;66:1601–1606. doi: 10.3168/jds.S0022-0302(83)81980-8. PubMed DOI
Graham D.M. Alteration of nutritive value resulting from processing and fortification of milk and milk products. J. Dairy Sci. 1974;57:738–745. doi: 10.3168/jds.S0022-0302(74)84959-3. PubMed DOI
Lima H., Vogel K., Wagner-Gillespie M., Wimer C., Dean L., Fogleman A. Nutritional Comparison of Raw, Holder Pasteurized, and Shelf-stable Human Milk Products. J. Pediatr. Gastroenterol. Nutr. 2018;67:649–653. doi: 10.1097/MPG.0000000000002094. PubMed DOI
Athar N., Hardacre A., Taylor G., Clark S., Harding R., McLaughlin J. Vitamin retention in extruded food products. J. Food Compos. Anal. 2006;19:379–383. doi: 10.1016/j.jfca.2005.03.004. DOI
Riaz M.N., Asif M., Ali R. Stability of vitamins during extrusion. Crit. Rev. Food Sci. Nutr. 2009;49:361–368. doi: 10.1080/10408390802067290. PubMed DOI
Aylangan A., Ic E., Ozyardimci B. Investigation of gamma irradiation and storage period effects on the nutritional and sensory quality of chickpeas, kidney beans and green lentils. Food Control. 2017;80:428–434. doi: 10.1016/j.foodcont.2017.04.005. DOI
Fox J.B., Thayer D.W., Jenkins R.K., Phillips J.G., Ackerman S.A., Beecher G.R., Holden J.M., Morrow F.D., Quirbach D.M. Effect of gamma irradiation on the B vitamins of pork chops and chicken breasts. Int. J. Radiat. Biol. 1989;55:689–703. doi: 10.1080/09553008914550721. PubMed DOI
Fox J.B., Lakritz L., Hampson J.R., Ward K., Thayer D.W. Gamma Irradiation Effects on Thiamin and Riboflavin in Beef, Lamb, Pork, and Turkey. J. Food Sci. 1995;60:596–598. doi: 10.1111/j.1365-2621.1995.tb09835.x. DOI
Woodside J. Nutritional aspects of irradiated food. Stewart Postharvest Rev. 2015;11:1–6. doi: 10.2212/spr.2015.3.2. DOI
Greenwood D.A., Kraybill H.R., Feaster J.F., Jackson J.M. Vitamin Retention in Processed Meat. Ind. Eng. Chem. 1944;36:922–927. doi: 10.1021/ie50418a012. PubMed DOI
Rickman J.C., Barrett D.M., Bruhn C.M. Nutritional comparison of fresh, frozen and canned fruits and vegetables. Part 1. Vitamins C and B and phenolic compounds. J. Sci. Food Agric. 2007;87:930–944. doi: 10.1002/jsfa.2825. DOI
Martín-Belloso O., Llanos-Barriobero E. Proximate composition, minerals and vitamins in selected canned vegetables. Eur. Food Res. Technol. 2001;212:182–187. doi: 10.1007/s002170000210. DOI
Marçal S., Sousa A.S., Taofiq O., Antunes F., Morais A.M., Freitas A.C., Barros L., Ferreira I.C., Pintado M. Impact of postharvest preservation methods on nutritional value and bioactive properties of mushrooms. Trends Food Sci. Technol. 2021;110:418–431. doi: 10.1016/j.tifs.2021.02.007. DOI
Coad R., Bui L. Stability of Vitamins B1, B2, B6 and E in a Fortified Military Freeze-Dried Meal During Extended Storage. Foods. 2020;9:39. doi: 10.3390/foods9010039. PubMed DOI PMC
Ayhan D.K., Koksel H. Investigation of the effect of different storage conditions on vitamin content of enriched pasta product. Qual. Assur. Saf. Crops. 2019;11:701–712. doi: 10.3920/QAS2019.1575. DOI
Walker G.J. The nutritional value of processed foods. CSIRO Food Proc. 1979:4. doi: 10.25919/5bec62b344f33. DOI
Gan R.Y., Lui W.Y., Wu K., Chan C.L., Dai S.H., Sui Z.Q., Corke H. Bioactive compounds and bioactivities of germinated edible seeds and sprouts: An updated review. Trends Food Sci. Technol. 2017;59:1–14. doi: 10.1016/j.tifs.2016.11.010. DOI
Lemmens E., Moroni A.V., Pagand J., Heirbaut P., Ritala A., Karlen Y., Le K.A., Van den Broeck H.C., Brouns F., De Brier N., et al. Impact of Cereal Seed Sprouting on Its Nutritional and Technological Properties: A Critical Review. Compr. Rev. Food Sci. Food Saf. 2019;18:305–328. doi: 10.1111/1541-4337.12414. PubMed DOI
Lonsdale D. Thiamine tetrahydrofurfuryl disulfide: A little known therapeutic agent. Med. Sci. Monit. 2004;10:RA199–RA203. PubMed
Fujiwara M., Watanabe H., Matsui K. “Allithiamine” a Newly Found Derivative of Vitamin B1. J. Biochem. 1954;41:29–39. doi: 10.1093/oxfordjournals.jbchem.a126421. DOI
Fujiwara M. Allithiamine and its properties. J. Nutr. Sci. Vitam. 1976;22:S57–S62. doi: 10.3177/jnsv.22.Supplement_57. PubMed DOI
Matsukawa T., Kawasaki H., Iwatsu T., Yurugi S. Syntheses of allithiamine and its homologues. J. Vitam. 1954;1:13–26. doi: 10.5925/jnsv1954.1.13. PubMed DOI
Miah M.A.K., Haque A., Douglass M.P., Clarke B. Parboiling of rice. Part II: Effect of hot soaking time on the degree of starch gelatinization. Int. J. Food Sci. Technol. 2002;37:539–545. doi: 10.1046/j.1365-2621.2002.00611.x. DOI
Ituen E., Ukpakha A. Improved method of par-boiling paddy for better quality rice. World J. Appl. Sci. Technol. 2011;3:31–40.
Oli P., Ward R., Adhikari B., Torley P. Parboiled rice: Understanding from a materials science approach. J. Food Eng. 2014;124:173–183. doi: 10.1016/j.jfoodeng.2013.09.010. DOI
Hinton J.J. Parboiling treatment of rice. Nature. 1948;162:913–915. doi: 10.1038/162913a0. PubMed DOI
Villota S.M.A., Tuates A.M., Jr., Capariño O.A. Cooking Qualilites and Nutritional Contents of Parboiled Milled Rice. Asian J. Appl. Sci. 2016;4:1172–1178.
Manful J., Swetman A., Coker R., Drunis A. Changes in the thiamine and riboflavin contents of rice during artisanal parboiling in Ghana. Trop. Sci. 2007;47:211–217. doi: 10.1002/ts.215. DOI
Padua A.B., Juliano B.O. Effect of parboiling on thiamin, protein and fat of rice. J. Sci. Food Agric. 1974;25:697–701. doi: 10.1002/jsfa.2740250611. PubMed DOI
Cubadda F., Jackson B.P., Cottingham K.L., Van Horne Y.O., Kurzius-Spencer M. Human exposure to dietary inorganic arsenic and other arsenic species: State of knowledge, gaps and uncertainties. Sci. Total Environ. 2017;579:1228–1239. doi: 10.1016/j.scitotenv.2016.11.108. PubMed DOI PMC
Davis M.A., Signes-Pastor A.J., Argos M., Slaughter F., Pendergrast C., Punshon T., Gossai A., Ahsan H., Karagas M.R. Assessment of human dietary exposure to arsenic through rice. Sci. Total Environ. 2017;586:1237–1244. doi: 10.1016/j.scitotenv.2017.02.119. PubMed DOI PMC
Sun G.X., Williams P.N., Carey A.M., Zhu Y.G., Deacon C., Raab A., Feldmann J., Islam R.M., Meharg A.A. Inorganic arsenic in rice bran and its products are an order of magnitude higher than in bulk grain. Environ. Sci. Technol. 2008;42:7542–7546. doi: 10.1021/es801238p. PubMed DOI
Lombi E., Scheckel K.G., Pallon J., Carey A.M., Zhu Y.G., Meharg A.A. Speciation and distribution of arsenic and localization of nutrients in rice grains. New Phytol. 2009;184:193–201. doi: 10.1111/j.1469-8137.2009.02912.x. PubMed DOI
Meharg A.A., Lombi E., Williams P.N., Scheckel K.G., Feldmann J., Raab A., Zhu Y., Islam R. Speciation and localization of arsenic in white and brown rice grains. Environ. Sci. Technol. 2008;42:1051–1057. doi: 10.1021/es702212p. PubMed DOI
Wang X., Peng B., Tan C., Ma L., Rathinasabapathi B. Recent advances in arsenic bioavailability, transport, and speciation in rice. Environ. Sci. Pollut. Res. Int. 2015;22:5742–5750. doi: 10.1007/s11356-014-4065-3. PubMed DOI
USFDA, U.S.F.a.D Arsenic in Rice and Rice Products Risk Assessment Report. [(accessed on 10 July 2021)]; Available online: http://www.fda.gov/Food/FoodScienceResearch/RiskSafetyAssessment/default.htm.
Upadhyay M.K., Shukla A., Yadav P., Srivastava S. A review of arsenic in crops, vegetables, animals and food products. Food Chem. 2019;276:608–618. doi: 10.1016/j.foodchem.2018.10.069. PubMed DOI
European Food Safety Authority. Arcella D., Cascio C., Gomez Ruiz J.A. Chronic dietary exposure to inorganic arsenic. EFSA J. 2021;19:50. doi: 10.2903/j.efsa.2021.6380. PubMed DOI PMC
EFSA Dietary exposure to inorganic arsenic in the European population. EFSA J. 2014;12:3597. doi: 10.2903/j.efsa.2014.3597. DOI
Rasheed H., Kay P., Slack R., Gong Y.Y. Arsenic species in wheat, raw and cooked rice: Exposure and associated health implications. Sci. Total Environ. 2018;634:366–373. doi: 10.1016/j.scitotenv.2018.03.339. PubMed DOI
Lai P.Y., Cottingham K.L., Steinmaus C., Karagas M.R., Miller M.D. Arsenic and Rice: Translating Research to Address Health Care Providers’ Needs. J. Pediatr. 2015;167:797–803. doi: 10.1016/j.jpeds.2015.07.003. PubMed DOI PMC
Islam S., Rahman M.M., Rahman M.A., Naidu R. Inorganic arsenic in rice and rice-based diets: Health risk assessment. Food Control. 2017;82:196–202. doi: 10.1016/j.foodcont.2017.06.030. DOI
Mwale T., Rahman M.M., Mondal D. Risk and Benefit of Different Cooking Methods on Essential Elements and Arsenic in Rice. Int. J. Environ. Res. Public Health. 2018;15:1056. doi: 10.3390/ijerph15061056. PubMed DOI PMC
Nachman K.E., Ginsberg G.L., Miller M.D., Murray C.J., Nigra A.E., Pendergrast C.B. Mitigating dietary arsenic exposure: Current status in the United States and recommendations for an improved path forward. Sci. Total Environ. 2017;581:221–236. doi: 10.1016/j.scitotenv.2016.12.112. PubMed DOI PMC
IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, International Agency for Research on Cancer, and World Health Organization Arsenic, metals, fibres, and dusts. IARC Monogr. Eval. Carcinog. Risks Hum. 2012;100C:41–93. PubMed PMC
EFSA Scientific Opinion on Arsenic in Food. EFSA J. 2009;7:1351–1550. doi: 10.2903/j.efsa.2009.1351. DOI
Rahman M.A., Rahman A., Khan M.Z.K., Renzaho A.M.N. Human health risks and socio-economic perspectives of arsenic exposure in Bangladesh: A scoping review. Ecotoxicol. Environ. Saf. 2018;150:335–343. doi: 10.1016/j.ecoenv.2017.12.032. PubMed DOI
Gray P.J., Conklin S.D., Todorov T.I., Kasko S.M. Cooking rice in excess water reduces both arsenic and enriched vitamins in the cooked grain. Food Addit. Contam. Part A. 2016;33:78–85. doi: 10.1080/19440049.2015.1103906. PubMed DOI
Kumarathilaka P., Seneweera S., Ok Y.S., Meharg A., Bundschuh J. Arsenic in cooked rice foods: Assessing health risks and mitigation options. Environ. Int. 2019;127:584–591. doi: 10.1016/j.envint.2019.04.004. PubMed DOI
Pedron T., Segura F.R., Paniz F.P., Souz F.D., dos Santos M.C., de Magalhaes A.M., Batista B.L. Mitigation of arsenic in rice grains by polishing and washing: Evidencing the benefit and the cost. J. Cereal Sci. 2019;87:52–58. doi: 10.1016/j.jcs.2019.03.003. DOI
Menon M., Dong W., Chen X., Hufton J., Rhodes E.J. Improved rice cooking approach to maximise arsenic removal while preserving nutrient elements. Sci. Total Environ. 2021;755:143341. doi: 10.1016/j.scitotenv.2020.143341. PubMed DOI
Naito S., Matsumoto E., Shindoh K., Nishimura T. Effects of polishing, cooking, and storing on total arsenic and arsenic species concentrations in rice cultivated in Japan. Food Chem. 2015;168:294–301. doi: 10.1016/j.foodchem.2014.07.060. PubMed DOI
Atiaga O., Nunes L.M., Otero X.L. Effect of cooking on arsenic concentration in rice. Environ. Sci. Pollut. Res. Int. 2020;27:10757–10765. doi: 10.1007/s11356-019-07552-2. PubMed DOI
Raab A., Baskaran C., Feldmann J., Meharg A.A. Cooking rice in a high water to rice ratio reduces inorganic arsenic content. J. Environ. Monit. 2009;11:41–44. doi: 10.1039/B816906C. PubMed DOI
Eggersdorfer M., Laudert D., Letinois U., McClymont T., Medlock J., Netscher T., Bonrath W. One hundred years of vitamins-a success story of the natural sciences. Angew. Chem. Int. Ed. Engl. 2012;51:12960–12990. doi: 10.1002/anie.201205886. PubMed DOI
Acevedo-Rocha C.G., Gronenberg L.S., Mack M., Commichau F.M., Genee H.J. Microbial cell factories for the sustainable manufacturing of B vitamins. Curr. Opin. Biotechnol. 2019;56:18–29. doi: 10.1016/j.copbio.2018.07.006. PubMed DOI
Fitzpatrick T.B., Basset G.J., Borel P., Carrari F., DellaPenna D., Fraser P.D., Hellmann H., Osorio S., Rothan C., Valpuesta V., et al. Vitamin deficiencies in humans: Can plant science help? Plant Cell. 2012;24:395–414. doi: 10.1105/tpc.111.093120. PubMed DOI PMC
Fulgoni V.L., 3rd, Keast D.R., Bailey R.L., Dwyer J. Foods, fortificants, and supplements: Where do Americans get their nutrients? J. Nutr. 2011;141:1847–1854. doi: 10.3945/jn.111.142257. PubMed DOI PMC
Liberato S.C., Pinheiro-Sant’Ana H.M. Fortification of industrialized foods with vitamins. Rev. Nutr. 2006;19:215–231. doi: 10.1590/S1415-52732006000200009. DOI
Berner L.A., Keast D.R., Bailey R.L., Dwyer J.T. Fortified foods are major contributors to nutrient intakes in diets of US children and adolescents. J. Acad. Nutr. Diet. 2014;114:1009–1022. doi: 10.1016/j.jand.2013.10.012. PubMed DOI
Whitfield K.C., Smith T.J., Rohner F., Wieringa F.T., Green T.J. Thiamine fortification strategies in low- and middle-income settings: A review. Ann. N. Y. Acad. Sci. 2021;1498:29–45. doi: 10.1111/nyas.14565. PubMed DOI PMC
Allen L., Benoist B., Dary O., Hurrell R. Guidelines on Food Fortification with Micronutrients. World Health Organization Food and Agriculture Organization United Nations; Geneva, Switzerland: 2006.
Newman J.C., Malek A.M., Hunt K.J., Marriott B.P. Nutrients in the US Diet: Naturally Occurring or Enriched/Fortified Food and Beverage Sources, Plus Dietary Supplements: NHANES 2009–2012. J. Nutr. 2019;149:1404–1412. doi: 10.1093/jn/nxz066. PubMed DOI PMC
EU Parliament E. Regulation (EC) No 1925/2006 of the European Parliament and of the Council of 20 December 2006 on the addition of vitamins and minerals and of certain other substances to foods. OJ L 404. 2006. [(accessed on 10 July 2021)]. pp. 26–38. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32006R1925.
Gomes F., Bergeron G., Bourassa M.W., Fischer P.R. Thiamine deficiency unrelated to alcohol consumption in high-income countries: A literature review. Ann. N. Y. Acad. Sci. 2021;1498:46–56. doi: 10.1111/nyas.14569. PubMed DOI PMC
GFD Global Fortification Data Exchange. [(accessed on 1 June 2021)]. Available online: https://fortificationdata.org/
FFI Food Fortification Initiative. [(accessed on 12 July 2021)]. Available online: https://www.ffinetwork.org/country-profiles.
De Pee S. Proposing nutrients and nutrient levels for rice fortification. Ann. N. Y. Acad. Sci. 2014;1324:55–66. doi: 10.1111/nyas.12478. PubMed DOI
Saha S., Roy A. Whole grain rice fortification as a solution to micronutrient deficiency: Technologies and need for more viable alternatives. Food Chem. 2020;326:127049. doi: 10.1016/j.foodchem.2020.127049. PubMed DOI
Steiger G., Muller-Fischer N., Cori H., Conde-Petit B. Fortification of rice: Technologies and nutrients. Ann. N. Y. Acad. Sci. 2014;1324:29–39. doi: 10.1111/nyas.12418. PubMed DOI
Alavi S., Bugusu B., Cramer G., Dary O., Lee T.-C., Martin L., McEntire J., Wailes E. Rice Fortification in Developing Countries: A Critical Review of the Technical and Economic Feasibility. Academy for Educational Development; Washington, DC, USA: 2008.
