Topological Dimensions from Disorder and Quantum Mechanics?
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
1/0101/20
Slovak Grant Agency VEGA
PubMed
37998249
PubMed Central
PMC10670605
DOI
10.3390/e25111557
PII: e25111557
Knihovny.cz E-resources
- Keywords
- Anderson transition, dimension content, effective counting dimension, effective number theory, effective support, emergent space, localization,
- Publication type
- Journal Article MeSH
We have recently shown that the critical Anderson electron in D=3 dimensions effectively occupies a spatial region of the infrared (IR) scaling dimension dIR≈8/3. Here, we inquire about the dimensional substructure involved. We partition space into regions of equal quantum occurrence probabilities, such that the points comprising a region are of similar relevance, and calculate the IR scaling dimension d of each. This allows us to infer the probability density p(d) for dimension d to be accessed by the electron. We find that p(d) has a strong peak at d very close to two. In fact, our data suggest that p(d) is non-zero on the interval [dmin,dmax]≈[4/3,8/3] and may develop a discrete part (δ-function) at d=2 in the infinite-volume limit. The latter invokes the possibility that a combination of quantum mechanics and pure disorder can lead to the emergence of integer (topological) dimensions. Although dIR is based on effective counting, of which p(d) has no a priori knowledge, dIR≥dmax is an exact feature of the ensuing formalism. A possible connection of our results to the recent findings of dIR≈2 in Dirac near-zero modes of thermal quantum chromodynamics is emphasized.
Department of Physics and Astronomy University of Kentucky Lexington KY 40506 USA
Nuclear Physics Institute CAS 25068 Řež near Prague Czech Republic
See more in PubMed
Anderson P.W. Absence of Diffusion in Certain Random Lattices. Phys. Rev. 1958;109:1492. doi: 10.1103/PhysRev.109.1492. DOI
Schenk O., Bollhöfer M., Römer R.A. On Large-Scale Diagonalization Techniques for the Anderson Model of Localization. [(accessed on 15 October 2023)];SIAM Rev. 2008 50:91–112. doi: 10.1137/070707002. Available online: http://www.jstor.org/stable/20454065. DOI
Abrahams E., Anderson P.W., Licciardello D.C., Ramakrishnan T.V. Scaling Theory of Localization: Absence of Quantum Diffusion in Two Dimensions. Phys. Rev. Lett. 1979;42:673. doi: 10.1103/PhysRevLett.42.673. DOI
Horváth I., Markoš P. Super-Universality in Anderson Localization. Phys. Rev. Lett. 2022;129:106601. doi: 10.1103/PhysRevLett.129.106601. PubMed DOI
Horváth I., Mendris R. Effective Number Theory: Counting the Identities of a Quantum State. Entropy. 2020;22:1273. doi: 10.3390/e22111273. PubMed DOI PMC
Horváth I. The Measure Aspect of Quantum Uncertainty, of Entanglement, and the Associated Entropies. Quantum Rep. 2021;3:534–548. doi: 10.3390/quantum3030035. DOI
Alexandru A., Horváth I. Unusual Features of QCD Low-Energy Modes in the Infrared Phase. Phys. Rev. Lett. 2021;127:052303. doi: 10.1103/PhysRevLett.127.052303. PubMed DOI
Horváth I., Markoš P., Mendris R. Counting-Based Effective Dimension and Discrete Regularizations. Entropy. 2023;25:482. doi: 10.3390/e25030482. PubMed DOI PMC
Horváth I., Markoš P. Low-dimensional life of critical Anderson electron. Phys. Lett. A. 2023;467:128735. doi: 10.1016/j.physleta.2023.128735. DOI
Aoki H. Critical behaviour of extended states in disordered systems. J. Phys. Solid State Phys. 1983;16:L205. doi: 10.1088/0022-3719/16/6/007. DOI
Soukoulis C.M., Economou E.N. Fractal Character of Eigenstates in Disordered Systems. Phys. Rev. Lett. 1984;52:565. doi: 10.1103/PhysRevLett.52.565. DOI
Castellani C., Peliti L. Multifractal wavefunction at the localisation threshold. J. Phys. Math. Gen. 1986;19:L429. doi: 10.1088/0305-4470/19/8/004. DOI
Evangelou S.N. Multifractal wavefunctions at the mobility edge. J. Phys. Math. Gen. 1990;23:L317. doi: 10.1088/0305-4470/23/7/006. DOI
Schreiber M., Grussbach H. Multifractal wave functions at the Anderson transition. Phys. Rev. Lett. 1991;67:607. doi: 10.1103/PhysRevLett.67.607. PubMed DOI
Janssen M. Multifractal analysis of broadly-distributed observables at criticality. Int. J. Mod. Phys. B. 1994;8:943. doi: 10.1142/S021797929400049X. DOI
Falconer K. Fractal Geometry: Mathematical Foundations and Applications. 3rd ed. Wiley; Hoboken, NJ, USA: 2014.
Halsey T.C., Jensen M.H., Kadanoff L.P., Procaccia I., Shraiman B.I. Fractal measures and their singularities: The characterization of strange sets. Phys. Rev. A. 1986;33:1141. doi: 10.1103/PhysRevA.33.1141. PubMed DOI
Mildenberger A., Evers F., Mirlin A.D. Dimensionality dependence of the wave-function statistics at the Anderson transition. Phys. Rev. B. 2002;66:033109. doi: 10.1103/PhysRevB.66.033109. DOI
Vasquez L.J., Rodriguez A., Römer R.A. Multifractal analysis of the metal-insulator transition in the three-dimensional Anderson model. I. Symmetry relation under typical averaging. Phys. Rev. B. 2008;78:195106. doi: 10.1103/PhysRevB.78.195106. DOI
Rodriguez A., Vasquez L.J., Römer R.A. Multifractal analysis of the metal-insulator transition in the three-dimensional Anderson model. II. Symmetry relation under ensemble averaging. Phys. Rev. B. 2008;78:195107. doi: 10.1103/PhysRevB.78.195107. DOI
Rodriguez A., Vasquez L.J., Slevin K., Römer R.A. Multifractal finite-size scaling and universality at the Anderson transition. Phys. Rev. B. 2011;84:134209. doi: 10.1103/PhysRevB.84.134209. DOI
Ujfalusi L., Varga I. Finite-size scaling and multifractality at the Anderson transition for the three Wigner-Dyson symmetry classes in three dimensions. Phys. Rev. B. 2015;91:184206. doi: 10.1103/PhysRevB.91.184206. DOI
Slevin K., Ohtsuki T. Critical Exponent of the Anderson Transition Using Massively Parallel Supercomputing. J. Phys. Soc. Jpn. 2018;87:094703. doi: 10.7566/JPSJ.87.094703. DOI
Bollhöfer M., Notay Y. JADAMILU: A software code for computing selected eigenvalues of large sparse symmetric matrices. Comput. Phys. Commun. 2007;177:951–964. doi: 10.1016/j.cpc.2007.08.004. DOI
Evers F., Mirlin A.D. Anderson transitions. Rev. Mod. Phys. 2008;80:1355. doi: 10.1103/RevModPhys.80.1355. DOI
Grassberger P. Generalizations of the Hausdorff dimension of fractal measures. Phys. Lett. A. 1985;107:101–105. doi: 10.1016/0375-9601(85)90724-8. DOI
Burmistrov I.S. Comment on “Super-Universality in Anderson Localization”. Phys. Rev. Lett. 2023;131:139701. doi: 10.1103/PhysRevLett.131.139701. PubMed DOI
Horváth I., Markoš P. Horváth and Markoš Reply. Phys. Rev. Lett. 2023;131:139702. doi: 10.1103/PhysRevLett.131.139702. PubMed DOI
Horváth I., Markoš P. Response to Comment on “Super-universality in Anderson localization”. arXiv. 20222212.02912 PubMed
Alexandru A., Horváth I. Anderson metal-to-critical transition in QCD. Phys. Lett. B. 2022;833:137370. doi: 10.1016/j.physletb.2022.137370. DOI
Garcia-Garcia A.M., Osborn J.C. Chiral phase transition and Anderson localization in the instanton liquid model for QCD. Nucl. Phys. A. 2006;770:141–161. doi: 10.1016/j.nuclphysa.2006.02.011. DOI
Garcia-Garcia A.M., Osborn J.C. Chiral phase transition in lattice QCD as a metal-insulator transition. Phys. Rev. D. 2007;75:034503. doi: 10.1103/PhysRevD.75.034503. DOI
Kovacs T.G., Pittler F. Anderson Localization in Quark-Gluon Plasma. Phys. Rev. Lett. 2010;105:192001. doi: 10.1103/PhysRevLett.105.192001. PubMed DOI
Giordano M., Kovacs T.G., Pittler F. Universality and the QCD Anderson Transition. Phys. Rev. Lett. 2014;112:102002. doi: 10.1103/PhysRevLett.112.102002. PubMed DOI
Ujfalusi L., Giordano M., Pittler F., Kovács T.G., Varga I. Anderson transition and multifractals in the spectrum of the Dirac operator of quantum chromodynamics at high temperature. Phys. Rev. D. 2015;92:094513. doi: 10.1103/PhysRevD.92.094513. DOI
Alexandru A., Horváth I. Possible new phase of thermal QCD. Phys. Rev. D. 2019;100:094507. doi: 10.1103/PhysRevD.100.094507. DOI