Strobbe S., Van Der Straeten D. Toward Eradication of B-Vitamin Deficiencies: Considerations for Crop Biofortification. Front. Plant Sci. 2018;9:443. doi: 10.3389/fpls.2018.00443. PubMed DOI PMC
Minhas A.P., Tuli R., Puri S. Pathway Editing Targets for Thiamine Biofortification in Rice Grains. Front. Plant Sci. 2018;9:975. doi: 10.3389/fpls.2018.00975. PubMed DOI PMC
Dong W., Thomas N., Ronald P.C., Goyer A. Overexpression of thiamin biosynthesis genes in rice increases leaf and unpolished grain thiamin content but not resistance to Xanthomonas oryzae pv. oryzae. Front. Plant Sci. 2016;7:616. doi: 10.3389/fpls.2016.00616. PubMed DOI PMC
Strobbe S., Verstraete J., Stove C., Van Der Straeten D. Metabolic engineering of rice endosperm towards higher vitamin B1 accumulation. Plant Biotechnol. J. 2021;19:1253–1267. doi: 10.1111/pbi.13545. PubMed DOI PMC
Goyer A. Thiamin biofortification of crops. Curr. Opin. Biotechnol. 2017;44:1–7. doi: 10.1016/j.copbio.2016.09.005. PubMed DOI
Smithline H.A., Donnino M., Greenblatt D.J. Pharmacokinetics of high-dose oral thiamine hydrochloride in healthy subjects. BMC Clin. Pharmacol. 2012;12:4. doi: 10.1186/1472-6904-12-4. PubMed DOI PMC
Gangolf M., Czerniecki J., Radermecker M., Detry O., Nisolle M., Jouan C., Martin D., Chantraine F., Lakaye B., Wins P., et al. Thiamine status in humans and content of phosphorylated thiamine derivatives in biopsies and cultured cells. PLoS ONE. 2010;5:e13616. doi: 10.1371/journal.pone.0013616. PubMed DOI PMC
Rindi G., Laforenza U. Thiamine intestinal transport and related issues: Recent aspects. Proc. Soc. Exp. Biol. Med. 2000;224:246–255. doi: 10.1046/j.1525-1373.2000.22428.x. PubMed DOI
Said H.M., Balamurugan K., Subramanian V.S., Marchant J.S. Expression and functional contribution of hTHTR-2 in thiamin absorption in human intestine. Am. J. Physiol. Gastrointest. Liver. Physiol. 2004;286:G491–G498. doi: 10.1152/ajpgi.00361.2003. PubMed DOI
Ganapathy V., Smith S.B., Prasad P.D. SLC19: The folate/thiamine transporter family. Pflug. Arch. 2004;447:641–646. doi: 10.1007/s00424-003-1068-1. PubMed DOI
Nabokina S.M., Said H.M. A high-affinity and specific carrier-mediated mechanism for uptake of thiamine pyrophosphate by human colonic epithelial cells. Am. J. Physiol. Gastrointest. Liver. Physiol. 2012;303:G389–G395. doi: 10.1152/ajpgi.00151.2012. PubMed DOI PMC
Ott M., Werneke U. Wernicke’s encephalopathy-from basic science to clinical practice. Part 1: Understanding the role of thiamine. Adv. Ther. Psychopharmacol. 2020;10:2045125320978106. doi: 10.1177/2045125320978106. PubMed DOI PMC
Lu J., Frank E.L. Rapid HPLC measurement of thiamine and its phosphate esters in whole blood. Clin. Chem. 2008;54:901–906. doi: 10.1373/clinchem.2007.099077. PubMed DOI
Labay V., Raz T., Baron D., Mandel H., Williams H., Barrett T., Szargel R., McDonald L., Shalata A., Nosaka K., et al. Mutations in SLC19A2 cause thiamine-responsive megaloblastic anaemia associated with diabetes mellitus and deafness. Nat. Genet. 1999;22:300–304. doi: 10.1038/10372. PubMed DOI
Zhao R., Gao F., Goldman I.D. Molecular cloning of human thiamin pyrophosphokinase. Biochim. Biophys. Acta. 2001;1517:320–322. doi: 10.1016/S0167-4781(00)00264-5. PubMed DOI
Bettendorff L. The compartmentation of phosphorylated thiamine derivatives in cultured neuroblastoma cells. Biochim. Biophys. Acta. 1994;1222:7–14. doi: 10.1016/0167-4889(94)90019-1. PubMed DOI
Eudy J.D., Spiegelstein O., Barber R.C., Wlodarczyk B.J., Talbot J., Finnell R.H. Identification and characterization of the human and mouse SLC19A3 gene: A novel member of the reduced folate family of micronutrient transporter genes. Mol. Genet. Metab. 2000;71:581–590. doi: 10.1006/mgme.2000.3112. PubMed DOI
Casteels M., Sniekers M., Fraccascia P., Mannaerts G.P., Van Veldhoven P.P. The role of 2-hydroxyacyl-CoA lyase, a thiamin pyrophosphate-dependent enzyme, in the peroxisomal metabolism of 3-methyl-branched fatty acids and 2-hydroxy straight-chain fatty acids. Biochem. Soc. Trans. 2007;35:876–880. doi: 10.1042/BST0350876. PubMed DOI
Ashokkumar B., Vaziri N.D., Said H.M. Thiamin uptake by the human-derived renal epithelial (HEK-293) cells: Cellular and molecular mechanisms. Am. J. Physiol. Ren. Physiol. 2006;291:F796–F805. doi: 10.1152/ajprenal.00078.2006. PubMed DOI
Patel M.S., Nemeria N.S., Furey W., Jordan F. The pyruvate dehydrogenase complexes: Structure-based function and regulation. J. Biol. Chem. 2014;289:16615–16623. doi: 10.1074/jbc.R114.563148. PubMed DOI PMC
Hutson S.M., Sweatt A.J., Lanoue K.F. Branched-chain amino acid metabolism: Implications for establishing safe intakes. J. Nutr. 2005;135:1557S–1564S. doi: 10.1093/jn/135.6.1557S. PubMed DOI
Sperringer J.E., Addington A., Hutson S.M. Branched-Chain Amino Acids and Brain Metabolism. Neurochem. Res. 2017;42:1697–1709. doi: 10.1007/s11064-017-2261-5. PubMed DOI
Schenk G., Duggleby R.G., Nixon P.F. Properties and functions of the thiamin diphosphate dependent enzyme transketolase. Int. J. Biochem. Cell Biol. 1998;30:1297–1318. doi: 10.1016/S1357-2725(98)00095-8. PubMed DOI
Foulon V., Sniekers M., Huysmans E., Asselberghs S., Mahieu V., Mannaerts G.P., Van Veldhoven P.P., Casteels M. Breakdown of 2-hydroxylated straight chain fatty acids via peroxisomal 2-hydroxyphytanoyl-CoA lyase: A revised pathway for the alpha-oxidation of straight chain fatty acids. J. Biol. Chem. 2005;280:9802–9812. doi: 10.1074/jbc.M413362200. PubMed DOI
Lonsdale D. Thiamin. Adv. Food. Nutr. Res. 2018;83:1–56. doi: 10.1016/bs.afnr.2017.11.001. PubMed DOI
Kelley R.I., Robinson D., Puffenberger E.G., Strauss K.A., Morton D.H. Amish lethal microcephaly: A new metabolic disorder with severe congenital microcephaly and 2-ketoglutaric aciduria. Am. J. Med. Genet. 2002;112:318–326. doi: 10.1002/ajmg.10529. PubMed DOI
Marce-Grau A., Marti-Sanchez L., Baide-Mairena H., Ortigoza-Escobar J.D., Perez-Duenas B. Genetic defects of thiamine transport and metabolism: A review of clinical phenotypes, genetics, and functional studies. J. Inherit. Metab. Dis. 2019;42:581–597. doi: 10.1002/jimd.12125. PubMed DOI
Shible A.A., Ramadurai D., Gergen D., Reynolds P.M. Dry Beriberi Due to Thiamine Deficiency Associated with Peripheral Neuropathy and Wernicke’s Encephalopathy Mimicking Guillain-Barre syndrome: A Case Report and Review of the Literature. Am. J. Case Rep. 2019;20:330–334. doi: 10.12659/AJCR.914051. PubMed DOI PMC
Chisolm-Straker M., Cherkas D. Altered and unstable: Wet beriberi, a clinical review. J. Emerg. Med. 2013;45:341–344. doi: 10.1016/j.jemermed.2013.04.022. PubMed DOI
DiNicolantonio J.J., Liu J., O’Keefe J.H. Thiamine and Cardiovascular Disease: A Literature Review. Prog. Cardiovasc. Dis. 2018;61:27–32. doi: 10.1016/j.pcad.2018.01.009. PubMed DOI
Greenspon J., Perrone E.E., Alaish S.M. Shoshin beriberi mimicking central line sepsis in a child with short bowel syndrome. World J. Pediatr. 2010;6:366–368. doi: 10.1007/s12519-010-0022-5. PubMed DOI
Dabar G., Harmouche C., Habr B., Riachi M., Jaber B. Shoshin Beriberi in Critically-Ill patients: Case series. Nutr. J. 2015;14:51. doi: 10.1186/s12937-015-0039-7. PubMed DOI PMC
Fattal-Valevski A., Bloch-Mimouni A., Kivity S., Heyman E., Brezner A., Strausberg R., Inbar D., Kramer U., Goldberg-Stern H. Epilepsy in children with infantile thiamine deficiency. Neurology. 2009;73:828–833. doi: 10.1212/WNL.0b013e3181b121f5. PubMed DOI
Nazir M., Lone R., Charoo B.A. Infantile Thiamine Deficiency: New Insights into an Old Disease. Indian Pediatr. 2019;56:673–681. doi: 10.1007/s13312-019-1592-5. PubMed DOI
Chandrakumar A., Bhardwaj A., Geert W., Jong G.W. Review of thiamine deficiency disorders: Wernicke encephalopathy and Korsakoff psychosis. J. Basic Clin. Physiol. Pharmacol. 2018;30:153–162. doi: 10.1515/jbcpp-2018-0075. PubMed DOI
Butterworth R.F. Thiamin deficiency and brain disorders. Nutr. Res. Rev. 2003;16:277–284. doi: 10.1079/NRR200367. PubMed DOI
Kopelman M.D., Thomson A.D., Guerrini I., Marshall E.J. The Korsakoff syndrome: Clinical aspects, psychology and treatment. Alcohol Alcohol. 2009;44:148–154. doi: 10.1093/alcalc/agn118. PubMed DOI
Arts N.J., Walvoort S.J., Kessels R.P. Korsakoff’s syndrome: A critical review. Neuropsychiatr. Dis. Treat. 2017;13:2875–2890. doi: 10.2147/NDT.S130078. PubMed DOI PMC
Kril J.J., Harper C.G. Neuroanatomy and neuropathology associated with Korsakoff’s syndrome. Neuropsychol. Rev. 2012;22:72–80. doi: 10.1007/s11065-012-9195-0. PubMed DOI PMC
Yates A.A., Schlicker S.A., Suitor C.W. Dietary Reference Intakes: The new basis for recommendations for calcium and related nutrients, B vitamins, and choline. J. Am. Diet Assoc. 1998;98:699–706. doi: 10.1016/S0002-8223(98)00160-6. PubMed DOI
Armah S., Ferruzzi M.G., Gletsu-Miller N. Feasibility of Mass-Spectrometry to Lower Cost and Blood Volume Requirements for Assessment of B Vitamins in Patients Undergoing Bariatric Surgery. Metabolites. 2020;10:240. doi: 10.3390/metabo10060240. PubMed DOI PMC
Bishop A.M., Fernandez C., Whitehead R.D., Jr., Morales A.P., Barr D.B., Wilder L.C., Baker S.E. Quantification of riboflavin in human urine using high performance liquid chromatography-tandem mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2011;879:1823–1826. doi: 10.1016/j.jchromb.2011.04.032. PubMed DOI
Diniz M., Dias N., Andrade F., Paulo B., Ferreira A. Isotope dilution method for determination of vitamin B2 in human plasma using liquid chromatography-tandem mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2019;1113:14–19. doi: 10.1016/j.jchromb.2019.03.001. PubMed DOI
Hampel D., York E.R., Allen L.H. Ultra-performance liquid chromatography tandem mass-spectrometry (UPLC-MS/MS) for the rapid, simultaneous analysis of thiamin, riboflavin, flavin adenine dinucleotide, nicotinamide and pyridoxal in human milk. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2012;903:7–13. doi: 10.1016/j.jchromb.2012.06.024. PubMed DOI
Cheng X., Ma D., Fei G., Ma Z., Xiao F., Yu Q., Pan X., Zhou F., Zhao L., Zhong C. A single-step method for simultaneous quantification of thiamine and its phosphate esters in whole blood sample by ultra-performance liquid chromatography-mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2018;1095:103–111. doi: 10.1016/j.jchromb.2018.07.030. PubMed DOI
Jeong Hyeon M., Shin Beom S., Shin S. Liquid Chromatography-Tandem Mass Spectrometry Analysis of Riboflavin in Beagle Dog Plasma for Pharmacokinetic Studies. Mass Spectrom. Lett. 2020;11:10–14. doi: 10.5478/MSL.2020.11.1.10. DOI
Kahoun D., Fojtíková P., Vácha F., Nováková E., Hypša V. Development and validation of an LC-MS/MS method for determination of B vitamins and some its derivatives in whole blood. bioRxiv. 2021 doi: 10.1101/2021.01.18.427110. PubMed DOI PMC
Khaksari M., Mazzoleni L.R., Ruan C.H., Song P., Hershey N.D., Kennedy R.T., Burns M.A., Minerick A.R. Detection and quantification of vitamins in microliter volumes of biological samples by LC-MS for clinical screening. Aiche J. 2018;64:3709–3718. doi: 10.1002/aic.16345. DOI
Meisser Redeuil K., Longet K., Benet S., Munari C., Campos-Gimenez E. Simultaneous quantification of 21 water soluble vitamin circulating forms in human plasma by liquid chromatography-mass spectrometry. J. Chromatogr. A. 2015;1422:89–98. doi: 10.1016/j.chroma.2015.09.049. PubMed DOI
Ren X.N., Yin S.A., Yang Z.Y., Yang X.G., Shao B., Ren Y.P., Zhang J. Application of UPLC-MS/MS Method for Analyzing B-vitamins in Human Milk. Biomed. Environ. Sci. 2015;28:738–750. doi: 10.3967/bes2015.104. PubMed DOI
Roelofsen-de Beer R., Van Zelst B.D., Wardle R., Kooij P.G., de Rijke Y.B. Simultaneous measurement of whole blood vitamin B1 and vitamin B6 using LC-ESI-MS/MS. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2017;1063:67–73. doi: 10.1016/j.jchromb.2017.08.011. PubMed DOI
Verstraete J., Stove C. Patient-Centric Assessment of Thiamine Status in Dried Blood Volumetric Absorptive Microsamples Using LC-MS/MS Analysis. Anal. Chem. 2021;93:2660–2668. doi: 10.1021/acs.analchem.0c05018. PubMed DOI
Zhang Q., Ford L.A., Goodman K.D., Freed T.A., Hauser D.M., Conner J.K., Vroom K.E., Toal D.R. LC-MS/MS method for quantitation of seven biomarkers in human plasma for the assessment of insulin resistance and impaired glucose tolerance. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2016;1038:101–108. doi: 10.1016/j.jchromb.2016.10.025. PubMed DOI
Huang Y., Gibson R.A., Green T.J. Measuring thiamine status in dried blood spots. Clin. Chim. Acta. 2020;509:52–59. doi: 10.1016/j.cca.2020.06.011. PubMed DOI
Jenčo J., Krčmová L.K., Sobotka L., Bláha V., Solich P., Švec F. Development of novel liquid chromatography method for clinical monitoring of vitamin B1 metabolites and B6 status in the whole blood. Talanta. 2020;211:120702. doi: 10.1016/j.talanta.2019.120702. PubMed DOI
Mathew E.M., Sakore P., Lewis L., Manokaran K., Rao P., Moorkoth S. Development and validation of a dried blood spot test for thiamine deficiency among infants by HPLC-fluorimetry. Biomed. Chromatogr. 2019;33:e4668. doi: 10.1002/bmc.4668. PubMed DOI
Nguyen V.L., Darman M., Ireland A., Fitzpatrick M. A high performance liquid chromatography fluorescence method for the analysis of both pyridoxal-5-phosphate and thiamine pyrophosphate in whole blood. Clin. Chim. Acta. 2020;506:129–134. doi: 10.1016/j.cca.2020.03.026. PubMed DOI
Petteys B.J., Frank E.L. Rapid determination of vitamin B(2) (riboflavin) in plasma by HPLC. Clin. Chim. Acta. 2011;412:38–43. doi: 10.1016/j.cca.2010.08.037. PubMed DOI
Stuetz W., Carrara V.I., McGready R., Lee S.J., Biesalski H.K., Nosten F.H. Thiamine diphosphate in whole blood, thiamine and thiamine monophosphate in breast-milk in a refugee population. PLoS ONE. 2012;7:e36280. doi: 10.1371/journal.pone.0036280. PubMed DOI PMC
Heydari R., Elyasi N.S. Ion-pair cloud-point extraction: A new method for the determination of water-soluble vitamins in plasma and urine. J. Sep. Sci. 2014;37:2724–2731. doi: 10.1002/jssc.201400642. PubMed DOI
Mandal S.M., Mandal M., Ghosh A.K., Dey S. Rapid determination of vitamin B2 and B12 in human urine by isocratic liquid chromatography. Anal. Chim. Acta. 2009;640:110–113. doi: 10.1016/j.aca.2009.03.009. PubMed DOI
Asgharian Marzabad M., Jafari B., Norouzi P. Determination of Riboflavin by Nanocomposite Modified Carbon Paste Electrode in Biological Fluids Using Fast Fourier Transform Square Wave Voltammetry. Int. J. Eng. 2020;33:1696–1702. doi: 10.5829/ije.2020.33.09c.01. DOI
Prasad B.B., Singh R., Singh K. Development of highly electrocatalytic and electroconducting imprinted film using Ni nanomer for ultra-trace detection of thiamine. Sens. Actuators B Chem. 2017;246:38–45. doi: 10.1016/j.snb.2017.02.033. DOI
Shankar S., John S.A. Sensitive and highly selective determination of vitamin B1 in the presence of other vitamin B complexes using functionalized gold nanoparticles as fluorophore. Rsc. Adv. 2015;5:49920–49925. doi: 10.1039/C5RA09165A. DOI
Song Z., Hou S. Determination of picomole amounts of thiamine through flow-injection analysis based on the suppression of luminol-KIO(4) chemiluminescence system. J. Pharm. Biomed. Anal. 2002;28:683–691. doi: 10.1016/S0731-7085(01)00655-0. PubMed DOI
Zhang H., Chen H., Li H., Pan S., Ran Y., Hu X. Construction of a novel turn-on-off fluorescence sensor used for highly selective detection of thiamine via its quenching effect on o-phen-Zn(2+) complex. Luminescence. 2018;33:1128–1135. doi: 10.1002/bio.3519. PubMed DOI
Immundiagnostik AG. ID-Vit® Pantothenic acid. [(accessed on 10 July 2021)]. Available online: https://www.immundiagnostik.com/media/pages/testkits/kif004/1c6c7f961a-1633917660/kif004_2019-05-23_pantothensaeure.pdf.
Immundiagnostik AG. ID-Vit® Niacin. [(accessed on 10 July 2021)]. Available online: https://www.immundiagnostik.com/media/pages/testkits/kif003/2d1c628e3b-1633917660/kif003_2019-05-23_niacin.pdf.
RECIPE Chemicals+Instruments GmbH VITAMIN B1, B2 AND B6 (COMBIKIT) [(accessed on 10 July 2021)]. Available online: https://recipe.de/products/combikit-vitamin-b1-b2-b6-whole-blood/
Immundiagnostik AG. Vitamin B1 HPLC Kit. [(accessed on 10 July 2021)]. Available online: https://www.immundiagnostik.com/media/pages/testkits/kc2201/59011e2c72-1633658467/vitamin-b1_kc2201.pdf.
RECIPE Chemicals+Instruments GmbH VITAMIN B1. [(accessed on 10 July 2021)]. Available online: https://recipe.de/products/vitamin-b1-whole-blood/
RECIPE Chemicals+Instruments GmbH VITAMIN B2. [(accessed on 10 July 2021)]. Available online: https://recipe.de/products/vitamin-b2-whole-blood/
MYBioSource Thiamine Elisa Kit: Human Thiamine ELISA Kit. [(accessed on 10 July 2021)]. Available online: https://www.mybiosource.com/human-elisa-kits/thiamine/167383.
LSBio Vitamin B2/Riboflavin (Competitive EIA) ELISA Kit-LS-F55485. [(accessed on 10 July 2021)]. Available online: https://www.lsbio.com/elisakits/vitamin-b2-riboflavin-competitive-eia-elisa-kit-ls-f55485/55485.
Antibodiesonline GmbH Vitamin B2 (Riboflavin) ELISA Kit. [(accessed on 10 July 2021)]. Available online: https://www.antibodies-online.com/kit/1059863/Vitamin+B2+Riboflavin+ELISA+Kit/
Amrein K., Oudemans-van Straaten H.M., Berger M.M. Vitamin therapy in critically ill patients: Focus on thiamine, vitamin C, and vitamin D. Intensive Care Med. 2018;44:1940–1944. doi: 10.1007/s00134-018-5107-y. PubMed DOI PMC
Russell R.M., Suter P.M. Vitamin requirements of elderly people: An update. Am. J. Clin. Nutr. 1993;58:4–14. doi: 10.1093/ajcn/58.1.4. PubMed DOI
Thomson A., Guerrini I., Marshall E.J. Incidence of Adverse Reactions to Parenteral Thiamine in the Treatment of Wernicke’s Encephalopathy, and Recommendations. Alcohol Alcohol. 2019;54:609–614. doi: 10.1093/alcalc/agy091. PubMed DOI
Claus D., Eggers R., Warecka K., Neundorfer B. Thiamine deficiency and nervous system function disturbances. Eur. Arch. Psych. Neurol. Sci. 1985;234:390–394. doi: 10.1007/BF00386056. PubMed DOI
Alaei Shahmiri F., Soares M.J., Zhao Y., Sherriff J. High-dose thiamine supplementation improves glucose tolerance in hyperglycemic individuals: A randomized, double-blind cross-over trial. Eur. J. Nutr. 2013;52:1821–1824. doi: 10.1007/s00394-013-0534-6. PubMed DOI
Gibson G.E., Hirsch J.A., Cirio R.T., Jordan B.D., Fonzetti P., Elder J. Abnormal thiamine-dependent processes in Alzheimer’s Disease. Lessons from diabetes. Mol. Cell. Neurosci. 2013;55:17–25. doi: 10.1016/j.mcn.2012.09.001. PubMed DOI PMC
Kv L.N., Nguyen L.T. The role of thiamine in HIV infection. Int. J. Infect. Dis. 2013;17:e221–e227. doi: 10.1016/j.ijid.2012.11.019. PubMed DOI
Volvert M.L., Seyen S., Piette M., Evrard B., Gangolf M., Plumier J.C., Bettendorff L. Benfotiamine, a synthetic S-acyl thiamine derivative, has different mechanisms of action and a different pharmacological profile than lipid-soluble thiamine disulfide derivatives. BMC Pharmacol. 2008;8:10. doi: 10.1186/1471-2210-8-10. PubMed DOI PMC
Loew D. Pharmacokinetics of thiamine derivatives especially of benfotiamine. Int. J. Clin. Pharmacol. Ther. 1996;34:47–50. PubMed
Nishikawa T., Edelstein D., Du X.L., Yamagishi S., Matsumura T., Kaneda Y., Yorek M.A., Beebe D., Oates P.J., Hammes H.P., et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature. 2000;404:787–790. doi: 10.1038/35008121. PubMed DOI
Raj V., Ojha S., Howarth F.C., Belur P.D., Subramanya S.B. Therapeutic potential of benfotiamine and its molecular targets. Eur. Rev. Med. Pharmacol. Sci. 2018;22:3261–3273. doi: 10.26355/eurrev_201805_15089. PubMed DOI
Babaei-Jadidi R., Karachalias N., Ahmed N., Battah S., Thornalley P.J. Prevention of incipient diabetic nephropathy by high-dose thiamine and benfotiamine. Diabetes. 2003;52:2110–2120. doi: 10.2337/diabetes.52.8.2110. PubMed DOI
Stracke H., Lindemann A., Federlin K. A benfotiamine-vitamin B combination in treatment of diabetic polyneuropathy. Exp. Clin. Endocrinol. Diabetes. 1996;104:311–316. doi: 10.1055/s-0029-1211460. PubMed DOI
Huang W.C., Huang H.Y., Hsu Y.J., Su W.H., Shen S.Y., Lee M.C., Lin C.L., Huang C.C. The Effects of Thiamine Tetrahydrofurfuryl Disulfide on Physiological Adaption and Exercise Performance Improvement. Nutrients. 2018;10:851. doi: 10.3390/nu10070851. PubMed DOI PMC
Scientific Committee on Food . Opinion of the Scientific Committee on Food on the Tolerable Upper Intake Level of Vitamin B1. European Commission; Brussels, Belgium: 2001.
Wrenn K.D., Murphy F., Slovis C.M. A toxicity study of parenteral thiamine hydrochloride. Ann. Emerg. Med. 1989;18:867–870. doi: 10.1016/S0196-0644(89)80215-X. PubMed DOI
Sica D.A. Loop diuretic therapy, thiamine balance, and heart failure. Congest. Heart Fail. 2007;13:244–247. doi: 10.1111/j.1527-5299.2007.06260.x. PubMed DOI
Schumann K. Interactions between drugs and vitamins at advanced age. Int. J. Vitam. Nutr. Res. 1999;69:173–178. doi: 10.1024/0300-9831.69.3.173. PubMed DOI
Vora B., Green E.A.E., Khuri N., Ballgren F., Sirota M., Giacomini K.M. Drug-nutrient interactions: Discovering prescription drug inhibitors of the thiamine transporter ThTR-2 (SLC19A3) Am. J. Clin. Nutr. 2020;111:110–121. doi: 10.1093/ajcn/nqz255. PubMed DOI PMC
Giacomini M.M., Hao J., Liang X., Chandrasekhar J., Twelves J., Whitney J.A., Lepist E.I., Ray A.S. Interaction of 2,4-Diaminopyrimidine-Containing Drugs Including Fedratinib and Trimethoprim with Thiamine Transporters. Drug Metab. Dispos. 2017;45:76–85. doi: 10.1124/dmd.116.073338. PubMed DOI
Hohmann H.P., Bretzel W., Hans M., Friedel A., Litta G., Lehmann M., Kurth R., Paust J., Haehnlein W. Ullmann’s Encyclopedia of Industrial Chemistry. John Wiley & Sons, Inc.; Hoboken, NJ, USA: 2020. Vitamins, 7. Vitamin B2 (Riboflavin) pp. 1–12.
Saedisomeolia A., Ashoori M. Riboflavin in Human Health: A Review of Current Evidences. Adv. Food Nutr. Res. 2018;83:57–81. doi: 10.1016/bs.afnr.2017.11.002. PubMed DOI
Powers H.J. Riboflavin (vitamin B-2) and health. Am. J. Clin. Nutr. 2003;77:1352–1360. doi: 10.1093/ajcn/77.6.1352. PubMed DOI
Mestdagh F., De Meulenaer B., De Clippeleer J., Devlieghere F., Huyghebaert A. Protective influence of several packaging materials on light oxidation of milk. J. Dairy Sci. 2005;88:499–510. doi: 10.3168/jds.S0022-0302(05)72712-0. PubMed DOI
Cardoso D.R., Libardi S.H., Skibsted L.H. Riboflavin as a photosensitizer. Effects on human health and food quality. Food Funct. 2012;3:487–502. doi: 10.1039/c2fo10246c. PubMed DOI
Sheraz M.A., Kazi S.H., Ahmed S., Anwar Z., Ahmad I. Photo, thermal and chemical degradation of riboflavin. Beilstein J. Org. Chem. 2014;10:1999–2012. doi: 10.3762/bjoc.10.208. PubMed DOI PMC
Choe E., Huang R.M., Min D.B. Chemical reactions and stability of riboflavin in foods. J. Food Sci. 2005;70:R28–R36. doi: 10.1111/j.1365-2621.2005.tb09055.x. DOI
Gaylord A.M., Warthesen J.J., Smith D.E. Influence of milk fat, milk solids, and light intensity on the light stability of vitamin A and riboflavin in lowfat milk. J. Dairy Sci. 1986;69:2779–2784. doi: 10.3168/jds.S0022-0302(86)80729-9. PubMed DOI
Semba R.D. The discovery of the vitamins. Int. J. Vitam. Nutr. Res. 2012;82:310–315. doi: 10.1024/0300-9831/a000124. PubMed DOI
Northrop-Clewes C.A., Thurnham D.I. The discovery and characterization of riboflavin. Ann. Nutr. Metab. 2012;61:224–230. doi: 10.1159/000343111. PubMed DOI
Fischer M., Bacher A. Biosynthesis of vitamin B2 and flavocoenzymes in plants. Adv. Bot. Res. 2011;58:93–152. doi: 10.1016/B978-0-12-386479-6.00003-2. DOI
Fischer M., Bacher A. Biosynthesis of vitamin B2: Structure and mechanism of riboflavin synthase. Arch. Biochem. Biophys. 2008;474:252–265. doi: 10.1016/j.abb.2008.02.008. PubMed DOI
Fischer M., Bacher A. Biosynthesis of vitamin B2: A unique way to assemble a xylene ring. Chembiochem. 2011;12:670–680. doi: 10.1002/cbic.201000681. PubMed DOI
Bacher A., Eberhardt S., Fischer M., Kis K., Richter G. Biosynthesis of vitamin b2 (riboflavin) Annu. Rev. Nutr. 2000;20:153–167. doi: 10.1146/annurev.nutr.20.1.153. PubMed DOI
Garcia-Angulo V.A. Overlapping riboflavin supply pathways in bacteria. Crit. Rev. Microbiol. 2017;43:196–209. doi: 10.1080/1040841X.2016.1192578. PubMed DOI
Gutierrez-Preciado A., Torres A.G., Merino E., Bonomi H.R., Goldbaum F.A., Garcia-Angulo V.A. Extensive Identification of Bacterial Riboflavin Transporters and Their Distribution across Bacterial Species. PLoS ONE. 2015;10:e0126124. doi: 10.1371/journal.pone.0126124. PubMed DOI PMC
Zylberman V., Klinke S., Haase I., Bacher A., Fischer M., Goldbaum F.A. Evolution of vitamin B2 biosynthesis: 6,7-dimethyl-8-ribityllumazine synthases of Brucella. J. Bacteriol. 2006;188:6135–6142. doi: 10.1128/JB.00207-06. PubMed DOI PMC
Schwechheimer S.K., Park E.Y., Revuelta J.L., Becker J., Wittmann C. Biotechnology of riboflavin. Appl. Microbiol. Biotechnol. 2016;100:2107–2119. doi: 10.1007/s00253-015-7256-z. PubMed DOI
Zhang J.-R., Ge Y.-Y., Liu P.-H., Wu D.-T., Liu H.-Y., Li H.-B., Corke H., Gan R.-Y. Biotechnological Strategies of Riboflavin Biosynthesis in Microbes. Engineering. 2021 doi: 10.1016/j.eng.2021.03.018. DOI
Revuelta J.L., Ledesma-Amaro R., Lozano-Martinez P., Diaz-Fernandez D., Buey R.M., Jimenez A. Bioproduction of riboflavin: A bright yellow history. J. Ind. Microbiol. Biotechnol. 2017;44:659–665. doi: 10.1007/s10295-016-1842-7. PubMed DOI
Auclair O., Han Y., Burgos S.A. Consumption of Milk and Alternatives and Their Contribution to Nutrient Intakes among Canadian Adults: Evidence from the 2015 Canadian Community Health Survey-Nutrition. Nutrients. 2019;11:1948. doi: 10.3390/nu11081948. PubMed DOI PMC
Mielgo-Ayuso J., Aparicio-Ugarriza R., Olza J., Aranceta-Bartrina J., Gil A., Ortega R.M., Serra-Majem L., Varela-Moreiras G., Gonzalez-Gross M. Dietary Intake and Food Sources of Niacin, Riboflavin, Thiamin and Vitamin B (6) in a Representative Sample of the Spanish Population. The Anthropometry, Intake, and Energy Balance in Spain (ANIBES) Study dagger. Nutrients. 2018;10:846. doi: 10.3390/nu10070846. PubMed DOI PMC
Gorska-Warsewicz H., Rejman K., Laskowski W., Czeczotko M. Milk and Dairy Products and Their Nutritional Contribution to the Average Polish Diet. Nutrients. 2019;11:1771. doi: 10.3390/nu11081771. PubMed DOI PMC
Efsa Panel on Dietetic Products. Nutrition and Allergies. Turck D., Bresson J.L., Burlingame B., Dean T., Fairweather-Tait S., Heinonen M., Hirsch-Ernst K.I., Mangelsdorf I., et al. Dietary Reference Values for riboflavin. EFSA J. 2017;15:e04919. doi: 10.2903/j.efsa.2017.4919. PubMed DOI PMC
Revuelta J.L., Ledesma-Amaro R., Jiménez A. Industrial Biotechnology of Vitamins, Biopigments, and Antioxidants. John Wiley & Sons, Inc.; Hoboken, NJ, USA: 2016. Industrial production of vitamin B2 by microbial fermentation; pp. 15–40.
Mosegaard S., Dipace G., Bross P., Carlsen J., Gregersen N., Olsen R.K.J. Riboflavin Deficiency-Implications for General Human Health and Inborn Errors of Metabolism. Int. J. Mol. Sci. 2020;21:3847. doi: 10.3390/ijms21113847. PubMed DOI PMC
Agarwal S., Fulgoni Iii V.L. Nutritional impact of adding a serving of mushrooms to USDA Food Patterns-a dietary modeling analysis. Food Nutr. Res. 2021;65 doi: 10.29219/fnr.v65.5618. PubMed DOI PMC
Škrovánková S., Sikorová P. Vitamin B2 (riboflavin) content in cereal products. Acta Univ. Agric. Silvic. Mendel. Brun. 2010 doi: 10.11118/actaun201058050377. DOI
Vidal-Valverde C., Prodanov M., Sierra I. Natural fermentation of lentils. Z. Lebensm. Unters. Forsch. 1997;205:464–469. doi: 10.1007/s002170050200. PubMed DOI
Melse-Boonstra A. Bioavailability of Micronutrients From Nutrient-Dense Whole Foods: Zooming in on Dairy, Vegetables, and Fruits. Front. Nutr. 2020;7:101. doi: 10.3389/fnut.2020.00101. PubMed DOI PMC
Kanno C., Kanehara N., Shirafuji K., Tanji R., Imai T. Binding form of vitamin B2 in bovine milk: Its concentration, distribution and binding linkage. J. Nutr. Sci. Vitam. 1991;37:15–27. doi: 10.3177/jnsv.37.15. PubMed DOI
Thielecke F., Lecerf J.M., Nugent A.P. Processing in the food chain: Do cereals have to be processed to add value to the human diet? Nutr. Res. Rev. 2021;34:159–173. doi: 10.1017/S0954422420000207. PubMed DOI
Pinheiro-Sant’Ana H.M., Stringheta P.C.P., Penteado M.V., Brandão S.C. Stability of B-vitamins in meats prepared by foodservice. 2.Riboflavin. Foodserv. Res. Int. 1999;11:53–67. doi: 10.1111/j.1745-4506.1999.tb00238.x. DOI
Guneser O., Karagul Yuceer Y. Effect of ultraviolet light on water- and fat-soluble vitamins in cow and goat milk. J. Dairy Sci. 2012;95:6230–6241. doi: 10.3168/jds.2011-5300. PubMed DOI
Asadullah, Khair-un-nisa, Tarar O.M., Ali S.A., Jamil K., Begum A. Study to evaluate the impact of heat treatment on water soluble vitamins in milk. J. Pak. Med. Assoc. 2010;60:909–912. PubMed
Golbach J.L., Ricke S.C., O’Bryan C.A., Crandall P.G. Riboflavin in nutrition, food processing, and analysis-A Review. J. Food Res. 2014;3:23. doi: 10.5539/jfr.v3n6p23. DOI
Sharabi S., Okun Z., Shpigelman A. Changes in the shelf life stability of riboflavin, vitamin C and antioxidant properties of milk after (ultra) high pressure homogenization: Direct and indirect effects. Innov. Food Sci. Emerg. Technol. 2018;47:161–169. doi: 10.1016/j.ifset.2018.02.014. DOI
Allen C., Parks O.W. Photodegradation of riboflavin in milks exposed to fluorescent light. J. Dairy Sci. 1979;62:1377–1379. doi: 10.3168/jds.S0022-0302(79)83431-1. PubMed DOI
Dror D.K., Allen L.H. Overview of Nutrients in Human Milk. Adv. Nutr. 2018;9:278S–294S. doi: 10.1093/advances/nmy022. PubMed DOI PMC
Bates C.J., Liu D.S., Fuller N.J., Lucas A. Susceptibility of riboflavin and vitamin A in breast milk to photodegradation and its implications for the use of banked breast milk in infant feeding. Acta Paediatr. Scand. 1985;74:40–44. doi: 10.1111/j.1651-2227.1985.tb10918.x. PubMed DOI
Lima H.K., Vogel K., Hampel D., Wagner-Gillespie M., Fogleman A.D. The Associations Between Light Exposure During Pumping and Holder Pasteurization and the Macronutrient and Vitamin Concentrations in Human Milk. J. Hum. Lact. 2020;36:254–263. doi: 10.1177/0890334420906828. PubMed DOI
Rico D., Penas E., Garcia M.D.C., Martinez-Villaluenga C., Rai D.K., Birsan R.I., Frias J., Martin-Diana A.B. Sprouted Barley Flour as a Nutritious and Functional Ingredient. Foods. 2020;9:296. doi: 10.3390/foods9030296. PubMed DOI PMC
Tishler M., Pfister K., 3rd, Babson R.D., Ladenburg K., Fleming A.J. The reaction between o-aminoazo compounds and barbituric acid; a new synthesis of riboflavin. J. Am. Chem. Soc. 1947;69:1487–1492. doi: 10.1021/ja01198a068. PubMed DOI
Tischler M., Wellman J.W., Ladenburg K. The preparation of riboflavin; the synthesis of alloxazines and isoalloxazines. J. Am. Chem. Soc. 1945;67:2165–2168. doi: 10.1021/ja01228a031. PubMed DOI
Liu S., Hu W., Wang Z., Chen T. Production of riboflavin and related cofactors by biotechnological processes. Microb. Cell Fact. 2020;19:31. doi: 10.1186/s12934-020-01302-7. PubMed DOI PMC
Revuelta J.L., Buey R.M., Ledesma-Amaro R., Vandamme E.J. Microbial biotechnology for the synthesis of (pro)vitamins, biopigments and antioxidants: Challenges and opportunities. Microb. Biotechnol. 2016;9:564–567. doi: 10.1111/1751-7915.12379. PubMed DOI PMC
Perkins J.B., Sloma A., Hermann T., Theriault K., Zachgo E., Erdenberger T., Hannett N., Chatterjee N.P., Williams V., Rufo G.A., et al. Genetic engineering of Bacillus subtilis for the commercial production of riboflavin. J. Ind. Microbiol. Biotechnol. 1999;22:8–18. doi: 10.1038/sj.jim.2900587. DOI
Aguiar T.Q., Silva R., Domingues L. Ashbya gossypii beyond industrial riboflavin production: A historical perspective and emerging biotechnological applications. Biotechnol. Adv. 2015;33:1774–1786. doi: 10.1016/j.biotechadv.2015.10.001. PubMed DOI
Man Z.W., Rao Z.M., Cheng Y.P., Yang T.W., Zhang X., Xu M.J., Xu Z.H. Enhanced riboflavin production by recombinant Bacillus subtilis RF1 through the optimization of agitation speed. World J. Microbiol. Biotechnol. 2014;30:661–667. doi: 10.1007/s11274-013-1492-0. PubMed DOI
Stahmann K.P., Revuelta J.L., Seulberger H. Three biotechnical processes using Ashbya gossypii, Candida famata, or Bacillus subtilis compete with chemical riboflavin production. Appl. Microbiol. Biotechnol. 2000;53:509–516. doi: 10.1007/s002530051649. PubMed DOI
Shi T., Wang Y., Wang Z., Wang G., Liu D., Fu J., Chen T., Zhao X. Deregulation of purine pathway in Bacillus subtilis and its use in riboflavin biosynthesis. Microb. Cell Fact. 2014;13:101. doi: 10.1186/s12934-014-0101-8. PubMed DOI PMC
Abbas C.A., Sibirny A.A. Genetic control of biosynthesis and transport of riboflavin and flavin nucleotides and construction of robust biotechnological producers. Microbiol. Mol. Biol. Rev. 2011;75:321–360. doi: 10.1128/MMBR.00030-10. PubMed DOI PMC
Wang G., Shi T., Chen T., Wang X., Wang Y., Liu D., Guo J., Fu J., Feng L., Wang Z., et al. Integrated whole-genome and transcriptome sequence analysis reveals the genetic characteristics of a riboflavin-overproducing Bacillus subtilis. Metab. Eng. 2018;48:138–149. doi: 10.1016/j.ymben.2018.05.022. PubMed DOI
Averianova L.A., Balabanova L.A., Son O.M., Podvolotskaya A.B., Tekutyeva L.A. Production of Vitamin B2 (Riboflavin) by Microorganisms: An Overview. Front. Bioeng. Biotechnol. 2020;8:570828. doi: 10.3389/fbioe.2020.570828. PubMed DOI PMC
Kato T., Park E.Y. Riboflavin production by Ashbya gossypii. Biotechnol. Lett. 2012;34:611–618. doi: 10.1007/s10529-011-0833-z. PubMed DOI
EU Commision E. Commission Directive 2006/125/EC of 5 December 2006 on Processed Cereal-Based Foods and Baby Foods for Infants and Young Children. [(accessed on 11 June 2021)]. Available online: https://eur-lex.europa.eu/eli/dir/2006/125/oj.
Levit R., Savoy de Giori G., de Moreno de LeBlanc A., LeBlanc J.G. Recent update on lactic acid bacteria producing riboflavin and folates: Application for food fortification and treatment of intestinal inflammation. J. Appl. Microbiol. 2021;130:1412–1424. doi: 10.1111/jam.14854. PubMed DOI
Capozzi V., Russo P., Duenas M.T., Lopez P., Spano G. Lactic acid bacteria producing B-group vitamins: A great potential for functional cereals products. Appl. Microbiol. Biotechnol. 2012;96:1383–1394. doi: 10.1007/s00253-012-4440-2. PubMed DOI
Thakur K., Tomar S.K., De S. Lactic acid bacteria as a cell factory for riboflavin production. Microb. Biotechnol. 2016;9:441–451. doi: 10.1111/1751-7915.12335. PubMed DOI PMC
LeBlanc J.G., Laino J.E., del Valle M.J., Vannini V., Van Sinderen D., Taranto M.P., de Valdez G.F., de Giori G.S., Sesma F. B-group vitamin production by lactic acid bacteria-current knowledge and potential applications. J. Appl. Microbiol. 2011;111:1297–1309. doi: 10.1111/j.1365-2672.2011.05157.x. PubMed DOI
LeBlanc J.G., Milani C., de Giori G.S., Sesma F., Van Sinderen D., Ventura M. Bacteria as vitamin suppliers to their host: A gut microbiota perspective. Curr. Opin. Biotechnol. 2013;24:160–168. doi: 10.1016/j.copbio.2012.08.005. PubMed DOI
Solopova A., Bottacini F., Venturi Degli Esposti E., Amaretti A., Raimondi S., Rossi M., Van Sinderen D. Riboflavin Biosynthesis and Overproduction by a Derivative of the Human Gut Commensal Bifidobacterium longum subsp. infantis ATCC 15697. Front. Microbiol. 2020;11:573335. doi: 10.3389/fmicb.2020.573335. PubMed DOI PMC
Burgess C.M., Smid E.J., Rutten G., van Sinderen D. A general method for selection of riboflavin-overproducing food grade micro-organisms. Microb. Cell Fact. 2006;5:24. doi: 10.1186/1475-2859-5-24. PubMed DOI PMC
del Valle M.J., Laiño J.E., de Giori G.S., LeBlanc J. Riboflavin producing lactic acid bacteria as a biotechnological strategy to obtain bio-enriched soymilk. Food Res. Int. 2014;62:1015–1019. doi: 10.1016/j.foodres.2014.05.029. DOI
Daniel H., Binninger E., Rehner G. Hydrolysis of FMN and FAD by alkaline phosphatase of the intestinal brush-border membrane. Int. J. Vitam. Nutr. Res. 1983;53:109–114. PubMed
LeBlanc J.G., Burgess C., Sesma F., de Giori G.S., van Sinderen D. Lactococcus lactis is capable of improving the riboflavin status in deficient rats. Br. J. Nutr. 2005;94:262–267. doi: 10.1079/BJN20051473. PubMed DOI
Kasper H. Vitamin absorption in the colon. Am. J. Proctol. 1970;21:341–345. PubMed
Iinuma S. Synthesis of riboflavin by intestinal bacteria. J. Vitam. 1955;1:6–13. doi: 10.5925/jnsv1954.1.2_6. PubMed DOI
Yonezawa A., Inui K. Novel riboflavin transporter family RFVT/SLC52: Identification, nomenclature, functional characterization and genetic diseases of RFVT/SLC52. Mol. Asp. Med. 2013;34:693–701. doi: 10.1016/j.mam.2012.07.014. PubMed DOI
Yonezawa A., Masuda S., Katsura T., Inui K. Identification and functional characterization of a novel human and rat riboflavin transporter, RFT1. Am. J. Physiol. Cell Physiol. 2008;295:C632–C641. doi: 10.1152/ajpcell.00019.2008. PubMed DOI
Yao Y., Yonezawa A., Yoshimatsu H., Masuda S., Katsura T., Inui K. Identification and comparative functional characterization of a new human riboflavin transporter hRFT3 expressed in the brain. J. Nutr. 2010;140:1220–1226. doi: 10.3945/jn.110.122911. PubMed DOI
Yamamoto S., Inoue K., Ohta K.Y., Fukatsu R., Maeda J.Y., Yoshida Y., Yuasa H. Identification and functional characterization of rat riboflavin transporter 2. J. Biochem. 2009;145:437–443. doi: 10.1093/jb/mvn181. PubMed DOI
Jaeger B., Bosch A.M. Clinical presentation and outcome of riboflavin transporter deficiency: Mini review after five years of experience. J. Inherit. Metab. Dis. 2016;39:559–564. doi: 10.1007/s10545-016-9924-2. PubMed DOI PMC
Barile M., Giancaspero T.A., Leone P., Galluccio M., Indiveri C. Riboflavin transport and metabolism in humans. J. Inherit. Metab. Dis. 2016;39:545–557. doi: 10.1007/s10545-016-9950-0. PubMed DOI
Hustad S., McKinley M.C., McNulty H., Schneede J., Strain J.J., Scott J.M., Ueland P.M. Riboflavin, flavin mononucleotide, and flavin adenine dinucleotide in human plasma and erythrocytes at baseline and after low-dose riboflavin supplementation. Clin. Chem. 2002;48:1571–1577. doi: 10.1093/clinchem/48.9.1571. PubMed DOI
Frago S., Martinez-Julvez M., Serrano A., Medina M. Structural analysis of FAD synthetase from Corynebacterium ammoniagenes. BMC Microbiol. 2008;8:160. doi: 10.1186/1471-2180-8-160. PubMed DOI PMC
Herguedas B., Martinez-Julvez M., Frago S., Medina M., Hermoso J.A. Oligomeric state in the crystal structure of modular FAD synthetase provides insights into its sequential catalysis in prokaryotes. J. Mol. Biol. 2010;400:218–230. doi: 10.1016/j.jmb.2010.05.018. PubMed DOI
Barile M., Giancaspero T.A., Brizio C., Panebianco C., Indiveri C., Galluccio M., Vergani L., Eberini I., Gianazza E. Biosynthesis of flavin cofactors in man: Implications in health and disease. Curr. Pharm. Des. 2013;19:2649–2675. doi: 10.2174/1381612811319140014. PubMed DOI
Serrano A., Ferreira P., Martinez-Julvez M., Medina M. The prokaryotic FAD synthetase family: A potential drug target. Curr. Pharm. Des. 2013;19:2637–2648. doi: 10.2174/1381612811319140013. PubMed DOI
Chastain J.L., McCormick D.B. Flavin catabolites: Identification and quantitation in human urine. Am. J. Clin. Nutr. 1987;46:830–834. doi: 10.1093/ajcn/46.5.830. PubMed DOI
Lienhart W.D., Gudipati V., Macheroux P. The human flavoproteome. Arch. Biochem. Biophys. 2013;535:150–162. doi: 10.1016/j.abb.2013.02.015. PubMed DOI PMC
Macheroux P., Kappes B., Ealick S.E. Flavogenomics–A genomic and structural view of flavin-dependent proteins. FEBS J. 2011;278:2625–2634. doi: 10.1111/j.1742-4658.2011.08202.x. PubMed DOI
Singal A.K., Anderson K.E. Variegate Porphyria. In: Adam M.P., Ardinger H.H., Pagon R.A., Wallace S.E., Bean L.J.H., Mirzaa G., Amemiya A., editors. GeneReviews®. University of Washington; Seattle, WA, USA: 1993. PubMed
Musayev F.N., Di Salvo M.L., Saavedra M.A., Contestabile R., Ghatge M.S., Haynes A., Schirch V., Safo M.K. Molecular basis of reduced pyridoxine 5′-phosphate oxidase catalytic activity in neonatal epileptic encephalopathy disorder. J. Biol. Chem. 2009;284:30949–30956. doi: 10.1074/jbc.M109.038372. PubMed DOI PMC
Manoj N., Ealick S.E. Unusual space-group pseudosymmetry in crystals of human phosphopantothenoylcysteine decarboxylase. Acta Cryst. D Biol. Cryst. 2003;59:1762–1766. doi: 10.1107/S0907444903016214. PubMed DOI
Di Meo I., Carecchio M., Tiranti V. Inborn errors of coenzyme A metabolism and neurodegeneration. J. Inherit. Metab. Dis. 2019;42:49–56. doi: 10.1002/jimd.12026. PubMed DOI
Heeringa S.F., Chernin G., Chaki M., Zhou W., Sloan A.J., Ji Z., Xie L.X., Salviati L., Hurd T.W., Vega-Warner V., et al. COQ6 mutations in human patients produce nephrotic syndrome with sensorineural deafness. J. Clin. Investig. 2011;121:2013–2024. doi: 10.1172/JCI45693. PubMed DOI PMC
Acosta M.J., Vazquez Fonseca L., Desbats M.A., Cerqua C., Zordan R., Trevisson E., Salviati L. Coenzyme Q biosynthesis in health and disease. Biochim. Biophys. Acta. 2016;1857:1079–1085. doi: 10.1016/j.bbabio.2016.03.036. PubMed DOI
Cao Q., Li G.M., Xu H., Shen Q., Sun L., Fang X.Y., Liu H.M., Guo W., Zhai Y.H., Wu B.B. Coenzyme Q(10) treatment for one child with COQ6 gene mutation induced nephrotic syndrome and literature review. Zhonghua Er Ke Za Zhi. 2017;55:135–138. doi: 10.3760/cma.j.issn.0578-1310.2017.02.016. PubMed DOI
Afink G., Kulik W., Overmars H., de Randamie J., Veenboer T., van Cruchten A., Craen M., Ris-Stalpers C. Molecular characterization of iodotyrosine dehalogenase deficiency in patients with hypothyroidism. J. Clin. Endocrinol. Metab. 2008;93:4894–4901. doi: 10.1210/jc.2008-0865. PubMed DOI
Friedman J.E., Watson J.A., Jr., Lam D.W., Rokita S.E. Iodotyrosine deiodinase is the first mammalian member of the NADH oxidase/flavin reductase superfamily. J. Biol. Chem. 2006;281:2812–2819. doi: 10.1074/jbc.M510365200. PubMed DOI
Moreno J.C., Klootwijk W., Van Toor H., Pinto G., D’Alessandro M., Leger A., Goudie D., Polak M., Gruters A., Visser T.J. Mutations in the iodotyrosine deiodinase gene and hypothyroidism. N. Engl. J. Med. 2008;358:1811–1818. doi: 10.1056/NEJMoa0706819. PubMed DOI
O’Brien M.M., Kiely M., Harrington K.E., Robson P.J., Strain J.J., Flynn A. The North/South Ireland Food Consumption Survey: Vitamin intakes in 18–64-year-old adults. Public Health Nutr. 2001;4:1069–1079. doi: 10.1079/PHN2001188. PubMed DOI
Thakur K., Tomar S.K., Singh A.K., Mandal S., Arora S. Riboflavin and health: A review of recent human research. Crit. Rev. Food Sci. Nutr. 2017;57:3650–3660. doi: 10.1080/10408398.2016.1145104. PubMed DOI
Hoppel C.L., Tandler B. Riboflavin and mouse hepatic cell structure and function. Mitochondrial oxidative metabolism in severe deficiency states. J. Nutr. 1975;105:562–570. doi: 10.1093/jn/105.5.562. PubMed DOI
Mushtaq S., Su H., Hill M.H., Powers H.J. Erythrocyte pyridoxamine phosphate oxidase activity: A potential biomarker of riboflavin status? Am. J. Clin. Nutr. 2009;90:1151–1159. doi: 10.3945/ajcn.2009.28338. PubMed DOI
Grunert S.C. Clinical and genetical heterogeneity of late-onset multiple acyl-coenzyme A dehydrogenase deficiency. Orphanet J. Rare Dis. 2014;9:117. doi: 10.1186/s13023-014-0117-5. PubMed DOI PMC
Balasubramaniam S., Christodoulou J., Rahman S. Disorders of riboflavin metabolism. J. Inherit. Metab. Dis. 2019;42:608–619. doi: 10.1002/jimd.12058. PubMed DOI
O’Callaghan B., Bosch A.M., Houlden H. An update on the genetics, clinical presentation, and pathomechanisms of human riboflavin transporter deficiency. J. Inherit. Metab. Dis. 2019;42:598–607. doi: 10.1002/jimd.12053. PubMed DOI
Hellebrekers D., Sallevelt S., Theunissen T.E.J., Hendrickx A.T.M., Gottschalk R.W., Hoeijmakers J.G.J., Habets D.D., Bierau J., Schoonderwoerd K.G., Smeets H.J.M. Novel SLC25A32 mutation in a patient with a severe neuromuscular phenotype. Eur. J. Hum. Genet. 2017;25:886–888. doi: 10.1038/ejhg.2017.62. PubMed DOI PMC
Schiff M., Veauville-Merllie A., Su C.H., Tzagoloff A., Rak M., Ogier de Baulny H., Boutron A., Smedts-Walters H., Romero N.B., Rigal O., et al. SLC25A32 Mutations and Riboflavin-Responsive Exercise Intolerance. N. Engl. J. Med. 2016;374:795–797. doi: 10.1056/NEJMc1513610. PubMed DOI PMC
Thompson D.F., Saluja H.S. Prophylaxis of migraine headaches with riboflavin: A systematic review. J. Clin. Pharmacol. Ther. 2017;42:394–403. doi: 10.1111/jcpt.12548. PubMed DOI
Namazi N., Heshmati J., Tarighat-Esfanjani A. Supplementation with Riboflavin (Vitamin B2) for Migraine Prophylaxis in Adults and Children: A Review. Int. J. Vitam. Nutr. Res. 2015;85:79–87. doi: 10.1024/0300-9831/a000225. PubMed DOI
Tripathi A.K., Dwivedi A., Pal M.K., Rastogi N., Gupta P., Ali S., Prabhu M.B., Kushwaha H.N., Ray R.S., Singh S.K., et al. Attenuated neuroprotective effect of riboflavin under UV-B irradiation via miR-203/c-Jun signaling pathway in vivo and in vitro. J. Biomed. Sci. 2014;21:39. doi: 10.1186/1423-0127-21-39. PubMed DOI PMC
Barbre A.B., Hoane M.R. Magnesium and riboflavin combination therapy following cortical contusion injury in the rat. Brain Res. Bull. 2006;69:639–646. doi: 10.1016/j.brainresbull.2006.03.009. PubMed DOI
Seekamp A., Hultquist D.E., Till G.O. Protection by vitamin B2 against oxidant-mediated acute lung injury. Inflammation. 1999;23:449–460. doi: 10.1023/A:1021965026580. PubMed DOI
Mack C.P., Hultquist D.E., Shlafer M. Myocardial flavin reductase and riboflavin: A potential role in decreasing reoxygenation injury. Biochem. Biophys. Res. Commun. 1995;212:35–40. doi: 10.1006/bbrc.1995.1932. PubMed DOI
Suwannasom N., Kao I., Pruss A., Georgieva R., Baumler H. Riboflavin: The Health Benefits of a Forgotten Natural Vitamin. Int. J. Mol. Sci. 2020;21:950. doi: 10.3390/ijms21030950. PubMed DOI PMC
George B.O., Ojegbemi O. Oxidative stress and the effect of riboflavin supplementation in individuals with uncomplicated malaria infection. Afr. J. Biotechnol. 2009;8:849–853.
Akompong T., Ghori N., Haldar K. In vitro activity of riboflavin against the human malaria parasite Plasmodium falciparum. Antimicrob. Agents Chemother. 2000;44:88–96. doi: 10.1128/AAC.44.1.88-96.2000. PubMed DOI PMC
Araki S., Suzuki M., Fujimoto M., Kimura M. Enhancement of resistance to bacterial infection in mice by vitamin B2. J. Vet. Med. Sci. 1995;57:599–602. doi: 10.1292/jvms.57.599. PubMed DOI
Mazur-Bialy A.I., Buchala B., Plytycz B. Riboflavin deprivation inhibits macrophage viability and activity-a study on the RAW 264.7 cell line. Br. J. Nutr. 2013;110:509–514. doi: 10.1017/S0007114512005351. PubMed DOI
Bertollo C.M., Oliveira A.C., Rocha L.T., Costa K.A., Nascimento E.B., Jr., Coelho M.M. Characterization of the antinociceptive and anti-inflammatory activities of riboflavin in different experimental models. Eur. J. Pharmacol. 2006;547:184–191. doi: 10.1016/j.ejphar.2006.07.045. PubMed DOI
Buehler B.A. Vitamin B2: Riboflavin. J. Evid. Based Integr. Med. 2011;16:88–90. doi: 10.1177/1533210110392943. DOI
Mazzotta C., Caragiuli S., Caporossi A. Riboflavin and the Cornea and Implications for Cataracts. In: Preedy V.R., editor. Handbook of Nutrition, Diet and the Eye. Academic Press; Cambridge, MA, USA: 2014. pp. 123–130.
Chocano-Bedoya P.O., Manson J.E., Hankinson S.E., Willett W.C., Johnson S.R., Chasan-Taber L., Ronnenberg A.G., Bigelow C., Bertone-Johnson E.R. Dietary B vitamin intake and incident premenstrual syndrome. Am. J. Clin. Nutr. 2011;93:1080–1086. doi: 10.3945/ajcn.110.009530. PubMed DOI PMC
Alam M.M., Iqbal S., Naseem I. Ameliorative effect of riboflavin on hyperglycemia, oxidative stress and DNA damage in type-2 diabetic mice: Mechanistic and therapeutic strategies. Arch. Biochem. Biophys. 2015;584:10–19. doi: 10.1016/j.abb.2015.08.013. PubMed DOI
Schoenen J., Lenaerts M., Bastings E. High-dose riboflavin as a prophylactic treatment of migraine: Results of an open pilot study. Cephalalgia. 1994;14:328–329. doi: 10.1046/j.1468-2982.1994.1405328.x. PubMed DOI
MacLennan S.C., Wade F.M., Forrest K.M., Ratanayake P.D., Fagan E., Antony J. High-dose riboflavin for migraine prophylaxis in children: A double-blind, randomized, placebo-controlled trial. J. Child Neurol. 2008;23:1300–1304. doi: 10.1177/0883073808318053. PubMed DOI
Pinto J.T., Rivlin R.S. Drugs that promote renal excretion of riboflavin. Drug Nutr. Interact. 1987;5:143–151. PubMed
Pinto J., Huang Y.P., McConnell R.J., Rivlin R.S. Increased urinary riboflavin excretion resulting from boric acid ingestion. J. Lab. Clin. Med. 1978;92:126–134. PubMed
Ogura R., Ueta H., Hino Y., Hidaka T., Sugiyama M. Riboflavin deficiency caused by treatment with adriamycin. J. Nutr. Sci. Vitam. 1991;37:473–477. doi: 10.3177/jnsv.37.473. PubMed DOI
Pinto J.T., Delman B.N., Dutta P., Nisselbaum J. Adriamycin-induced increase in serum aldosterone levels: Effects in riboflavin-sufficient and riboflavin-deficient rats. Endocrinology. 1990;127:1495–1501. doi: 10.1210/endo-127-3-1495. PubMed DOI
Pinto J., Wolinsky M., Rivlin R.S. Chlorpromazine antagonism of thyroxine-induced flavin formation. Biochem. Pharmacol. 1979;28:597–600. doi: 10.1016/0006-2952(79)90141-2. PubMed DOI
Rivlin R.S., Langdon R.G. Effects of thyroxine upon biosynthesis of flavin mononucleotide and flavin adenine dinucleotide. Endocrinology. 1969;84:584–588. doi: 10.1210/endo-84-3-584. PubMed DOI
Pinto J., Huang Y.P., Rivlin R.S. Inhibition of riboflavin metabolism in rat tissues by chlorpromazine, imipramine, and amitriptyline. J. Clin. Investig. 1981;67:1500–1506. doi: 10.1172/JCI110180. PubMed DOI PMC
Rivlin R.S., Menendez C., Langdon R.G. Biochemical similarities between hypothyroidism and riboflavin deficiency. Endocrinology. 1968;83:461–469. doi: 10.1210/endo-83-3-461. PubMed DOI
Pelliccione N., Pinto J., Huang Y.P., Rivlin R.S. Accelerated development of riboflavin deficiency by treatment with chlorpromazine. Biochem. Pharmacol. 1983;32:2949–2953. doi: 10.1016/0006-2952(83)90401-X. PubMed DOI
Lee S.S., McCormick D.B. Thyroid hormone regulation of flavocoenzyme biosynthesis. Arch. Biochem. Biophys. 1985;237:197–201. doi: 10.1016/0003-9861(85)90269-3. PubMed DOI
Pinto J., Huang Y.P., Pelliccione N., Rivlin R.S. Cardiac sensitivity to the inhibitory effects of chlorpromazine, imipramine and amitriptyline upon formation of flavins. Biochem. Pharmacol. 1982;31:3495–3499. doi: 10.1016/0006-2952(82)90632-3. PubMed DOI
Institute of Medicine (US) Standing Committee on the Scientific Evaluation of Dietary Reference Intakes and its Panel on Folate, Other B Vitamins, and Choline . Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline. National Academies Press; Washington, DC, USA: 1998. PubMed
Ross A.C., Caballero B., Cousins R.J., Tucker K.L., Ziegler T.R. Modern Nutrition in Health and Disease. 11th ed. Wolters Kluwer Health Adis; Philadelphia, PA, USA: 2012. pp. 1–1616.
Erdman J.W., Jr., MacDonald I.A., Zeisel S.H., Penberthy WT K.J. Present Knowledge in Nutrition. 10th ed. John Wiley & Sons, Inc.; Hoboken, NJ, USA: 2012. pp. 293–306.
Berry Ottaway P. Stability of vitamins during food processing and storage. In: Skibsted L.H., Risbo J., Andersen M.L., editors. Chemical Deterioration and Physical Instability of Food and Beverages. Woodhead Publishing; Cambridge, UK: 2010.
World Health Organization . Pellagra and Its Prevention and Control in Major Emergencies. World Health Organization; Geneva, Switzerland: 2000.
Bhalla T.C. Vitamin B3, Niacin. In: Vandamme E.J., Revuelta J.L., editors. Industrial Biotechnology of Vitamins, Biopigments, and Antioxidants. John Wiley & Sons, Inc.; Hoboken, NJ, USA: 2016.
Allen L., Benoist B., Dary O., Hurrell R. WHO/FAO Guidelines on Food Fortification with Micronutrients. World Health Organization; Geneva, Switzerland: 2006.
Gazzaniga F., Stebbins R., Chang S.Z., McPeek M.A., Brenner C. Microbial NAD metabolism: Lessons from comparative genomics. Microbiol. Mol. Biol. Rev. 2009;73:529–541. doi: 10.1128/MMBR.00042-08. PubMed DOI PMC
Li Y.F., Bao W.G. Why do some yeast species require niacin for growth? Different modes of NAD synthesis. FEMS Yeast Res. 2007;7:657–664. doi: 10.1111/j.1567-1364.2007.00231.x. PubMed DOI
Kurnasov O., Goral V., Colabroy K., Gerdes S., Anantha S., Osterman A., Begley T.P. NAD biosynthesis: Identification of the tryptophan to quinolinate pathway in bacteria. Chem. Biol. 2003;10:1195–1204. doi: 10.1016/j.chembiol.2003.11.011. PubMed DOI
Noctor G., Hager J., Li S. Biosynthesis of NAD and Its Manipulation in Plants. In: Rébeillé F., Douce R., editors. Advances in Botanical Research. Volume 58. Academic Press; Cambridge, MA, USA: 2011. pp. 153–201.
Magnusdottir S., Ravcheev D., de Crecy-Lagard V., Thiele I. Systematic genome assessment of B-vitamin biosynthesis suggests co-operation among gut microbes. Front. Genet. 2015;6:148. doi: 10.3389/fgene.2015.00148. PubMed DOI PMC
Kirkland J.B., Meyer-Ficca M.L. Chapter Three-Niacin. Adv. Food. Nutr. Res. 2018;83:83–149. doi: 10.1016/bs.afnr.2017.11.003. PubMed DOI
Bauer J.E. Nutritional uniqueness of cats. Vet. Q. 1998;20:S78–S79. doi: 10.1080/01652176.1998.10807428. PubMed DOI
Reeds P.J. Dispensable and indispensable amino acids for humans. J. Nutr. 2000;130:1835S–1840S. doi: 10.1093/jn/130.7.1835S. PubMed DOI
Shibata K. Organ Co-Relationship in Tryptophan Metabolism and Factors That Govern the Biosynthesis of Nicotinamide from Tryptophan. J. Nutr. Sci. Vitam. 2018;64:90–98. doi: 10.3177/jnsv.64.90. PubMed DOI
Gasperi V., Sibilano M., Savini I., Catani M.V. Niacin in the Central Nervous System: An Update of Biological Aspects and Clinical Applications. Int. J. Mol. Sci. 2019;20:428. doi: 10.3390/ijms20040974. PubMed DOI PMC
Murray M.F. Tryptophan depletion and HIV infection: A metabolic link to pathogenesis. Lancet Infect. Dis. 2003;3:644–652. doi: 10.1016/S1473-3099(03)00773-4. PubMed DOI
Fukuwatari T., Shibata K. Nutritional aspect of tryptophan metabolism. Int. J. Tryptophan Res. 2013;6:3–8. doi: 10.4137/IJTR.S11588. PubMed DOI PMC
Meir Z., Osherov N. Vitamin Biosynthesis as an Antifungal Target. J. Fungi. 2018;4:72. doi: 10.3390/jof4020072. PubMed DOI PMC
EFSA Dietary Reference Values for Nutrients Summary report. EFSA Support. Publ. 2017;14:e15121. doi: 10.2903/sp.efsa.2017.e15121. DOI
Food and Drug Administration Converting Units of Measure for Folate, Niacin, and Vitamins A, D, and E on the Nutrition and Supplement Facts Labels: Guidance for Industry. [(accessed on 10 July 2021)]; Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/guidance-industry-converting-units-measure-folate-niacin-and-vitamins-d-and-e-nutrition-and.
Fukuwatari T., Ohta M., Kimtjra N., Sasaki R., Shibata K. Conversion ratio of tryptophan to niacin in Japanese women fed a purified diet conforming to the Japanese Dietary Reference Intakes. J. Nutr. Sci. Vitam. 2004;50:385–391. doi: 10.3177/jnsv.50.385. PubMed DOI
Combs G.F., McClung J.P., editors. The Vitamins. Academic Press; Cambridge, MA, USA: 2017. Niacin; pp. 331–350.
Lanska D.J. The discovery of niacin, biotin, and pantothenic acid. Ann. Nutr. Metab. 2012;61:246–253. doi: 10.1159/000343115. PubMed DOI
Henderson L.M., Koski R.E., D’Angeli F. The role of riboflavin and vitamin B6 in tryptophan metabolism. J. Biol. Chem. 1955;215:369–376. doi: 10.1016/S0021-9258(18)66045-4. PubMed DOI
Shibata K., Mushiage M., Kondo T., Hayakawa T., Tsuge H. Effects of vitamin B6 deficiency on the conversion ratio of tryptophan to niacin. Biosci. Biotechnol. Biochem. 1995;59:2060–2063. doi: 10.1271/bbb.59.2060. PubMed DOI
Shibata K., Kobayashi R., Fukuwatari T. Vitamin B1 deficiency inhibits the increased conversion of tryptophan to nicotinamide in severe food-restricted rats. Biosci. Biotechnol. Biochem. 2015;79:103–108. doi: 10.1080/09168451.2014.962473. PubMed DOI
Fukuwatari T., Shibata K. Effect of nicotinamide administration on the tryptophan-nicotinamide pathway in humans. Int. J. Vitam. Nutr. Res. 2007;77:255–262. doi: 10.1024/0300-9831.77.4.255. PubMed DOI
Lule V.K., Garg S., Gosewade S.C., Tomar S.K., Khedkar C.D. Niacin. In: Caballero B., Finglas P.M., Toldrá F., editors. Encyclopedia of Food and Health. Academic Press; Cambridge, MA, USA: 2016. pp. 63–72.
Wall J.S., Carpenter K.J. Variation in Availability of Niacin in Grain Products. Food Technol. 1988;42:198.
Blum R. Ullmann’s Encyclopedia of Industrial Chemistry. John Wiley & Sons, Inc.; Hoboken, NJ, USA: 2020. Vitamins, 8. Vitamin B3 (Niacin) pp. 1–9.
EFSA Scientific opinion on dietary reference values for niacin. EFSA J. 2014;12:3759. doi: 10.2903/j.efsa.2014.3759. DOI
Chawla J., Kvarnberg D. Chapter 59—Hydrosoluble vitamins. In: Biller J., Ferro J.M., editors. Handbook of Clinical Neurology. Volume 120. Elsevier; Amsterdam, The Netherlands: 2014. pp. 891–914. PubMed
Raman J., Jang K.Y., Oh Y.L., Oh M., Im J.H., Lakshmanan H., Sabaratnam V. Cultivation and Nutritional Value of Prominent Pleurotus spp.: An Overview. Mycobiology. 2020;49:1–14. doi: 10.1080/12298093.2020.1835142. PubMed DOI PMC
Kumar K. Nutraceutical Potential and Processing Aspects of Oyster Mushrooms (Pleurotus Species) Curr. Nutr. Food Sci. 2020;16:3–14. doi: 10.2174/1573401314666181015111724. DOI
Çatak J., Yaman M. Determination of Nicotinic Acid and Nicotinamide Forms of Vitamin B3 (Niacin) in Fruits and Vegetables by HPLC Using Postcolumn Derivatization System. Pak. J. Nutr. 2019;18:563–570. doi: 10.3923/pjn.2019.563.570. DOI
Prousky J., Millman C.G., Kirkland J.B. Pharmacologic Use of Niacin. J. Evid. Based Integr. Med. 2011;16:91–101. doi: 10.1177/2156587211399579. DOI
Angelino D., Tassotti M., Brighenti F., Del Rio D., Mena P. Niacin, alkaloids and (poly)phenolic compounds in the most widespread Italian capsule-brewed coffees. Sci. Rep. 2018;8:17874. doi: 10.1038/s41598-018-36291-6. PubMed DOI PMC
Lang R., Yagar E.F., Eggers R., Hofmann T. Quantitative investigation of trigonelline, nicotinic acid, and nicotinamide in foods, urine, and plasma by means of LC-MS/MS and stable isotope dilution analysis. J. Agric. Food Chem. 2008;56:11114–11121. doi: 10.1021/jf802838s. PubMed DOI
Carvalho A. Variability of the Niacin Content in Coffee. Nature. 1962;194:1096. doi: 10.1038/1941096a0. DOI
Stadler R.H., Varga N., Hau J., Vera F.A., Welti D.H. Alkylpyridiniums. 1. Formation in model systems via thermal degradation of trigonelline. J. Agric. Food Chem. 2002;50:1192–1199. doi: 10.1021/jf011234k. PubMed DOI
Kremer J.I., Gompel K., Bakuradze T., Eisenbrand G., Richling E. Urinary Excretion of Niacin Metabolites in Humans After Coffee Consumption. Mol. Nutr. Food Res. 2018;62:e1700735. doi: 10.1002/mnfr.201700735. PubMed DOI PMC
Ghafoorunissa, Rao B.S. Effect of leucine on enzymes of the tryptophan-niacin metabolic pathway in rat liver and kidney. Biochem. J. 1973;134:425–430. doi: 10.1042/bj1340425. PubMed DOI PMC
Badawy A.A., Lake S.L., Dougherty D.M. Mechanisms of the pellagragenic effect of leucine: Stimulation of hepatic tryptophan oxidation by administration of branched-chain amino acids to healthy human volunteers and the role of plasma free tryptophan and total kynurenines. Int. J. Tryptophan Res. 2014;7:23–32. doi: 10.4137/IJTR.S18231. PubMed DOI PMC
Badawy A.A. Kynurenine Pathway of Tryptophan Metabolism: Regulatory and Functional Aspects. Int. J. Tryptophan Res. 2017;10:1178646917691938. doi: 10.1177/1178646917691938. PubMed DOI PMC
Katz S.H., Hediger M.L., Valleroy L.A. Traditional maize processing techniques in the new world. Science. 1974;184:765–773. doi: 10.1126/science.184.4138.765. PubMed DOI
Bender D.A. Effects of a dietary excess of leucine on the metabolism of tryptophan in the rat: A mechanism for the pellagragenic action of leucine. Br. J. Nutr. 1983;50:25–32. doi: 10.1079/BJN19830068. PubMed DOI
Salter M., Bender D.A., Pogson C.I. Leucine and tryptophan metabolism in rats. Biochem. J. 1985;225:277–281. doi: 10.1042/bj2250277. PubMed DOI PMC
Bates C.J. Niacin and Pellagra. In: Caballero B., editor. Encyclopedia of Human Nutrition. Academic Press; Cambridge, MA, USA: 2013. pp. 182–188.
Cook N.E., Carpenter K.J. Leucine excess and niacin status in rats. J. Nutr. 1987;117:519–526. doi: 10.1093/jn/117.3.519. PubMed DOI
Manson J.A., Carpenter K.J. The effect of a high level of dietary leucine on the niacin status of dogs. J. Nutr. 1978;108:1889–1898. doi: 10.1093/jn/108.12.1889. PubMed DOI
Hegedus M., Pedersen B., Eggum B.O. The influence of milling on the nutritive value of flour from cereal grains. 7. Vitamins and tryptophan. Plant Foods Hum. Nutr. 1985;35:175–180. doi: 10.1007/BF01092134. DOI
Chamlagain B., Rautio S., Edelmann M., Ollilainen V., Piironen V. Niacin contents of cereal-milling products in food-composition databases need to be updated. J. Food Compos. Anal. 2020;91:103518. doi: 10.1016/j.jfca.2020.103518. DOI
Çatak J. Determination of niacin profiles in some animal and plant based foods by high performance liquid chromatography: Association with healthy nutrition. J. Anim. Sci. Technol. 2019;61:138–146. doi: 10.5187/jast.2019.61.3.138. PubMed DOI PMC
Saleh A.S.M., Wang P., Wang N., Yang L., Xiao Z. Brown Rice Versus White Rice: Nutritional Quality, Potential Health Benefits, Development of Food Products, and Preservation Technologies. Compr. Rev. Food Sci. Food Saf. 2019;18:1070–1096. doi: 10.1111/1541-4337.12449. PubMed DOI
Adebo O.A. African Sorghum-Based Fermented Foods: Past, Current and Future Prospects. Nutrients. 2020;12:1111. doi: 10.3390/nu12041111. PubMed DOI PMC
Wyness L. The role of red meat in the diet: Nutrition and health benefits. Proc. Nutr. Soc. 2016;75:227–232. doi: 10.1017/S0029665115004267. PubMed DOI
Feeney M.J., Dwyer J., Hasler-Lewis C.M., Milner J.A., Noakes M., Rowe S., Wach M., Beelman R.B., Caldwell J., Cantorna M.T., et al. Mushrooms and Health Summit proceedings. J. Nutr. 2014;144:1128S–1136S. doi: 10.3945/jn.114.190728. PubMed DOI PMC
Muehlhoff E., Bennett A., McMahon D. Milk and Dairy Products in Human Nutrition. FAO; Rome, Italy: 2013.
Biesalksi H.K., Back E.I. VITAMINS|Niacin, Nutritional Significance. In: Roginski H., editor. Encyclopedia of Dairy Sciences. Elsevier; Amsterdam, The Netherlands: 2002. pp. 2703–2707.
Satya S., Kaushik G., Naik S.N. Processing of food legumes: A boon to human nutrition. Med. J. Nutr. Metab. 2010;3:183–195. doi: 10.3233/s12349-010-0017-8. DOI
Sobral M.M.C., Cunha S.C., Faria M.A., Ferreira I.M. Domestic Cooking of Muscle Foods: Impact on Composition of Nutrients and Contaminants. Compr. Rev. Food Sci. Food Saf. 2018;17:309–333. doi: 10.1111/1541-4337.12327. PubMed DOI
Pinheiro-Sant’Ana H.M., Penteado M.V.C., Stringheta P.C., Chaves J.B.P. Stability of B-Vitamins in Meats Prepared by Foodservice. 3. Nicotinic Acid. Foodserv. Res. Int. 1999;11:69–82. doi: 10.1111/j.1745-4506.1999.tb00239.x. DOI
Meyer B.H., Hinman W.F., Halliday E.G. Retention of some vitamins of the B-complex in beef during cooking. Food Res. 1947;12:203–211. doi: 10.1111/j.1365-2621.1947.tb16411.x. PubMed DOI
Kilcast D. Effect of Irradiation on Vitamins. Food Chem. 1994;49:157–164. doi: 10.1016/0308-8146(94)90152-X. DOI
Yaman M., Catak J., Ugur H., Gurbuz M., Belli I., Tanyildiz S.N., Yildirim H., Cengiz S., Yavuz B.B., Kismiroglu C., et al. The bioaccessibility of water-soluble vitamins: A review. Trends Food Sci. Technol. 2021;109:552–563. doi: 10.1016/j.tifs.2021.01.056. DOI
Akça S.N., Sargın H.S., Mızrak Ö.F., Yaman M. Determination and assessment of the bioaccessibility of vitamins B1, B2, and B3 in commercially available cereal-based baby foods. Microchem. J. 2019;150:104192. doi: 10.1016/j.microc.2019.104192. DOI
Gregory J.F., 3rd Accounting for differences in the bioactivity and bioavailability of vitamers. Food Nutr. Res. 2012;56 doi: 10.3402/fnr.v56i0.5809. PubMed DOI PMC
Zaupa M., Scazzina F., Dall’Asta M., Calani L., Del Rio D., Bianchi M.A., Melegari C., De Albertis P., Tribuzio G., Pellegrini N., et al. In vitro bioaccessibility of phenolics and vitamins from durum wheat aleurone fractions. J. Agric. Food Chem. 2014;62:1543–1549. doi: 10.1021/jf404522a. PubMed DOI
Carter E.G., Carpenter K.J. The bioavailability for humans of bound niacin from wheat bran. Am. J. Clin. Nutr. 1982;36:855–861. doi: 10.1093/ajcn/36.5.855. PubMed DOI
Harper A.E., Punekar B.D., Elvehjem C.A. Effect of alkali treatment on the availability of niacin and amino acids in maize. J. Nutr. 1958;66:163–172. doi: 10.1093/jn/66.2.163. PubMed DOI
Carpenter K.J. The relationship of pellagra to corn and the low availability of niacin in cereals. Experientia Suppl. 1983;44:197–222. doi: 10.1007/978-3-0348-6540-1_12. PubMed DOI
Kodicek E., Braude R., Kon S.K., Mitchell K.G. The availability to pigs of nicotinic acid in tortilla baked from maize treated with lime-water. Br. J. Nutr. 1959;13:363–384. doi: 10.1079/BJN19590047. PubMed DOI
Kodicek E., Braude R., Kon S.K., Mitchell K.G. The effect of alkaline hydrolysis of maize on the availability of its nicotinic acid to the pig. Br. J. Nutr. 1956;10:51–67. doi: 10.1079/BJN19560010. PubMed DOI
Wacher C. Nixtamalization, a Mesoamerican technology to process maize at small-scale with great potential for improving the nutritional quality of maize based foods; Proceedings of the Food-Based Approaches for a Healthy Nutrition; Ouagadougou, Burkina Faso. 1 January 2003; pp. 735–743.
Escalante-Aburto A., Mariscal-Moreno R.M., Santiago-Ramos D., Ponce-García N. An Update of Different Nixtamalization Technologies, and Its Effects on Chemical Composition and Nutritional Value of Corn Tortillas. Food Rev. Int. 2020;36:456–498. doi: 10.1080/87559129.2019.1649693. DOI
Salazar R., Arambula-Villa G., Luna-Barcenas G., Figueroa-Cardenas J.D., Azuara E., Vazquez-Landaverde P.A. Effect of added calcium hydroxide during corn nixtamalization on acrylamide content in tortilla chips. LWT Food Sci. Technol. 2014;56:87–92. doi: 10.1016/j.lwt.2013.10.046. DOI
Maureen N., Kaaya A.N., Kauffman J., Narrod C., Atukwase A. Enhancing Nutritional Benefits and Reducing Mycotoxin Contamination of Maize through Nixtamalization. J. Biol. Sci. 2020;20:153–162. doi: 10.3923/jbs.2020.153.162. DOI
Sefa-Dedeh S., Cornelius B., Sakyi-Dawson E., Afoakwa E.O. Effect of nixtamalization on the chemical and functional properties of maize. Food Chem. 2004;86:317–324. doi: 10.1016/j.foodchem.2003.08.033. DOI
Kamau E.H., Nkhata S.G., Ayua E.O. Extrusion and nixtamalization conditions influence the magnitude of change in the nutrients and bioactive components of cereals and legumes. Food Sci. Nutr. 2020;8:1753–1765. doi: 10.1002/fsn3.1473. PubMed DOI PMC
de la Parra C., Saldivar S.O., Liu R.H. Effect of processing on the phytochemical profiles and antioxidant activity of corn for production of masa, tortillas, and tortilla chips. J. Agric. Food Chem. 2007;55:4177–4183. doi: 10.1021/jf063487p. PubMed DOI
Schaarschmidt S., Fauhl-Hassek C. Mycotoxins during the Processes of Nixtamalization and Tortilla Production. Toxins. 2019;11:227. doi: 10.3390/toxins11040227. PubMed DOI PMC
FAO . Maize in Human Nutrition. Food and Agriculture Organization of the United Nations; Rome, Italy: 1992. PubMed
Bressani R., Paz y Paz R., Scrimshaw N.S. Corn Nutrient Losses, Chemical Changes in Corn during Preparation of Tortillas. J. Agric. Food Chem. 1958;6:770–774. doi: 10.1021/jf60092a009. DOI
Carter E.G., Carpenter K.J. The available niacin values of foods for rats and their relation to analytical values. J. Nutr. 1982;112:2091–2103. doi: 10.1093/jn/112.11.2091. PubMed DOI
Dunn M.L., Jain V., Klein B.P. Stability of key micronutrients added to fortified maize flours and corn meal. Ann. N. Y. Acad. Sci. 2014;1312:15–25. doi: 10.1111/nyas.12310. PubMed DOI
Laguna J., Carpenter K.J. Raw versus processed corn in niacin-deficient diets. J. Nutr. 1951;45:21–28. doi: 10.1093/jn/45.1.21. PubMed DOI
Braham J.E., Villarreal A., Bressani R. Effect of lime treatment of corn on the availability of niacin for cats. J. Nutr. 1962;76:183–186. doi: 10.1093/jn/76.2.183. PubMed DOI
Kodicek E., Ashby D.R., Muller M., Carpenter K.J. The conversion of bound nicotinic acid to free nicotinamide on roasting sweet corn. Proc. Nutr. Soc. 1974;33:105A–106A. PubMed
Buckel L., Kremer J.I., Stegmüller S., Richling E. Fast, Sensitive and Robust Determination of Nicotinic Acid (Vitamin B3) Contents in Coffee Beverages Depending on the Degree of Roasting and Brewing Technique. Proceedings. 2019;11:13. doi: 10.3390/proceedings2019011013. DOI
Taguchi H., Sakaguchi M., Shimabayashi Y. Trigonelline Content in Coffee Beans and the Thermal-Conversion of Trigonelline into Nicotinic-Acid during the Roasting of Coffee Beans. Agr. Biol. Chem. 1985;49:3467–3471. doi: 10.1080/00021369.1985.10867295. DOI
Bressani R., Navarrete D.A. Niacin Content of Coffee in Central America. J. Food Sci. 1959;24:344–351. doi: 10.1111/j.1365-2621.1959.tb17282.x. DOI
Teply L.J., Prier R.F. Nutrients in Coffee-Nutritional Evaluation of Coffee Including Niacin Bioassay. J. Agric. Food Chem. 1957;5:375–377. doi: 10.1021/jf60075a010. DOI
Caprioli G., Cortese M., Maggi F., Minnetti C., Odello L., Sagratini G., Vittori S. Quantification of caffeine, trigonelline and nicotinic acid in espresso coffee: The influence of espresso machines and coffee cultivars. Int. J. Food Sci. Nutr. 2014;65:465–469. doi: 10.3109/09637486.2013.873890. PubMed DOI
Chaturvedi A., Geervani P. Bioavailability of niacin from processed groundnuts. J. Nutr. Sci. Vitam. 1986;32:327–334. doi: 10.3177/jnsv.32.327. PubMed DOI
Nurit E., Lyan B., Pujos-Guillot E., Branlard G., Piquet A. Change in B and E vitamin and lutein, β-sitosterol contents in industrial milling fractions and during toasted bread production. J. Cereal Sci. 2016;69:290–296. doi: 10.1016/j.jcs.2016.04.005. DOI
Asiedu M., Lied E., Nilsen R., Sandnes K. Effect of processing (sprouting and/or fermentation) on sorghum and maize: II. Vitamins and amino acid composition. Biological utilization of maize protein. Food Chem. 1993;48:201–204. doi: 10.1016/0308-8146(93)90058-N. DOI
Žilić S., Basić Z., Hadži-Tašković Šukalović V., Maksimović V., Janković M., Filipović M. Can the sprouting process applied to wheat improve the contents of vitamins and phenolic compounds and antioxidant capacity of the flour? Int. J. Food Sci. Technol. 2014;49:1040–1047. doi: 10.1111/ijfs.12397. DOI
Lay M.M.G., Fields M.L. Nutritive-Value of Germinated Corn and Corn Fermented after Germination. J. Food Sci. 1981;46:1069–1073. doi: 10.1111/j.1365-2621.1981.tb02993.x. DOI
Mihhalevski A., Nisamedtinov I., Halvin K., Oseka A., Paalme T. Stability of B-complex vitamins and dietary fiber during rye sourdough bread production. J. Cereal Sci. 2013;57:30–38. doi: 10.1016/j.jcs.2012.09.007. DOI
Mani I. Microbial Production of Vitamins. Springer; Berlin/Heidelberg, Germany: 2020.
Kumar S., Babu B.V. Process Intensification of Nicotinic Acid Production via Enzymatic Conversion using Reactive Extraction. Chem. Biochem. Eng. Q. 2009;23:367–376. doi: 10.1002/chin.201021258. DOI
Chuck R. Sustainable Industrial Chemistry. Wiley-VCH; Weinheim, Germany: 2009. Green Sustainable Chemistry in the Production of Nicotinates; pp. 541–550.
Chuck R. A catalytic green process for the production of niacin. Chimia. 2000;54:508–513.
Eschenmoser W. 100 years of progress with LONZA. Chimia. 1997;51:259–269.
Chuck R. Technology development in nicotinate production. Appl. Catal. A-Gen. 2005;280:75–82. doi: 10.1016/j.apcata.2004.08.029. DOI
Gong J.S., Zhang Q., Gu B.C., Dong T.T., Li H., Li H., Lu Z.M., Shi J.S., Xu Z.H. Efficient biocatalytic synthesis of nicotinic acid by recombinant nitrilase via high density culture. Bioresour. Technol. 2018;260:427–431. doi: 10.1016/j.biortech.2018.03.109. PubMed DOI
Shaw N.M., Robins K.T., Kiener A. Lonza: 20 years of biotransformations. Adv. Synth. Catal. 2003;345:425–435. doi: 10.1002/adsc.200390049. DOI
de Carvalho C.C. Whole cell biocatalysts: Essential workers from Nature to the industry. Microb. Biotechnol. 2017;10:250–263. doi: 10.1111/1751-7915.12363. PubMed DOI PMC
Wang Z., Liu Z., Cui W., Zhou Z. Establishment of Bioprocess for Synthesis of Nicotinamide by Recombinant Escherichia coli Expressing High-Molecular-Mass Nitrile Hydratase. Appl. Biochem. Biotechnol. 2017;182:1458–1466. doi: 10.1007/s12010-017-2410-y. PubMed DOI
Prasad S., Raj J., Bhalla T.C. Bench scale conversion of 3-cyanopyidine to nicotinamide using resting cells of Rhodococcus rhodochrous PA-34. Indian J. Microbiol. 2007;47:34–41. doi: 10.1007/s12088-007-0007-9. PubMed DOI PMC
Shen J.D., Cai X., Liu Z.Q., Zheng Y.G. Nitrilase: A promising biocatalyst in industrial applications for green chemistry. Crit. Rev. Biotechnol. 2021;41:72–93. doi: 10.1080/07388551.2020.1827367. PubMed DOI
Mathew C.D., Nagasawa T., Kobayashi M., Yamada H. Nitrilase-Catalyzed Production of Nicotinic Acid from 3-Cyanopyridine in Rhodococcus rhodochrous J1. Appl. Environ. Microbiol. 1988;54:1030–1032. doi: 10.1128/aem.54.4.1030-1032.1988. PubMed DOI PMC
Prasad S., Bhalla T.C. Nitrile hydratases (NHases): At the interface of academia and industry. Biotechnol. Adv. 2010;28:725–741. doi: 10.1016/j.biotechadv.2010.05.020. PubMed DOI
Nagasawa T., Mathew C.D., Mauger J., Yamada H. Nitrile Hydratase-Catalyzed Production of Nicotinamide from 3-Cyanopyridine in Rhodococcus rhodochrous J1. Appl. Environ. Microbiol. 1988;54:1766–1769. doi: 10.1128/aem.54.7.1766-1769.1988. PubMed DOI PMC
Bhalla T.C., Kumar V., Kumar V., Thakur N., Savitri Nitrile Metabolizing Enzymes in Biocatalysis and Biotransformation. Appl. Biochem. Biotechnol. 2018;185:925–946. doi: 10.1007/s12010-018-2705-7. PubMed DOI
Gong J.S., Lu Z.M., Li H., Shi J.S., Zhou Z.M., Xu Z.H. Nitrilases in nitrile biocatalysis: Recent progress and forthcoming research. Microb. Cell Fact. 2012;11:142. doi: 10.1186/1475-2859-11-142. PubMed DOI PMC
Gong J.S., Shi J.S., Lu Z.M., Li H., Zhou Z.M., Xu Z.H. Nitrile-converting enzymes as a tool to improve biocatalysis in organic synthesis: Recent insights and promises. Crit. Rev. Biotechnol. 2017;37:69–81. doi: 10.3109/07388551.2015.1120704. PubMed DOI
Cheng Z., Xia Y., Zhou Z. Recent Advances and Promises in Nitrile Hydratase: From Mechanism to Industrial Applications. Front. Bioeng. Biotechnol. 2020;8:352. doi: 10.3389/fbioe.2020.00352. PubMed DOI PMC
Busch H., Hagedoorn P.L., Hanefeld U. Rhodococcus as a Versatile Biocatalyst in Organic Synthesis. Int. J. Mol. Sci. 2019;20:4787. doi: 10.3390/ijms20194787. PubMed DOI PMC
Berner L.A., Clydesdale F.M., Douglass J.S. Fortification contributed greatly to vitamin and mineral intakes in the United States, 1989–1991. J. Nutr. 2001;131:2177–2183. doi: 10.1093/jn/131.8.2177. PubMed DOI
Muthayya S., Hall J., Bagriansky J., Sugimoto J., Gundry D., Matthias D., Prigge S., Hindle P., Moench-Pfanner R., Maberly G. Rice fortification: An emerging opportunity to contribute to the elimination of vitamin and mineral deficiency worldwide. Food Nutr. Bull. 2012;33:296–307. doi: 10.1177/156482651203300410. PubMed DOI
Meyer-Ficca M., Kirkland J.B. Niacin. Adv. Nutr. 2016;7:556–558. doi: 10.3945/an.115.011239. PubMed DOI PMC
De Dios Figueroa Cardenas J., Godinez M.G., Mendez N.L., Guzman A.L., Acosta L.M. Nutritional quality of nixtamal tortillas fortified with vitamins and soy proteins. Int. J. Food Sci. Nutr. 2003;54:189–200. doi: 10.1080/09637480120091991. PubMed DOI
Shewry P.R., Hawkesford M.J., Piironen V., Lampi A.M., Gebruers K., Boros D., Andersson A.A., Aman P., Rakszegi M., Bedo Z., et al. Natural variation in grain composition of wheat and related cereals. J. Agric. Food Chem. 2013;61:8295–8303. doi: 10.1021/jf3054092. PubMed DOI
Shewry P.R., Van Schaik F., Ravel C., Charmet G., Rakszegi M., Bedo Z., Ward J.L. Genotype and environment effects on the contents of vitamins B1, B2, B3, and B6 in wheat grain. J. Agric. Food Chem. 2011;59:10564–10571. doi: 10.1021/jf202762b. PubMed DOI
Kim G.R., Jung E.S., Lee S., Lim S.H., Ha S.H., Lee C.H. Combined mass spectrometry-based metabolite profiling of different pigmented rice (Oryza sativa L.) seeds and correlation with antioxidant activities. Molecules. 2014;19:15673–15686. doi: 10.3390/molecules191015673. PubMed DOI PMC
Gerdes S., Lerma-Ortiz C., Frelin O., Seaver S.M., Henry C.S., de Crecy-Lagard V., Hanson A.D. Plant B vitamin pathways and their compartmentation: A guide for the perplexed. J. Exp. Bot. 2012;63:5379–5395. doi: 10.1093/jxb/ers208. PubMed DOI
Nuss E.T., Tanumihardjo S.A. Quality protein maize for Africa: Closing the protein inadequacy gap in vulnerable populations. Adv. Nutr. 2011;2:217–224. doi: 10.3945/an.110.000182. PubMed DOI PMC
Prasanna B.M., Vasal S.K., Kassahun B., Singh N.N. Quality protein maize. Curr. Sci. 2001;81:1308–1319.
Prasanna B.M., Palacios-Rojas N., Hossain F., Muthusamy V., Menkir A., Dhliwayo T., Ndhlela T., San Vicente F., Nair S.K., Vivek B.S., et al. Molecular Breeding for Nutritionally Enriched Maize: Status and Prospects. Front. Genet. 2019;10:1392. doi: 10.3389/fgene.2019.01392. PubMed DOI PMC
Goredema-Matongera N., Ndhlela T., Magorokosho C., Kamutando C.N., Van Biljon A., Labuschagne M. Multinutrient Biofortification of Maize (Zea mays L.) in Africa: Current Status, Opportunities and Limitations. Nutrients. 2021;13:1039. doi: 10.3390/nu13031039. PubMed DOI PMC
Maqbool M.A., Issa A.B., Khokhar E.S. Quality protein maize (QPM): Importance, genetics, timeline of different events, breeding strategies and varietal adoption. Plant Breed. 2021;140:375–399. doi: 10.1111/pbr.12923. DOI
Bhat J.S., Patil B.S., Hariprasanna K., Hossain F., Muthusamy V., Mukri G., Mallikarjuna M.G., Zunjare R., Singh S.P., Sankar S.M., et al. Genetic Enhancement of Micronutrient Content in Cereals. SABRAO J. Breed. Genet. 2018;50:373–429.
Coates P.M., Betz J.M., Blackman M.R., Cragg G.M., Levine M., Moss J., White J.D. Encyclopedia of Dietary Supplements. Informa Healthcare; Boca Raton, FL, USA: 2010.
Bechgaard H., Jespersen S. GI absorption of niacin in humans. J. Pharm. Sci. 1977;66:871–872. doi: 10.1002/jps.2600660635. PubMed DOI
Lan S.J., Henderson L.M. Uptake of nicotinic acid and nicotinamide by rat erythrocytes. J. Biol. Chem. 1968;243:3388–3394. doi: 10.1016/S0021-9258(18)93320-X. PubMed DOI
Revollo J.R., Grimm A.A., Imai S. The NAD biosynthesis pathway mediated by nicotinamide phosphoribosyltransferase regulates Sir2 activity in mammalian cells. J. Biol. Chem. 2004;279:50754–50763. doi: 10.1074/jbc.M408388200. PubMed DOI
Van der Veer E., Ho C., O’Neil C., Barbosa N., Scott R., Cregan S.P., Pickering J.G. Extension of human cell lifespan by nicotinamide phosphoribosyltransferase. J. Biol. Chem. 2007;282:10841–10845. doi: 10.1074/jbc.C700018200. PubMed DOI
Ramsey K.M., Yoshino J., Brace C.S., Abrassart D., Kobayashi Y., Marcheva B., Hong H.K., Chong J.L., Buhr E.D., Lee C., et al. Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis. Science. 2009;324:651–654. doi: 10.1126/science.1171641. PubMed DOI PMC
Savitz J. The kynurenine pathway: A finger in every pie. Mol. Psychiatry. 2020;25:131–147. doi: 10.1038/s41380-019-0414-4. PubMed DOI PMC
Li R., Yu K., Wang Q., Wang L., Mao J., Qian J. Pellagra Secondary to Medication and Alcoholism: A Case Report and Review of the Literature. Nutr. Clin. Pract. 2016;31:785–789. doi: 10.1177/0884533616660991. PubMed DOI
Yang H., Yang T., Baur J.A., Perez E., Matsui T., Carmona J.J., Lamming D.W., Souza-Pinto N.C., Bohr V.A., Rosenzweig A., et al. Nutrient-sensitive mitochondrial NAD+ levels dictate cell survival. Cell. 2007;130:1095–1107. doi: 10.1016/j.cell.2007.07.035. PubMed DOI PMC
Agledal L., Niere M., Ziegler M. The phosphate makes a difference: Cellular functions of NADP. Redox Rep. 2010;15:2–10. doi: 10.1179/174329210X12650506623122. PubMed DOI PMC
Piepho R.W. The pharmacokinetics and pharmacodynamics of agents proven to raise high-density lipoprotein cholesterol. Am. J. Cardiol. 2000;86:35L–40L. doi: 10.1016/S0002-9149(00)01468-5. PubMed DOI
Pieper J.A. Overview of niacin formulations: Differences in pharmacokinetics, efficacy, and safety. Am. J. Health Syst. Pharm. 2003;60:S9–S14. doi: 10.1093/ajhp/60.suppl_2.S9. PubMed DOI
Wilkin J.K., Wilkin O., Kapp R., Donachie R., Chernosky M.E., Buckner J. Aspirin blocks nicotinic acid-induced flushing. Clin. Pharmacol. Ther. 1982;31:478–482. doi: 10.1038/clpt.1982.63. PubMed DOI
Lenglet A., Liabeuf S., Bodeau S., Louvet L., Mary A., Boullier A., Lemaire-Hurtel A.S., Jonet A., Sonnet P., Kamel S., et al. N-methyl-2-pyridone-5-carboxamide (2PY)-Major Metabolite of Nicotinamide: An Update on an Old Uremic Toxin. Toxins. 2016;8:339. doi: 10.3390/toxins8110339. PubMed DOI PMC
Breen L.T., Smyth L.M., Yamboliev I.A., Mutafova-Yambolieva V.N. beta-NAD is a novel nucleotide released on stimulation of nerve terminals in human urinary bladder detrusor muscle. Am. J. Physiol. Ren. Physiol. 2006;290:F486–F495. doi: 10.1152/ajprenal.00314.2005. PubMed DOI
Mutafova-Yambolieva V.N. Neuronal and extraneuronal release of ATP and NAD(+) in smooth muscle. IUBMB Life. 2012;64:817–824. doi: 10.1002/iub.1076. PubMed DOI PMC
Gruenbacher G., Gander H., Rahm A., Dobler G., Drasche A., Troppmair J., Nussbaumer W., Thurnher M. The Human G Protein-Coupled ATP Receptor P2Y11 Is Associated With IL-10 Driven Macrophage Differentiation. Front. Immunol. 2019;10:1870. doi: 10.3389/fimmu.2019.01870. PubMed DOI PMC
Durnin L., Dai Y., Aiba I., Shuttleworth C.W., Yamboliev I.A., Mutafova-Yambolieva V.N. Release, neuronal effects and removal of extracellular beta-nicotinamide adenine dinucleotide (beta-NAD(+)) in the rat brain. Eur. J. Neurosci. 2012;35:423–435. doi: 10.1111/j.1460-9568.2011.07957.x. PubMed DOI PMC
Durnin L., Kurahashi M., Sanders K.M., Mutafova-Yambolieva V.N. Extracellular metabolism of the enteric inhibitory neurotransmitter beta-nicotinamide adenine dinucleotide (beta-NAD) in the murine colon. J. Physiol. 2020;598:4509–4521. doi: 10.1113/JP280051. PubMed DOI PMC
Umapathy N.S., Zemskov E.A., Gonzales J., Gorshkov B.A., Sridhar S., Chakraborty T., Lucas R., Verin A.D. Extracellular beta-nicotinamide adenine dinucleotide (beta-NAD) promotes the endothelial cell barrier integrity via PKA- and EPAC1/Rac1-dependent actin cytoskeleton rearrangement. J. Cell Physiol. 2010;223:215–223. doi: 10.1002/jcp.22029. PubMed DOI PMC
Hiller S.D., Heldmann S., Richter K., Jurastow I., Kullmar M., Hecker A., Wilker S., Fuchs-Moll G., Manzini I., Schmalzing G., et al. beta-Nicotinamide Adenine Dinucleotide (beta-NAD) Inhibits ATP-Dependent IL-1beta Release from Human Monocytic Cells. Int. J. Mol. Sci. 2018;19:1126. doi: 10.3390/ijms19041126. PubMed DOI PMC
Nikiforov A., Kulikova V., Ziegler M. The human NAD metabolome: Functions, metabolism and compartmentalization. Crit. Rev. Biochem. Mol. Biol. 2015;50:284–297. doi: 10.3109/10409238.2015.1028612. PubMed DOI PMC
Pollak N., Dolle C., Ziegler M. The power to reduce: Pyridine nucleotides—Small molecules with a multitude of functions. Biochem. J. 2007;402:205–218. doi: 10.1042/BJ20061638. PubMed DOI PMC
Edenberg H.J. The genetics of alcohol metabolism: Role of alcohol dehydrogenase and aldehyde dehydrogenase variants. Alcohol Res. Health. 2007;30:5–13. PubMed PMC
Nakahata Y., Sahar S., Astarita G., Kaluzova M., Sassone-Corsi P. Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1. Science. 2009;324:654–657. doi: 10.1126/science.1170803. PubMed DOI PMC
Frederick D.W., Davis J.G., Davila A., Jr., Agarwal B., Michan S., Puchowicz M.A., Nakamaru-Ogiso E., Baur J.A. Increasing NAD synthesis in muscle via nicotinamide phosphoribosyltransferase is not sufficient to promote oxidative metabolism. J. Biol. Chem. 2015;290:1546–1558. doi: 10.1074/jbc.M114.579565. PubMed DOI PMC
Canto C., Menzies K.J., Auwerx J. NAD(+) Metabolism and the Control of Energy Homeostasis: A Balancing Act between Mitochondria and the Nucleus. Cell Metab. 2015;22:31–53. doi: 10.1016/j.cmet.2015.05.023. PubMed DOI PMC
Guse A.H., Lee H.C. NAADP: A universal Ca2+ trigger. Sci. Signal. 2008;1:re10. doi: 10.1126/scisignal.144re10. PubMed DOI
Ferrero E., Lo Buono N., Horenstein A.L., Funaro A., Malavasi F. The ADP-ribosyl cyclases—The current evolutionary state of the ARCs. Front. Biosci. 2014;19:986–1002. doi: 10.2741/4262. PubMed DOI
Partida-Sanchez S., Cockayne D.A., Monard S., Jacobson E.L., Oppenheimer N., Garvy B., Kusser K., Goodrich S., Howard M., Harmsen A., et al. Cyclic ADP-ribose production by CD38 regulates intracellular calcium release, extracellular calcium influx and chemotaxis in neutrophils and is required for bacterial clearance in vivo. Nat. Med. 2001;7:1209–1216. doi: 10.1038/nm1101-1209. PubMed DOI
Chong A., Malavasi F., Israel S., Khor C.C., Yap V.B., Monakhov M., Chew S.H., Lai P.S., Ebstein R.P. ADP ribosyl-cyclases (CD38/CD157), social skills and friendship. Psychoneuroendocrinology. 2017;78:185–192. doi: 10.1016/j.psyneuen.2017.01.011. PubMed DOI
Leung A.K.L. PARPs. Curr. Biol. 2017;27:R1256–R1258. doi: 10.1016/j.cub.2017.09.054. PubMed DOI
Perina D., Mikoc A., Ahel J., Cetkovic H., Zaja R., Ahel I. Distribution of protein poly (ADP-ribosyl) ation systems across all domains of life. DNA Repair. 2014;23:4–16. doi: 10.1016/j.dnarep.2014.05.003. PubMed DOI PMC
Aravind L., Zhang D., de Souza R.F., Anand S., Iyer L.M. The natural history of ADP-ribosyltransferases and the ADP-ribosylation system. Curr. Top. Microbiol. Immunol. 2015;384:3–32. doi: 10.1007/82_2014_414. PubMed DOI PMC
Trucco C., Rolli V., Oliver F.J., Flatter E., Masson M., Dantzer F., Niedergang C., Dutrillaux B., Menissier-de Murcia J., de Murcia G. A dual approach in the study of poly (ADP-ribose) polymerase: In vitro random mutagenesis and generation of deficient mice. Mol. Cell. Biochem. 1999;193:53–60. doi: 10.1023/A:1006947707713. PubMed DOI
Shall S., de Murcia G. Poly (ADP-ribose) polymerase-1: What have we learned from the deficient mouse model? Mutat. Res. 2000;460:1–15. doi: 10.1016/S0921-8777(00)00016-1. PubMed DOI
Herceg Z., Wang Z.Q. Functions of poly (ADP-ribose) polymerase (PARP) in DNA repair, genomic integrity and cell death. Mutat. Res. 2001;477:97–110. doi: 10.1016/S0027-5107(01)00111-7. PubMed DOI
Berger N.A., Besson V.C., Boulares A.H., Burkle A., Chiarugi A., Clark R.S., Curtin N.J., Cuzzocrea S., Dawson T.M., Dawson V.L., et al. Opportunities for the repurposing of PARP inhibitors for the therapy of non-oncological diseases. Br. J. Pharmacol. 2018;175:192–222. doi: 10.1111/bph.13748. PubMed DOI PMC
Buisson R., Dion-Cote A.M., Coulombe Y., Launay H., Cai H., Stasiak A.Z., Stasiak A., Xia B., Masson J.Y. Cooperation of breast cancer proteins PALB2 and piccolo BRCA2 in stimulating homologous recombination. Nat. Struct. Mol. Biol. 2010;17:1247–1254. doi: 10.1038/nsmb.1915. PubMed DOI PMC
Bochum S., Berger S., Martens U.M. Olaparib. Recent Results Cancer Res. 2018;211:217–233. doi: 10.1007/978-3-319-91442-8_15. PubMed DOI
Lord C.J., Ashworth A. PARP inhibitors: Synthetic lethality in the clinic. Science. 2017;355:1152–1158. doi: 10.1126/science.aam7344. PubMed DOI PMC
Palazzo L., Mikoc A., Ahel I. ADP-ribosylation: New facets of an ancient modification. FEBS J. 2017;284:2932–2946. doi: 10.1111/febs.14078. PubMed DOI PMC
Moraes D.S., Moreira D.C., Andrade J.M.O., Santos S.H.S. Sirtuins, brain and cognition: A review of resveratrol effects. IBRO Rep. 2020;9:46–51. doi: 10.1016/j.ibror.2020.06.004. PubMed DOI PMC
Tanner K.G., Landry J., Sternglanz R., Denu J.M. Silent information regulator 2 family of NAD- dependent histone/protein deacetylases generates a unique product, 1-O-acetyl-ADP-ribose. Proc. Natl. Acad. Sci. USA. 2000;97:14178–14182. doi: 10.1073/pnas.250422697. PubMed DOI PMC
Asher G., Gatfield D., Stratmann M., Reinke H., Dibner C., Kreppel F., Mostoslavsky R., Alt F.W., Schibler U. SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell. 2008;134:317–328. doi: 10.1016/j.cell.2008.06.050. PubMed DOI
Nakahata Y., Kaluzova M., Grimaldi B., Sahar S., Hirayama J., Chen D., Guarente L.P., Sassone-Corsi P. The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell. 2008;134:329–340. doi: 10.1016/j.cell.2008.07.002. PubMed DOI PMC
Imai S.I., Guarente L. It takes two to tango: NAD(+) and sirtuins in aging/longevity control. NPJ Aging Mech. Dis. 2016;2:16017. doi: 10.1038/npjamd.2016.17. PubMed DOI PMC
Jiang Y., Liu J., Chen D., Yan L., Zheng W. Sirtuin Inhibition: Strategies, Inhibitors, and Therapeutic Potential. Trends Pharmacol. Sci. 2017;38:459–472. doi: 10.1016/j.tips.2017.01.009. PubMed DOI
Van de Ven R.A.H., Santos D., Haigis M.C. Mitochondrial Sirtuins and Molecular Mechanisms of Aging. Trends Mol. Med. 2017;23:320–331. doi: 10.1016/j.molmed.2017.02.005. PubMed DOI PMC
Bayele H.K. Sirtuins transduce STACs signals through steroid hormone receptors. Sci. Rep. 2020;10:5338. doi: 10.1038/s41598-020-62162-0. PubMed DOI PMC
Gaal Z., Csernoch L. Impact of Sirtuin Enzymes on the Altered Metabolic Phenotype of Malignantly Transformed Cells. Front. Oncol. 2020;10:45. doi: 10.3389/fonc.2020.00045. PubMed DOI PMC
Carpenter K.J. Pellagra. Hutchinson Ross; Stroudsburg, PA, USA: 1981.
Prabhu D., Dawe R.S., Mponda K. Pellagra a review exploring causes and mechanisms, including isoniazid-induced pellagra. Photodermatol. Photoimmunol. Photomed. 2021;37:99–104. doi: 10.1111/phpp.12659. PubMed DOI
Williams A.C., Hill L.J. The 4 D’s of Pellagra and Progress. Int. J. Tryptophan Res. 2020;13:1178646920910159. doi: 10.1177/1178646920910159. PubMed DOI PMC
Ramirez-Cabral N.Y.Z., Kumar L., Shabani F. Global alterations in areas of suitability for maize production from climate change and using a mechanistic species distribution model (CLIMEX) Sci. Rep. 2017;7:5910. doi: 10.1038/s41598-017-05804-0. PubMed DOI PMC
Schmid M.A., Salomeyesudas B., Satheesh P., Hanley J., Kuhnlein H.V. Intervention with traditional food as a major source of energy, protein, iron, vitamin C and vitamin A for rural Dalit mothers and young children in Andhra Pradesh, South India. Asia Pac. J. Clin. Nutr. 2007;16:84–93. PubMed
Malfait P., Moren A., Dillon J.C., Brodel A., Begkoyian G., Etchegorry M.G., Malenga G., Hakewill P. An outbreak of pellagra related to changes in dietary niacin among Mozambican refugees in Malawi. Int. J. Epidemiol. 1993;22:504–511. doi: 10.1093/ije/22.3.504. PubMed DOI
Altschul R., Hoffer A., Stephen J.D. Influence of nicotinic acid on serum cholesterol in man. Arch. Biochem. Biophys. 1955;54:558–559. doi: 10.1016/0003-9861(55)90070-9. PubMed DOI
Carlson L.A. Nicotinic acid: The broad-spectrum lipid drug. A 50th anniversary review. J. Intern. Med. 2005;258:94–114. doi: 10.1111/j.1365-2796.2005.01528.x. PubMed DOI
Wise A., Foord S.M., Fraser N.J., Barnes A.A., Elshourbagy N., Eilert M., Ignar D.M., Murdock P.R., Steplewski K., Green A., et al. Molecular identification of high and low affinity receptors for nicotinic acid. J. Biol. Chem. 2003;278:9869–9874. doi: 10.1074/jbc.M210695200. PubMed DOI
Soga T., Kamohara M., Takasaki J., Matsumoto S., Saito T., Ohishi T., Hiyama H., Matsuo A., Matsushime H., Furuichi K. Molecular identification of nicotinic acid receptor. Biochem. Biophys. Res. Commun. 2003;303:364–369. doi: 10.1016/S0006-291X(03)00342-5. PubMed DOI
Taggart A.K., Kero J., Gan X., Cai T.Q., Cheng K., Ippolito M., Ren N., Kaplan R., Wu K., Wu T.J., et al. (D)-beta-Hydroxybutyrate inhibits adipocyte lipolysis via the nicotinic acid receptor PUMA-G. J. Biol. Chem. 2005;280:26649–26652. doi: 10.1074/jbc.C500213200. PubMed DOI
Gille A., Bodor E.T., Ahmed K., Offermanns S. Nicotinic acid: Pharmacological effects and mechanisms of action. Annu. Rev. Pharmacol. Toxicol. 2008;48:79–106. doi: 10.1146/annurev.pharmtox.48.113006.094746. PubMed DOI
Carlson L.A., Oro L., Ostman J. Effect of a single dose of nicotinic acid on plasma lipids in patients with hyperlipoproteinemia. Acta Med. Scand. 1968;183:457–465. doi: 10.1111/j.0954-6820.1968.tb10508.x. PubMed DOI
Ganji S.H., Tavintharan S., Zhu D., Xing Y., Kamanna V.S., Kashyap M.L. Niacin noncompetitively inhibits DGAT2 but not DGAT1 activity in HepG2 cells. J. Lipid Res. 2004;45:1835–1845. doi: 10.1194/jlr.M300403-JLR200. PubMed DOI
Jin F.Y., Kamanna V.S., Kashyap M.L. Niacin accelerates intracellular ApoB degradation by inhibiting triacylglycerol synthesis in human hepatoblastoma (HepG2) cells. Arter. Thromb. Vasc. Biol. 1999;19:1051–1059. doi: 10.1161/01.ATV.19.4.1051. PubMed DOI
Svedmyr N., Harthon L., Lundholm L. The relationship between the plasma concentration of free nicotinic acid and some of its pharmacologic effects in man. Clin. Pharmacol. Ther. 1969;10:559–570. doi: 10.1002/cpt1969104559. PubMed DOI
Barter P.J., Brewer H.B., Jr., Chapman M.J., Hennekens C.H., Rader D.J., Tall A.R. Cholesteryl ester transfer protein: A novel target for raising HDL and inhibiting atherosclerosis. Arter. Thromb. Vasc. Biol. 2003;23:160–167. doi: 10.1161/01.ATV.0000054658.91146.64. PubMed DOI
Hernandez M., Wright S.D., Cai T.Q. Critical role of cholesterol ester transfer protein in nicotinic acid-mediated HDL elevation in mice. Biochem. Biophys. Res. Commun. 2007;355:1075–1080. doi: 10.1016/j.bbrc.2007.02.079. PubMed DOI
Le Goff W., Guerin M., Chapman M.J. Pharmacological modulation of cholesteryl ester transfer protein, a new therapeutic target in atherogenic dyslipidemia. Pharmacol. Ther. 2004;101:17–38. doi: 10.1016/j.pharmthera.2003.10.001. PubMed DOI
Mousa S.S., Block R.C., Mousa S.A. High Density Lipoprotein (HDL) Modulation Targets. Drugs Future. 2010;35:33–39. doi: 10.1358/dof.2010.035.01.1452012. PubMed DOI PMC
Olsson A.G. Nicotinic Acid and Derivatives. In: Schettler G., Habenicht A.J.R., editors. Principles and Treatment of Lipoprotein Disorders. Springer; Berlin/Heidelberg, Germany: 1994. pp. 349–400. Handbook of Experimental, Pharmacology.
Jin F.Y., Kamanna V.S., Kashyap M.L. Niacin decreases removal of high-density lipoprotein apolipoprotein A-I but not cholesterol ester by Hep G2 cells. Implication for reverse cholesterol transport. Arter. Thromb. Vasc. Biol. 1997;17:2020–2028. doi: 10.1161/01.ATV.17.10.2020. PubMed DOI
Meyers C.D., Kashyap M.L. Pharmacologic elevation of high-density lipoproteins: Recent insights on mechanism of action and atherosclerosis protection. Curr. Opin. Cardiol. 2004;19:366–373. doi: 10.1097/01.hco.0000126582.27767.87. PubMed DOI
Wu Z.H., Zhao S.P. Niacin promotes cholesterol efflux through stimulation of the PPARgamma-LXRalpha-ABCA1 pathway in 3T3-L1 adipocytes. Pharmacology. 2009;84:282–287. doi: 10.1159/000242999. PubMed DOI
Knowles H.J., te Poele R.H., Workman P., Harris A.L. Niacin induces PPARgamma expression and transcriptional activation in macrophages via HM74 and HM74a-mediated induction of prostaglandin synthesis pathways. Biochem. Pharmacol. 2006;71:646–656. doi: 10.1016/j.bcp.2005.11.019. PubMed DOI
Oram J.F., Lawn R.M., Garvin M.R., Wade D.P. ABCA1 is the cAMP-inducible apolipoprotein receptor that mediates cholesterol secretion from macrophages. J. Biol. Chem. 2000;275:34508–34511. doi: 10.1074/jbc.M006738200. PubMed DOI
Yvan-Charvet L., Wang N., Tall A.R. Role of HDL, ABCA1, and ABCG1 transporters in cholesterol efflux and immune responses. Arter. Thromb. Vasc. Biol. 2010;30:139–143. doi: 10.1161/ATVBAHA.108.179283. PubMed DOI PMC
Takahashi Y., Miyata M., Zheng P., Imazato T., Horwitz A., Smith J.D. Identification of cAMP analogue inducible genes in RAW264 macrophages. Biochim. Biophys. Acta. 2000;1492:385–394. doi: 10.1016/S0167-4781(00)00133-0. PubMed DOI
Zhao S.P., Yang J., Li J., Dong S.Z., Wu Z.H. Effect of niacin on LXRalpha and PPARgamma expression and HDL-induced cholesterol efflux in adipocytes of hypercholesterolemic rabbits. Int. J. Cardiol. 2008;124:172–178. doi: 10.1016/j.ijcard.2006.12.032. PubMed DOI
Johnson S., Imai S.I. NAD(+) biosynthesis, aging, and disease. F1000Research. 2018;7:132. doi: 10.12688/f1000research.12120.1. PubMed DOI PMC
Imai S. From heterochromatin islands to the NAD World: A hierarchical view of aging through the functions of mammalian Sirt1 and systemic NAD biosynthesis. Biochim. Biophys. Acta. 2009;1790:997–1004. doi: 10.1016/j.bbagen.2009.03.005. PubMed DOI PMC
Imai S. Dissecting systemic control of metabolism and aging in the NAD World: The importance of SIRT1 and NAMPT-mediated NAD biosynthesis. FEBS Lett. 2011;585:1657–1662. doi: 10.1016/j.febslet.2011.04.060. PubMed DOI PMC
Rehan L., Laszki-Szczachor K., Sobieszczanska M., Polak-Jonkisz D. SIRT1 and NAD as regulators of ageing. Life Sci. 2014;105:1–6. doi: 10.1016/j.lfs.2014.03.015. PubMed DOI
Poljsak B. NAMPT-Mediated NAD Biosynthesis as the Internal Timing Mechanism: In NAD+ World, Time Is Running in Its Own Way. Rejuvenation Res. 2018;21:210–224. doi: 10.1089/rej.2017.1975. PubMed DOI
Massudi H., Grant R., Braidy N., Guest J., Farnsworth B., Guillemin G.J. Age-associated changes in oxidative stress and NAD+ metabolism in human tissue. PLoS ONE. 2012;7:e42357. doi: 10.1371/journal.pone.0042357. PubMed DOI PMC
Schultz M.B., Sinclair D.A. Why NAD(+) Declines during Aging: It’s Destroyed. Cell Metab. 2016;23:965–966. doi: 10.1016/j.cmet.2016.05.022. PubMed DOI PMC
Camacho-Pereira J., Tarrago M.G., Chini C.C.S., Nin V., Escande C., Warner G.M., Puranik A.S., Schoon R.A., Reid J.M., Galina A., et al. CD38 Dictates Age-Related NAD Decline and Mitochondrial Dysfunction through an SIRT3-Dependent Mechanism. Cell Metab. 2016;23:1127–1139. doi: 10.1016/j.cmet.2016.05.006. PubMed DOI PMC
Mao K., Zhang G. The role of PARP1 in neurodegenerative diseases and aging. FEBS J. 2021 doi: 10.1111/febs.15716. PubMed DOI
Covarrubias A.J., Perrone R., Grozio A., Verdin E. NAD(+) metabolism and its roles in cellular processes during ageing. Nat. Rev. Mol. Cell Biol. 2021;22:119–141. doi: 10.1038/s41580-020-00313-x. PubMed DOI PMC
Bai P., Canto C., Oudart H., Brunyanszki A., Cen Y., Thomas C., Yamamoto H., Huber A., Kiss B., Houtkooper R.H., et al. PARP-1 inhibition increases mitochondrial metabolism through SIRT1 activation. Cell Metab. 2011;13:461–468. doi: 10.1016/j.cmet.2011.03.004. PubMed DOI PMC
Belenky P., Racette F.G., Bogan K.L., McClure J.M., Smith J.S., Brenner C. Nicotinamide riboside promotes Sir2 silencing and extends lifespan via Nrk and Urh1/Pnp1/Meu1 pathways to NAD+ Cell. 2007;129:473–484. doi: 10.1016/j.cell.2007.03.024. PubMed DOI
Canto C., Houtkooper R.H., Pirinen E., Youn D.Y., Oosterveer M.H., Cen Y., Fernandez-Marcos P.J., Yamamoto H., Andreux P.A., Cettour-Rose P., et al. The NAD(+) precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity. Cell Metab. 2012;15:838–847. doi: 10.1016/j.cmet.2012.04.022. PubMed DOI PMC
Wang X., Li H., Ding S. The effects of NAD+ on apoptotic neuronal death and mitochondrial biogenesis and function after glutamate excitotoxicity. Int. J. Mol. Sci. 2014;15:20449–20468. doi: 10.3390/ijms151120449. PubMed DOI PMC
Yaku K., Okabe K., Hikosaka K., Nakagawa T. NAD Metabolism in Cancer Therapeutics. Front. Oncol. 2018;8:622. doi: 10.3389/fonc.2018.00622. PubMed DOI PMC
Kennedy B.E., Sharif T., Martell E., Dai C., Kim Y., Lee P.W., Gujar S.A. NAD(+) salvage pathway in cancer metabolism and therapy. Pharmacol. Res. 2016;114:274–283. doi: 10.1016/j.phrs.2016.10.027. PubMed DOI
Wakade C., Chong R., Bradley E., Thomas B., Morgan J. Upregulation of GPR109A in Parkinson’s disease. PLoS ONE. 2014;9:e109818. doi: 10.1371/journal.pone.0109818. PubMed DOI PMC
Wakade C., Chong R., Bradley E., Morgan J.C. Low-dose niacin supplementation modulates GPR109A, niacin index and ameliorates Parkinson’s disease symptoms without side effects. Clin. Case Rep. 2015;3:635–637. doi: 10.1002/ccr3.232. PubMed DOI PMC
Jia H., Li X., Gao H., Feng Z., Li X., Zhao L., Jia X., Zhang H., Liu J. High doses of nicotinamide prevent oxidative mitochondrial dysfunction in a cellular model and improve motor deficit in a Drosophila model of Parkinson’s disease. J. Neurosci. Res. 2008;86:2083–2090. doi: 10.1002/jnr.21650. PubMed DOI
Nimmagadda V.K., Makar T.K., Chandrasekaran K., Sagi A.R., Ray J., Russell J.W., Bever C.T., Jr. SIRT1 and NAD+ precursors: Therapeutic targets in multiple sclerosis a review. J. Neuroimmunol. 2017;304:29–34. doi: 10.1016/j.jneuroim.2016.07.007. PubMed DOI PMC
Kim S.Y., Cohen B.M., Chen X., Lukas S.E., Shinn A.K., Yuksel A.C., Li T., Du F., Ongur D. Redox Dysregulation in Schizophrenia Revealed by in vivo NAD+/NADH Measurement. Schizophr. Bull. 2017;43:197–204. doi: 10.1093/schbul/sbw129. PubMed DOI PMC
Benavente C.A., Schnell S.A., Jacobson E.L. Effects of niacin restriction on sirtuin and PARP responses to photodamage in human skin. PLoS ONE. 2012;7:e42276. doi: 10.1371/journal.pone.0042276. PubMed DOI PMC
Gensler H.L., Williams T., Huang A.C., Jacobson E.L. Oral niacin prevents photocarcinogenesis and photoimmunosuppression in mice. Nutr. Cancer. 1999;34:36–41. doi: 10.1207/S15327914NC340105. PubMed DOI
Gehring W. Nicotinic acid/niacinamide and the skin. J. Cosmet. Dermatol. 2004;3:88–93. doi: 10.1111/j.1473-2130.2004.00115.x. PubMed DOI
Levine D., Even-Chen Z., Lipets I., Pritulo O.A., Svyatenko T.V., Andrashko Y., Lebwohl M., Gottlieb A. Pilot, multicenter, double-blind, randomized placebo-controlled bilateral comparative study of a combination of calcipotriene and nicotinamide for the treatment of psoriasis. J. Am. Acad. Dermatol. 2010;63:775–781. doi: 10.1016/j.jaad.2009.10.016. PubMed DOI
Park S.M., Li T., Wu S., Li W.Q., Weinstock M., Qureshi A.A., Cho E. Niacin intake and risk of skin cancer in US women and men. Int. J. Cancer. 2017;140:2023–2031. doi: 10.1002/ijc.30630. PubMed DOI PMC
Oberwittler H., Baccara-Dinet M. Clinical evidence for use of acetyl salicylic acid in control of flushing related to nicotinic acid treatment. Int. J. Clin. Pract. 2006;60:707–715. doi: 10.1111/j.1368-5031.2006.00957.x. PubMed DOI
Benyo Z., Gille A., Bennett C.L., Clausen B.E., Offermanns S. Nicotinic acid-induced flushing is mediated by activation of epidermal langerhans cells. Mol. Pharmacol. 2006;70:1844–1849. doi: 10.1124/mol.106.030833. PubMed DOI
Hanson J., Gille A., Zwykiel S., Lukasova M., Clausen B.E., Ahmed K., Tunaru S., Wirth A., Offermanns S. Nicotinic acid- and monomethyl fumarate-induced flushing involves GPR109A expressed by keratinocytes and COX-2-dependent prostanoid formation in mice. J. Clin. Investig. 2010;120:2910–2919. doi: 10.1172/JCI42273. PubMed DOI PMC
Hay D.L., Poyner D.R. Calcitonin gene-related peptide, adrenomedullin and flushing. Maturitas. 2009;64:104–108. doi: 10.1016/j.maturitas.2009.08.011. PubMed DOI
Wierzbicki A.S. Niacin: The only vitamin that reduces cardiovascular events. Int. J. Clin. Pr. 2011;65:379–385. doi: 10.1111/j.1742-1241.2011.02630.x. PubMed DOI
McKenney J.M., Proctor J.D., Harris S., Chinchili V.M. A comparison of the efficacy and toxic effects of sustained-vs immediate-release niacin in hypercholesterolemic patients. JAMA. 1994;271:672–677. doi: 10.1001/jama.1994.03510330050033. PubMed DOI
Dalton T.A., Berry R.S. Hepatotoxicity associated with sustained-release niacin. Am. J. Med. 1992;93:102–104. doi: 10.1016/0002-9343(92)90689-9. PubMed DOI
Lawrence S.P. Transient focal hepatic defects related to sustained-release niacin. J. Clin. Gastroenterol. 1993;16:234–236. doi: 10.1097/00004836-199304000-00015. PubMed DOI
Cheng K., Wu T.J., Wu K.K., Sturino C., Metters K., Gottesdiener K., Wright S.D., Wang Z., O’Neill G., Lai E., et al. Antagonism of the prostaglandin D2 receptor 1 suppresses nicotinic acid-induced vasodilation in mice and humans. Proc. Natl. Acad. Sci. USA. 2006;103:6682–6687. doi: 10.1073/pnas.0601574103. PubMed DOI PMC
Parsons W.B., Jr. Activation of peptic ulcer by nicotinic acid. Report of five cases. JAMA. 1960;173:1466–1470. doi: 10.1001/jama.1960.03020310054016. PubMed DOI
McCulloch D.K., Kahn S.E., Schwartz M.W., Koerker D.J., Palmer J.P. Effect of nicotinic acid-induced insulin resistance on pancreatic B cell function in normal and streptozocin-treated baboons. J. Clin. Investig. 1991;87:1395–1401. doi: 10.1172/JCI115145. PubMed DOI PMC
Garg A., Grundy S.M. Nicotinic acid as therapy for dyslipidemia in non-insulin-dependent diabetes mellitus. JAMA. 1990;264:723–726. doi: 10.1001/jama.1990.03450060069031. PubMed DOI
Canner P.L., Furberg C.D., Terrin M.L., McGovern M.E. Benefits of niacin by glycemic status in patients with healed myocardial infarction (from the Coronary Drug Project) Am. J. Cardiol. 2005;95:254–257. doi: 10.1016/j.amjcard.2004.09.013. PubMed DOI
Elam M.B., Hunninghake D.B., Davis K.B., Garg R., Johnson C., Egan D., Kostis J.B., Sheps D.S., Brinton E.A. Effect of niacin on lipid and lipoprotein levels and glycemic control in patients with diabetes and peripheral arterial disease: The ADMIT study: A randomized trial. Arterial Disease Multiple Intervention Trial. JAMA. 2000;284:1263–1270. doi: 10.1001/jama.284.10.1263. PubMed DOI
Grundy S.M., Vega G.L., McGovern M.E., Tulloch B.R., Kendall D.M., Fitz-Patrick D., Ganda O.P., Rosenson R.S., Buse J.B., Robertson D.D., et al. Efficacy, safety, and tolerability of once-daily niacin for the treatment of dyslipidemia associated with type 2 diabetes: Results of the assessment of diabetes control and evaluation of the efficacy of niaspan trial. Arch. Intern. Med. 2002;162:1568–1576. doi: 10.1001/archinte.162.14.1568. PubMed DOI
Hwang E.S., Song S.B. Possible Adverse Effects of High-Dose Nicotinamide: Mechanisms and Safety Assessment. Biomolecules. 2020;10:687. doi: 10.3390/biom10050687. PubMed DOI PMC
Williams R.J., Bradway E.M. The further fractination of yeast nutrilites and their relationship to vitamin B and Wildiers’ "bios". J. Am. Chem. Soc. 1931;53:783–789. doi: 10.1021/ja01353a051. DOI
Williams R.J., Lyman C.M., Goodyear G.H., Truesdail J.H., Holaday D. “Pantothenic Acid,” a Growth Determinant of Universal Biological Occurrence. J. Am. Chem. Soc. 1933;55:2912–2927. doi: 10.1021/ja01334a049. DOI
Müller M.A., Medlock J., Prágai Z., Warnke I., Litta G., Kleefeldt A., Kaiser K., De Potzolli B. Ullmann’s Encyclopedia of Industrial Chemistry. John Wiley & Sons, Inc.; Hoboken, NJ, USA: 2019. Vitamins, 9. Vitamin B5; pp. 1–16.
Gonzalez-Lopez J., Aliaga L., Gonzalez-Martinez A., Martinez-Toledo M.V. Industrial Biotechnology of Vitamins, Biopigments, and Antioxidants. John Wiley & Sons, Inc.; Hoboken, NJ, USA: 2016. Pantothenic Acid; pp. 67–101.
Schnellbaecher A., Binder D., Bellmaine S., Zimmer A. Vitamins in cell culture media: Stability and stabilization strategies. Biotechnol. Bioeng. 2019;116:1537–1555. doi: 10.1002/bit.26942. PubMed DOI PMC
Webb M.E., Smith A.G., Abell C. Biosynthesis of pantothenate. Nat. Prod. Rep. 2004;21:695–721. doi: 10.1039/b316419p. PubMed DOI
Leonardi R., Jackowski S. Biosynthesis of Pantothenic Acid and Coenzyme A. EcoSal Plus. 2007;2 doi: 10.1128/ecosalplus.3.6.3.4. PubMed DOI PMC
Martinez D.L., Tsuchiya Y., Gout I. Coenzyme A biosynthetic machinery in mammalian cells. Biochem. Soc. Trans. 2014;42:1112–1117. doi: 10.1042/BST20140124. PubMed DOI
Leonardi R., Zhang Y.M., Rock C.O., Jackowski S. Coenzyme A: Back in action. Prog. Lipid Res. 2005;44:125–153. doi: 10.1016/j.plipres.2005.04.001. PubMed DOI
Ottenhof H.H., Ashurst J.L., Whitney H.M., Saldanha S.A., Schmitzberger F., Gweon H.S., Blundell T.L., Abell C., Smith A.G. Organisation of the pantothenate (vitamin B5) biosynthesis pathway in higher plants. Plant J. 2004;37:61–72. doi: 10.1046/j.1365-313X.2003.01940.x. PubMed DOI
Chakauya E., Coxon K.M., Whitney H.M., Ashurst J.L., Abell C., Smith A.G. Pantothenate biosynthesis in higher plants: Advances and challenges. Physiol. Plant. 2006;126:319–329. doi: 10.1111/j.1399-3054.2006.00683.x. DOI
Webb M.E., Smith A.G. Pantothenate Biosynthesis in Higher Plants. In: Rébeillé F., Douce R., editors. Advances in Botanical Research. Volume 58. Academic Press; Cambridge, MA, USA: 2011. pp. 203–255.
Webb M.E., Marquet A., Mendel R.R., Rebeille F., Smith A.G. Elucidating biosynthetic pathways for vitamins and cofactors. Nat. Prod. Rep. 2007;24:988–1008. doi: 10.1039/b703105j. PubMed DOI
White W.H., Gunyuzlu P.L., Toyn J.H. Saccharomyces cerevisiae is capable of de Novo pantothenic acid biosynthesis involving a novel pathway of beta-alanine production from spermine. J. Biol. Chem. 2001;276:10794–10800. doi: 10.1074/jbc.M009804200. PubMed DOI
Spry C., Kirk K., Saliba K.J. Coenzyme A biosynthesis: An antimicrobial drug target. FEMS Microbiol. Rev. 2008;32:56–106. doi: 10.1111/j.1574-6976.2007.00093.x. PubMed DOI
Smith C.M., Song W.O. Comparative nutrition of pantothenic acid. J. Nutr. Biochem. 1996;7:312–321. doi: 10.1016/0955-2863(96)00034-4. DOI
Roje S. Vitamin B biosynthesis in plants. Phytochemistry. 2007;68:1904–1921. doi: 10.1016/j.phytochem.2007.03.038. PubMed DOI
Coxon K.M., Chakauya E., Ottenhof H.H., Whitney H.M., Blundell T.L., Abell C., Smith A.G. Pantothenate biosynthesis in higher plants. Biochem. Soc. Trans. 2005;33:743–746. doi: 10.1042/BST0330743. PubMed DOI
Miller J.W., Rucker R.B. Present Knowledge in Nutrition. John Wiley & Sons, Inc.; Hoboken, NJ, USA: 2012. Pantothenic Acid; pp. 375–390.
Walsh J.H., Wyse B.W., Hansen R.G. Pantothenic acid content of 75 processed and cooked foods. J. Am. Diet. Assoc. 1981;78:140–144. doi: 10.1016/S0002-8223(21)04766-0. PubMed DOI
Scientific Committee on Food . Tolerable Upper Intake Levels for Vitamins and Minerals. EFSA; Parma, Italy: 2006.
Kelly G.S. Pantothenic acid. Monograph. Altern. Med. Rev. 2011;16:263–274. PubMed
Willerton E., Cromwell H. Microbiologic Assay of Natural Pantothenic Acid in Yeast and Liver. Influence of Clarase Digestion. Ind. Eng. Chem. Anal. Ed. 2002;14:603–604. doi: 10.1021/i560107a034. DOI
Ball G.F.M. Bioavailability and Analysis of Vitamins in Foods. Springer US; Boston, MA, USA: 1998. Pantothenic acid; pp. 409–422.
Hall A.P., Moore J.G., Morgan A.F. B Vitamin content of avocados: Studies reveal California-grown avocados are in superior group of foods as source of pantothenic acid and vitamin B. Calif. Agric. 1956;10:13–14.
EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA) Scientific Opinion on Dietary Reference Values for pantothenic acid. EFSA J. 2014;12:3581. doi: 10.2903/j.efsa.2014.3581. DOI
Ciulu M., Floris I., Nurchi V.M., Panzanelli A., Pilo M.I., Spano N., Sanna G. HPLC determination of pantothenic acid in royal jelly. Anal. Methods. 2013;5:6682–6685. doi: 10.1039/c3ay41284a. DOI
Kunugi H., Mohammed Ali A. Royal Jelly and Its Components Promote Healthy Aging and Longevity: From Animal Models to Humans. Int. J. Mol. Sci. 2019;20:4662. doi: 10.3390/ijms20194662. PubMed DOI PMC
Pearson P.B., Burgin C.J. The Pantothenic Acid Content of Royal Jelly. Exp. Biol. Med. 1941;48:415–417. doi: 10.3181/00379727-48-13338. DOI
Uebanso T., Shimohata T., Mawatari K., Takahashi A. Functional Roles of B-Vitamins in the Gut and Gut Microbiome. Mol. Nutr. Food Res. 2020;64:e2000426. doi: 10.1002/mnfr.202000426. PubMed DOI
Bates C.J. Pantothenic Acid. In: Caballero B., editor. Encyclopedia of Human Nutrition. Academic Press; Cambridge, MA, USA: 2013. pp. 1–5.
Said H.M., Mohammed Z.M. Intestinal absorption of water-soluble vitamins: An update. Curr. Opin. Gastroenterol. 2006;22:140–146. doi: 10.1097/01.mog.0000203870.22706.52. PubMed DOI
Said H.M., Ortiz A., McCloud E., Dyer D., Moyer M.P., Rubin S. Biotin uptake by human colonic epithelial NCM460 cells: A carrier-mediated process shared with pantothenic acid. Am. J. Physiol. 1998;275:C1365–C1371. doi: 10.1152/ajpcell.1998.275.5.C1365. PubMed DOI
Ghosal A., Lambrecht N., Subramanya S.B., Kapadia R., Said H.M. Conditional knockout of the Slc5a6 gene in mouse intestine impairs biotin absorption. Am. J. Physiol. Gastrointest. Liver Physiol. 2013;304:G64–G71. doi: 10.1152/ajpgi.00379.2012. PubMed DOI PMC
Said H.M. Intestinal absorption of water-soluble vitamins in health and disease. Biochem J. 2011;437:357–372. doi: 10.1042/BJ20110326. PubMed DOI PMC
MacDonald R., Reitmeier C., editors. Understanding Food Systems. Academic Press; Cambridge, MA, USA: 2017. Food Processing; pp. 179–225.
Schroeder H.A. Losses of vitamins and trace minerals resulting from processing and preservation of foods. Am. J. Clin. Nutr. 1971;24:562–573. doi: 10.1093/ajcn/24.5.562. PubMed DOI
Bodwell C., Anderson B. Nutritional Composition and Value of Meat and Meat Products. Academic Press; Cambridge, MA, USA: 1986. pp. 321–369.
Engler P.P., Bowers J.A. B-vitamin retention in meat during storage and preparation. A review. J. Am. Diet. Assoc. 1976;69:253–257. doi: 10.1016/S0002-8223(21)06708-0. PubMed DOI
Meyer B.H., Mysinger M.A., Wodarski L.A. Pantothenic acid and vitamin B6 in beef. J. Am. Diet Assoc. 1969;54:122–125. doi: 10.1016/S0002-8223(21)12596-9. PubMed DOI
Cheng T.S., Eitenmiller R.R. Effects of Processing and Storage on the Pantothenic-Acid Content of Spinach and Broccoli. J. Food Process. Preserv. 1988;12:115–123. doi: 10.1111/j.1745-4549.1988.tb00071.x. DOI
Hoppner K., Lampi B. Pantothenic-Acid and Biotin Retention in Cooked Legumes. J. Food Sci. 1993;58:1084–1085. doi: 10.1111/j.1365-2621.1993.tb06119.x. DOI
Khalil A.H., Mansour E.H. The Effect of Cooking, Autoclaving and Germination on the Nutritional Quality of Faba Beans. Food Chem. 1995;54:177–182. doi: 10.1016/0308-8146(95)00024-D. DOI
Kilgore S.M., Sistrunk W.A. Effects of Soaking Treatments and Cooking Upon Selected B-Vitamins and the Quality of Blackeyed Peas. J. Food Sci. 1981;46:909–911. doi: 10.1111/j.1365-2621.1981.tb15378.x. DOI
Rolls B.A., Porter J.W.G. Some effects of processing and storage on the nutritive value of milk and milk products. Proc. Nutr Soc. 1973;32:9–15. doi: 10.1079/PNS19730003. PubMed DOI
King J.C., Blumberg J., Ingwersen L., Jenab M., Tucker K.L. Tree nuts and peanuts as components of a healthy diet. J. Nutr. 2008;138:1736S–1740S. doi: 10.1093/jn/138.9.1736S. PubMed DOI
Arya S.S., Salve A.R., Chauhan S. Peanuts as functional food: A review. J. Food Sci. Technol. 2016;53:31–41. doi: 10.1007/s13197-015-2007-9. PubMed DOI PMC
Sathe S.K., Monaghan E.K., Kshirsagar H.H., Venkatachalam M. Tree Nuts: Composition, Phytochemicals, and Health Effects. CRC Press; Boca Raton, FL, USA: 2009. Chemical composition of edible nut seeds and its implications in human health; pp. 11–35. DOI
Dreher M.L., Davenport A.J. Hass avocado composition and potential health effects. Crit. Rev. Food Sci. Nutr. 2013;53:738–750. doi: 10.1080/10408398.2011.556759. PubMed DOI PMC
Chen C.Y., Lapsley K., Blumberg J. A nutrition and health perspective on almonds. J. Sci. Food Agric. 2006;86:2245–2250. doi: 10.1002/jsfa.2659. DOI
Yada S., Lapsley K., Huang G.W. A review of composition studies of cultivated almonds: Macronutrients and micronutrients. J. Food Compos. Anal. 2011;24:469–480. doi: 10.1016/j.jfca.2011.01.007. DOI
Barreca D., Nabavi S.M., Sureda A., Rasekhian M., Raciti R., Silva A.S., Annunziata G., Arnone A., Tenore G.C., Suntar I., et al. Almonds (Prunus Dulcis Mill. D. A. Webb): A Source of Nutrients and Health-Promoting Compounds. Nutrients. 2020;12:672. doi: 10.3390/nu12030672. PubMed DOI PMC
Roncero J.M., Alvarez-Orti M., Pardo-Gimenez A., Rabadan A., Pardo J.E. Review about Non-Lipid Components and Minor Fat-Soluble Bioactive Compounds of Almond Kernel. Foods. 2020;9:1646. doi: 10.3390/foods9111646. PubMed DOI PMC
Ahmad R.S., Imran A., Hussain M.B. Nutritional Composition of Meat. Volume 61 IntechOpen Limited; London, UK: 2018.
Li C. Ensuring Safety and Quality in the Production of Beef. Volume 2. Burleigh Dodds Series in Agricultural Science; Cambridge, UK: 2017. The role of beef in human nutrition and health; pp. 329–338.
Probst Y. Nutrient Compostion of Chicken Meat. Rural Industries Research and Development Corporation; Kingston, Australia: 2009.
Van Heerden S.M., Schönfeldt H.C., Smith M.F., Jansen van Rensburg D.M. Nutrient Content of South African Chickens. J. Food Compos. Anal. 2002;15:47–64. doi: 10.1006/jfca.2001.1040. DOI
Dunn K.R., Goddard V.R. Effect of heat upon the nutritive values of peanuts; riboflavin and pantothenic acid content. Food Res. 1948;13:512–517. doi: 10.1111/j.1365-2621.1948.tb16652.x. PubMed DOI
Muhamad N., Yusoff M.M., Gimbun J. Thermal degradation kinetics of nicotinic acid, pantothenic acid and catechin derived from Averrhoa bilimbi fruits. RSC Adv. 2015;5:74132–74137. doi: 10.1039/C5RA11950B. DOI
Ford J.E., Hurrell R.F., Finot P.A. Storage of milk powders under adverse conditions. 2. Influence on the content of water-soluble vitamins. Br. J. Nutr. 1983;49:355–364. doi: 10.1079/BJN19830044. PubMed DOI
Gutzeit D., Klaubert B., Rychlik M., Winterhalter P., Jerz G. Effects of processing and of storage on the stability of pantothenic acid in sea buckthorn products (Hippophae rhamnoides L. ssp. rhamnoides) assessed by stable isotope dilution assay. J. Agric. Food Chem. 2007;55:3978–3984. doi: 10.1021/jf070223+. PubMed DOI
Pearson A., West R., Luecke R. The vitamin and amino acid content of drip obtained upon defrosting frozen pork. Food Res. 1959;24:515–519. doi: 10.1111/j.1365-2621.1959.tb17302.x. DOI
Pearson A.M., Burnside J.E., Edwards H.M., Glasscock R.S., Cunha T.J., Novak A.F. Vitamin losses in drip obtained upon defrosting frozen meat. Food Res. 1951;16:85–87. doi: 10.1111/j.1365-2621.1951.tb17354.x. PubMed DOI
Ledesma-Amaro R., Santos M.A., Jiménez A., Revuelta J.L. Microbial production of vitamins. In: McNeil B., Archer D., Giavasis I., Harvey L., editors. Microbial Production of Food Ingredients, Enzymes and Nutraceuticals. Woodhead Publishing; Cambridge, UK: 2013. pp. 571–594.
Shimizu S. Biotechnology. Wiley-VCH; Weinheim, Germany: 2001. Vitamins and Related Compounds: Microbial Production; pp. 318–340.
Shimizu S., Kataoka M., Honda K., Sakamoto K. Lactone-ring-cleaving enzymes of microorganisms: Their diversity and applications. J. Biotechnol. 2001;92:187–194. doi: 10.1016/S0168-1656(01)00359-5. PubMed DOI
Li H., Lu X., Chen K., Yang J., Zhang A., Wang X., Ouyang P. β-alanine production using whole-cell biocatalysts in recombinant Escherichia coli. Mol. Catal. 2018;449:93–98. doi: 10.1016/j.mcat.2018.02.008. DOI
Shen Y., Zhao L., Li Y., Zhang L., Shi G. Synthesis of beta-alanine from L-aspartate using L-aspartate-alpha-decarboxylase from Corynebacterium glutamicum. Biotechnol. Lett. 2014;36:1681–1686. doi: 10.1007/s10529-014-1527-0. PubMed DOI
Wang L., Mao Y., Wang Z., Ma H., Chen T. Advances in biotechnological production of beta-alanine. World J. Microbiol. Biotechnol. 2021;37:79. doi: 10.1007/s11274-021-03042-1. PubMed DOI
Laudert D., Hohmann H.P. Application of Enzymes and Microbes for the Industrial Production of Vitamins and Vitamin-like Compounds. In: Moo-Young M., editor. Comprehensive Biotechnology. Academic Press; Cambridge, MA, USA: 2011. pp. 583–602.
Bonrath W., Netscher T., Eggersdorfer M., Adam G. troduction. In Ullmann’s Encyclopedia of Industrial Chemistry. John Wiley & Sons, Inc.; Hoboken, NJ, USA: 2019. Vitamins, 1; pp. 1–5.
Zu Berstenhorst S.M., Hohmann H.P., Stahmann K.P. Vitamins and Vitamin-like Compounds: Microbial Production. In: Schaechter M., editor. Encyclopedia of Microbiology. Academic Press; Cambridge, MA, USA: 2009. pp. 549–561.
Wang Y., Liu L., Jin Z., Zhang D. Microbial Cell Factories for Green Production of Vitamins. Front. Bioeng. Biotechnol. 2021;9:661562. doi: 10.3389/fbioe.2021.661562. PubMed DOI PMC
Dusch N., Puhler A., Kalinowski J. Expression of the Corynebacterium glutamicum panD gene encoding L-aspartate-alpha-decarboxylase leads to pantothenate overproduction in Escherichia coli. Appl. Environ. Microbiol. 1999;65:1530–1539. doi: 10.1128/AEM.65.4.1530-1539.1999. PubMed DOI PMC
Huser A.T., Chassagnole C., Lindley N.D., Merkamm M., Guyonvarch A., Elisakova V., Patek M., Kalinowski J., Brune I., Puhler A., et al. Rational design of a Corynebacterium glutamicum pantothenate production strain and its characterization by metabolic flux analysis and genome-wide transcriptional profiling. Appl. Environ. Microbiol. 2005;71:3255–3268. doi: 10.1128/AEM.71.6.3255-3268.2005. PubMed DOI PMC
Tigu F., Zhang J., Liu G., Cai Z., Li Y. A highly active pantothenate synthetase from Corynebacterium glutamicum enables the production of D-pantothenic acid with high productivity. Appl. Microbiol. Biotechnol. 2018;102:6039–6046. doi: 10.1007/s00253-018-9017-2. PubMed DOI
Chassagnole C., Diano A., Letisse F., Lindley N.D. Metabolic network analysis during fed-batch cultivation of Corynebacterium glutamicum for pantothenic acid production: First quantitative data and analysis of by-product formation. J. Biotechnol. 2003;104:261–272. doi: 10.1016/S0168-1656(03)00146-9. PubMed DOI
Zhang B., Zhang X.M., Wang W., Liu Z.Q., Zheng Y.G. Metabolic engineering of Escherichia coli for d-pantothenic acid production. Food Chem. 2019;294:267–275. doi: 10.1016/j.foodchem.2019.05.044. PubMed DOI
Zou S.P., Wang Z.J., Zhao K., Zhang B., Niu K., Liu Z.Q., Zheng Y.G. High-level production of d-pantothenic acid from glucose by fed-batch cultivation of Escherichia coli. Biotechnol. Appl. Biochem. 2020;68:1227–1235. doi: 10.1002/bab.2044. PubMed DOI
Zou S.P., Zhao K., Wang Z.J., Zhang B., Liu Z.Q., Zheng Y.G. Overproduction of D-pantothenic acid via fermentation conditions optimization and isoleucine feeding from recombinant Escherichia coli W3110. 3 Biotech. 2021;11:295. doi: 10.1007/s13205-021-02773-0. PubMed DOI PMC
Woollard D.C., Indyk H.E., Christiansen S.K. The analysis of pantothenic acid in milk and infant formulas by HPLC. Food Chem. 2000;69:201–208. doi: 10.1016/S0308-8146(99)00255-1. DOI
Romera J.M., Ramirez M., Gil A. Determination of pantothenic acid in infant milk formulas by high performance liquid chromatography. J. Dairy Sci. 1996;79:523–526. doi: 10.3168/jds.S0022-0302(96)76394-4. PubMed DOI
Mittermayr R., Kalman A., Trisconi M.J., Heudi O. Determination of vitamin B5 in a range of fortified food products by reversed-phase liquid chromatography-mass spectrometry with electrospray ionisation. J. Chromatogr. A. 2004;1032:1–6. doi: 10.1016/j.chroma.2003.11.062. PubMed DOI
Andrieux P., Fontannaz P., Kilinc T., Gimenez E.C. Pantothenic acid (vitamin B5) in fortified foods: Comparison of a novel ultra-performance liquid chromatography-tandem mass spectrometry method and a microbiological assay (AOAC Official Method 992.07) J. AOAC Int. 2012;95:143–148. doi: 10.5740/jaoacint.10-333. PubMed DOI
Lu B., Ren Y., Huang B., Liao W., Cai Z., Tie X. Simultaneous determination of four water-soluble vitamins in fortified infant foods by ultra-performance liquid chromatography coupled with triple quadrupole mass spectrometry. J. Chromatogr. Sci. 2008;46:225–232. doi: 10.1093/chromsci/46.3.225. PubMed DOI
Chakauya E., Coxon K.M., Wei M., Macdonald M.V., Barsby T., Abell C., Smith A.G. Towards engineering increased pantothenate (vitamin B(5)) levels in plants. Plant Mol. Biol. 2008;68:493–503. doi: 10.1007/s11103-008-9386-5. PubMed DOI
Rucker R.B. Pantothenic Acid. Academic Press; Cambridge, MA, USA: 2016.
Czumaj A., Szrok-Jurga S., Hebanowska A., Turyn J., Swierczynski J., Sledzinski T., Stelmanska E. The Pathophysiological Role of CoA. Int. J. Mol. Sci. 2020;21:9057. doi: 10.3390/ijms21239057. PubMed DOI PMC
Mindrebo J.T., Patel A., Misson L.E., Kim W.E., Davis T.D., Ni Q.Z., La Clair J.J., Burkart M.D. 1.04-Structural Basis of Acyl-Carrier Protein Interactions in Fatty Acid and Polyketide Biosynthesis. In: Hung-Wen L., Begley T.P., editors. Comprehensive Natural Products III. Elsevier; Amsterdam, The Netherlands: 2020.
Naquet P., Kerr E.W., Vickers S.D., Leonardi R. Regulation of coenzyme A levels by degradation: The “Ins and Outs”. Prog. Lipid Res. 2020;78:101028. doi: 10.1016/j.plipres.2020.101028. PubMed DOI PMC
Goding J.W., Grobben B., Slegers H. Physiological and pathophysiological functions of the ecto-nucleotide pyrophosphatase/phosphodiesterase family. Biochim. Biophys. Acta. 2003;1638:1–19. doi: 10.1016/S0925-4439(03)00058-9. PubMed DOI
Shibata K., Gross C.J., Henderson L.M. Hydrolysis and absorption of pantothenate and its coenzymes in the rat small intestine. J. Nutr. 1983;113:2107–2115. doi: 10.1093/jn/113.10.2107. PubMed DOI
Bartucci R., Salvati A., Olinga P., Boersma Y.L. Vanin 1: Its Physiological Function and Role in Diseases. Int. J. Mol. Sci. 2019;20:3891. doi: 10.3390/ijms20163891. PubMed DOI PMC
Turner J.B., Hughes D.E. The absorption of some B-group vitamins by surviving rat intestine preparations. Q. J. Exp. Physiol. Cogn. Med. Sci. 1962;47:107–133. doi: 10.1113/expphysiol.1962.sp001582. PubMed DOI
Prasad P.D., Wang H., Huang W., Fei Y.J., Leibach F.H., Devoe L.D., Ganapathy V. Molecular and functional characterization of the intestinal Na+-dependent multivitamin transporter. Arch. Biochem. Biophys. 1999;366:95–106. doi: 10.1006/abbi.1999.1213. PubMed DOI
Ono S., Kameda K., Abiko Y. Metabolism of panthethine in the rat. J. Nutr. Sci. Vitam. 1974;20:203–213. doi: 10.3177/jnsv.20.203. PubMed DOI
Wittwer C.T., Gahl W.A., Butler J.D., Zatz M., Thoene J.G. Metabolism of pantethine in cystinosis. J. Clin. Investig. 1985;76:1665–1672. doi: 10.1172/JCI112152. PubMed DOI PMC
Karnitz L.M., Gross C.J., Henderson L.M. Transport and metabolism of pantothenic acid by rat kidney. Biochim. Biophys. Acta. 1984;769:486–492. doi: 10.1016/0005-2736(84)90334-1. PubMed DOI
Eissenstat B.R., Wyse B.W., Hansen R.G. Pantothenic acid status of adolescents. Am. J. Clin. Nutr. 1986;44:931–937. doi: 10.1093/ajcn/44.6.931. PubMed DOI
Annous K.F., Song W.O. Pantothenic acid uptake and metabolism by red blood cells of rats. J. Nutr. 1995;125:2586–2593. doi: 10.1093/jn/125.10.2586. PubMed DOI
Vadlapudi A.D., Vadlapatla R.K., Mitra A.K. Sodium dependent multivitamin transporter (SMVT): A potential target for drug delivery. Curr. Drug Targets. 2012;13:994–1003. doi: 10.2174/138945012800675650. PubMed DOI PMC
Grassl S.M. Human placental brush-border membrane Na(+)-pantothenate cotransport. J. Biol. Chem. 1992;267:22902–22906. doi: 10.1016/S0021-9258(18)50032-6. PubMed DOI
Uchida Y., Ito K., Ohtsuki S., Kubo Y., Suzuki T., Terasaki T. Major involvement of Na(+) -dependent multivitamin transporter (SLC5A6/SMVT) in uptake of biotin and pantothenic acid by human brain capillary endothelial cells. J. Neurochem. 2015;134:97–112. doi: 10.1111/jnc.13092. PubMed DOI
Boger W.P., Bayne G.M., Gylfe J., Wright L.D. Renal clearance of pantothenic acid in man; inhibition by probenecid (benemid) Proc. Soc. Exp. Biol. Med. 1953;82:604–608. doi: 10.3181/00379727-82-20191. PubMed DOI
Spector H., Hamilton T.S., Mitchell H.H. The effect of pantothenic acid dosage and environmental temperature and humidity upon the dermal and renal excretion of pantothenic acid. J. Biol. Chem. 1945;161:145–152. doi: 10.1016/S0021-9258(17)41531-6. PubMed DOI
Tsuji T., Fukuwatari T., Sasaki S., Shibata K. Urinary excretion of vitamin B1, B2, B6, niacin, pantothenic acid, folate, and vitamin C correlates with dietary intakes of free-living elderly, female Japanese. Nutr. Res. 2010;30:171–178. doi: 10.1016/j.nutres.2010.02.001. PubMed DOI
Tsuji T., Fukuwatari T., Sasaki S., Shibata K. Twenty-four-hour urinary water-soluble vitamin levels correlate with their intakes in free-living Japanese university students. Eur. J. Clin. Nutr. 2010;64:800–807. doi: 10.1038/ejcn.2010.72. PubMed DOI
Hodges R.E., Ohlson M.A., Bean W.B. Pantothenic acid deficiency in man. J. Clin. Investig. 1958;37:1642–1657. doi: 10.1172/JCI103756. PubMed DOI PMC
Hodges R.E., Bean W.B., Ohlson M.A., Bleiler R. Human pantothenic acid deficiency produced by omega-methyl pantothenic acid. J. Clin. Investig. 1959;38:1421–1425. doi: 10.1172/JCI103918. PubMed DOI PMC
Drell W., Dunn M.S. Production of pantothenic acid deficiency syndrome in mice with-methylpantothenic acid. Arch. Biochem. Biophys. 1951;33:110–119. doi: 10.1016/0003-9861(51)90085-9. PubMed DOI
Pudelkewicz C., Roderuck C. Pantothenic acid deficiency in the young guinea pig. J. Nutr. 1960;70:348–352. doi: 10.1093/jn/70.3.348. PubMed DOI
Bean W.B., Hodges R.E., Daum K. Pantothenic acid deficiency induced in human subjects. J. Clin. Investig. 1955;34:1073–1084. doi: 10.1172/JCI103156. PubMed DOI PMC
Nelson M.M., Evans H.M. Pantothenic acid deficiency and reproduction in the rat. J. Nutr. 1946;31:497–507. doi: 10.1093/jn/31.4.497. PubMed DOI
Chen M.-C., Song Y., Song W.O. Fetal growth retardation and death in pantothenic acid-deficient rats is due to imparired placental function. J. Nutr. Biochem. 1996;7:451–456. doi: 10.1016/0955-2863(96)00078-2. DOI
Olson R.E., Kaplan N.O. The effect of pantothenic acid deficiency upon the coenzyme A content and pyruvate utilization of rat and duck tissues. J. Biol. Chem. 1948;175:515–529. doi: 10.1016/S0021-9258(18)57172-6. PubMed DOI
Schaefer A.E., McKibbin J.M., Elvehjem C.A. Pantothenic acid deficiency studies in the dog. J. Biol. Chem. 1942;143:321–330. doi: 10.1016/S0021-9258(18)72619-7. DOI
Guehring R.R., Hurley L.S., Morgan A.F. Cholesterol metabolism in pantothenic acid deficiency. J. Biol. Chem. 1952;197:485–493. doi: 10.1016/S0021-9258(18)55603-9. PubMed DOI
Fry P.C., Fox H.M., Tao H.G. Metabolic response to a pantothenic acid deficient diet in humans. J. Nutr. Sci. Vitam. 1976;22:339–346. doi: 10.3177/jnsv.22.339. PubMed DOI
Xu J., Patassini S., Begley P., Church S., Waldvogel H.J., Faull R.L.M., Unwin R.D., Cooper G.J.S. Cerebral deficiency of vitamin B5 (d-pantothenic acid; pantothenate) as a potentially-reversible cause of neurodegeneration and dementia in sporadic Alzheimer’s disease. Biochem. Biophys. Res. Commun. 2020;527:676–681. doi: 10.1016/j.bbrc.2020.05.015. PubMed DOI
Johnson M.A., Kuo Y.M., Westaway S.K., Parker S.M., Ching K.H., Gitschier J., Hayflick S.J. Mitochondrial localization of human PANK2 and hypotheses of secondary iron accumulation in pantothenate kinase-associated neurodegeneration. Ann. N. Y. Acad. Sci. 2004;1012:282–298. doi: 10.1196/annals.1306.023. PubMed DOI
Kurian M.A., McNeill A., Lin J.P., Maher E.R. Childhood disorders of neurodegeneration with brain iron accumulation (NBIA) Dev. Med. Child Neurol. 2011;53:394–404. doi: 10.1111/j.1469-8749.2011.03955.x. PubMed DOI
Pratini N.R., Sweeters N., Vichinsky E., Neufeld J.A. Treatment of classic pantothenate kinase-associated neurodegeneration with deferiprone and intrathecal baclofen. Am. J. Phys. Med. Rehabil. 2013;92:728–733. doi: 10.1097/PHM.0b013e318282d209. PubMed DOI PMC
Gregory A., Hayflick S.J. Pantothenate Kinase-Associated Neurodegeneration. In: Adam M.P., Ardinger H.H., Pagon R.A., Wallace S.E., Bean L.J.H., Mirzaa G., Amemiya A., editors. GeneReviews®. University of Washington; Seattle, WA, USA: 1993. PubMed
Hatano M. Pantothenic acid deficiency in rats. J. Vitam. 1962;8:143–159. doi: 10.5925/jnsv1954.8.143. PubMed DOI
Seronde J., Jr. The Pathogenesis of Duodenal Ulcer Disease in the Pantothenate-Deficient Rat. Yale J. Biol. Med. 1963;36:141–156. PubMed PMC
Jones J.H., Foster C., Dorfman F., Hunter G.L., Quinby M.E., Alexander D.L. Effects on the Albino Mouse of Feeding Diets Very Deficient in Each of Several Vitamin B Factors. J. Nutr. 1945;29:127–136. doi: 10.1093/jn/29.2.127. DOI
Berg B.N. Duodenitis and duodenal ulcers produced in rats by pantothenic acid deficiency. Br. J. Exp. Pathol. 1959;40:371–374. PubMed PMC
Osborn M.O., Weaver C., Anderson J. Cholesterol in blood and tissues of adult pantothenic acid-deficient rats. J. Nutr. 1958;64:313–319. doi: 10.1093/jn/64.2.313. PubMed DOI
Groody T.C., Groody M.E. Feather Depigmentation and Pantothenic Acid Deficiency in Chicks. Science. 1942;95:655–656. doi: 10.1126/science.95.2478.655. PubMed DOI
Gries C.L., Scott M.L. The pathology of thiamin, riboflavin, pantothenic acid and niacin deficiencies in the chick. J. Nutr. 1972;102:1269–1285. doi: 10.1093/jn/102.10.1269. PubMed DOI
Jukes T.H. Pantothenic acid and the filtrate (chick anti-dermatitis) factor. J. Am. Chem. Soc. 1939;61:975–976. doi: 10.1021/ja01873a515. DOI
Wintrobe M.M., Follis R.H., Jr., Alcayaga R., Paulson M., Humphreys S. Pantothenic acid deficiency in swine with particular reference to the effects on growth and on the alimentary tract. Bul. Johns Hopkins Hosp. 1943;73:313–341.
Follis R.H., Wintrobe M.M. A Comparison of the Effects of Pyridoxine and Pantothenic Acid Deficiencies on the Nervous Tissues of Swine. J. Exp. Med. 1945;81:539–552. doi: 10.1084/jem.81.6.539. PubMed DOI PMC
Nelson R.A. Intestinal transport, coenzyme A, and colitis in pantothenic acid deficiency. Am. J. Clin. Nutr. 1968;21:495–501. doi: 10.1093/ajcn/21.5.495. PubMed DOI
Silber R.H. Studies of Pantothenic Acid Deficiency in Dogs: Three Figures. J. Nutr. 1944;27:425–433. doi: 10.1093/jn/27.5.25. DOI
Wittwer C.T., Graves C.P., Peterson M.A., Jorgensen E., Wilson D.E., Thoene J.G., Wyse B.W., Windham C.T., Hansen R.G. Pantethine lipomodulation: Evidence for cysteamine mediation in vitro and in vivo. Atherosclerosis. 1987;68:41–49. doi: 10.1016/0021-9150(87)90092-X. PubMed DOI
Evans M., Rumberger J.A., Azumano I., Napolitano J.J., Citrolo D., Kamiya T. Pantethine, a derivative of vitamin B5, favorably alters total, LDL and non-HDL cholesterol in low to moderate cardiovascular risk subjects eligible for statin therapy: A triple-blinded placebo and diet-controlled investigation. Vasc. Health Risk Manag. 2014;10:89–100. doi: 10.2147/VHRM.S57116. PubMed DOI PMC
Gaddi A., Descovich G.C., Noseda G., Fragiacomo C., Colombo L., Craveri A., Montanari G., Sirtori C.R. Controlled evaluation of pantethine, a natural hypolipidemic compound, in patients with different forms of hyperlipoproteinemia. Atherosclerosis. 1984;50:73–83. doi: 10.1016/0021-9150(84)90009-1. PubMed DOI
Arsenio L., Caronna S., Lateana M., Magnati G., Strata A., Zammarchi G. Hyperlipidemia, diabetes and atherosclerosis: Efficacy of treatment with pantethine. Acta Biomed. Ateneo Parm. 1984;55:25–42. PubMed
Donati C., Bertieri R.S., Barbi G. Pantethine, diabetes mellitus and atherosclerosis. Clinical study of 1045 patients. Clin. Ter. 1989;128:411–422. PubMed
Coronel F., Tornero F., Torrente J., Naranjo P., De Oleo P., Macia M., Barrientos A. Treatment of hyperlipemia in diabetic patients on dialysis with a physiological substance. Am. J. Nephrol. 1991;11:32–36. doi: 10.1159/000168269. PubMed DOI
Orloff S., Butler J.D., Towne D., Mukherjee A.B., Schulman J.D. Pantetheinase activity and cysteamine content in cystinotic and normal fibroblasts and leukocytes. Pediatr. Res. 1981;15:1063–1067. doi: 10.1203/00006450-198107000-00018. PubMed DOI
Capodice J.L. Feasibility, Tolerability, Safety and Efficacy of a Pantothenic Acid Based Dietary Supplement in Subjects with Mild to Moderate Facial Acne Blemishes. J. Cosmet. Dermatol. Sci. Appl. 2012;2:132–135. doi: 10.4236/jcdsa.2012.23026. DOI
Yang M., Moclair B., Hatcher V., Kaminetsky J., Mekas M., Chapas A., Capodice J. A randomized, double-blind, placebo-controlled study of a novel pantothenic Acid-based dietary supplement in subjects with mild to moderate facial acne. Dermatol. Ther. 2014;4:93–101. doi: 10.1007/s13555-014-0052-3. PubMed DOI PMC
Proksch E., de Bony R., Trapp S., Boudon S. Topical use of dexpanthenol: A 70th anniversary article. J. Dermatol. Treat. 2017;28:766–773. doi: 10.1080/09546634.2017.1325310. PubMed DOI
Wollina U., Kubicki J. Dexpanthenol supports healing of superficial wounds and injuries. Kosm. Med. 2006;27:240–249.
Proksch E., Nissen H.P. Dexpanthenol enhances skin barrier repair and reduces inflammation after sodium lauryl sulphate-induced irritation. J. Dermatol. Treat. 2002;13:173–178. doi: 10.1080/09546630212345674. PubMed DOI
Stettler H., Kurka P., Lunau N., Manger C., Bohling A., Bielfeldt S., Wilhelm K.P., Dahnhardt-Pfeiffer S., Dahnhardt D., Brill F.H., et al. A new topical panthenol-containing emollient: Results from two randomized controlled studies assessing its skin moisturization and barrier restoration potential, and the effect on skin microflora. J. Dermatol. Treat. 2017;28:173–180. doi: 10.1080/09546634.2016.1214235. PubMed DOI
Heise R., Schmitt L., Huth L., Krings L., Kluwig D., Katsoulari K.V., Steiner T., Holzle F., Baron J.M., Huth S. Accelerated wound healing with a dexpanthenol-containing ointment after fractional ablative CO2 laser resurfacing of photo-damaged skin in a randomized prospective clinical trial. Cutan. Ocul. Toxicol. 2019;38:274–278. doi: 10.1080/15569527.2019.1597879. PubMed DOI
Wananukul S., Limpongsanuruk W., Singalavanija S., Wisuthsarewong W. Comparison of dexpanthenol and zinc oxide ointment with ointment base in the treatment of irritant diaper dermatitis from diarrhea: A multicenter study. J. Med. Assoc. Thai. 2006;89:1654–1658. PubMed
Olsavszky R., Nanu E.A., Macura-Biegun A., Kurka P., Trapp S. Skin barrier restoration upon topical use of two 5% dexpanthenol water-in-oil formulations on freshly tattooed skin: Results from a single-blind prospective study. Wounds Int. 2019;10:33–39.
Udompataikul M., Limpa-o-vart D. Comparative trial of 5% dexpanthenol in water-in-oil formulation with 1% hydrocortisone ointment in the treatment of childhood atopic dermatitis: A pilot study. J. Drugs Dermatol. 2012;11:366–374. PubMed
Shanazi M., Farshbaf Khalili A., Kamalifard M., Asghari Jafarabadi M., Masoudin K., Esmaeli F. Comparison of the Effects of Lanolin, Peppermint, and Dexpanthenol Creams on Treatment of Traumatic Nipples in Breastfeeding Mothers. J. Caring Sci. 2015;4:297–307. doi: 10.15171/jcs.2015.030. PubMed DOI PMC
Hamdi I.M. Effect of D-Panthenol on Corneal Epithelial Healing after Surface Laser Ablation. J. Ophthalmol. 2018;2018:6537413. doi: 10.1155/2018/6537413. PubMed DOI PMC
Gobbels M., Gross D. Clinical study of the effectiveness of a dexpanthenol containing artificial tears solution (Siccaprotect) in treatment of dry eyes. Klin. Monbl. Augenheilkd. 1996;209:84–88. doi: 10.1055/s-2008-1035283. PubMed DOI
Jagade M.V., Langade D.G., Pophale R.R., Prabhu A. Oxymetazoline plus dexpanthenol in nasal congestion. Indian J. Otolaryngol. Head Neck Surg. 2008;60:393–397. doi: 10.1007/s12070-008-0125-7. PubMed DOI PMC
Kehrl W., Sonnemann U., Dethlefsen U. Advance in therapy of acute rhinitis—Comparison of efficacy and safety of xylometazoline in combination xylometazoline-dexpanthenol in patients with acute rhinitis. Laryngo-Rhino-Otologie. 2003;82:266–271. doi: 10.1055/s-2003-38941. PubMed DOI
Kehrl W., Sonnemann U. Improving wound healing after nose surgery by combined administration of xylometazoline and dexpanthenol. Laryngo-Rhino-Otologie. 2000;79:151–154. doi: 10.1055/s-2000-295. PubMed DOI
Unna K., Greslin J.G. Studies on the toxicity and pharmacology of pantothenic acid. J. Pharmacol. Exp. Ther. 1941;76:85–90.
Flodin N.W. Pharmacology of Micronutrients. A.R. Liss; New York, NY, USA: 1988. 340p
Debourdeau P.M., Djezzar S., Estival J.L., Zammit C.M., Richard R.C., Castot A.C. Life-threatening eosinophilic pleuropericardial effusion related to vitamins B5 and H. Ann. Pharmacother. 2001;35:424–426. doi: 10.1345/aph.10213. PubMed DOI