• This record comes from PubMed

Topological Dimensions from Disorder and Quantum Mechanics?

. 2023 Nov 17 ; 25 (11) : . [epub] 20231117

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
1/0101/20 Slovak Grant Agency VEGA

We have recently shown that the critical Anderson electron in D=3 dimensions effectively occupies a spatial region of the infrared (IR) scaling dimension dIR≈8/3. Here, we inquire about the dimensional substructure involved. We partition space into regions of equal quantum occurrence probabilities, such that the points comprising a region are of similar relevance, and calculate the IR scaling dimension d of each. This allows us to infer the probability density p(d) for dimension d to be accessed by the electron. We find that p(d) has a strong peak at d very close to two. In fact, our data suggest that p(d) is non-zero on the interval [dmin,dmax]≈[4/3,8/3] and may develop a discrete part (δ-function) at d=2 in the infinite-volume limit. The latter invokes the possibility that a combination of quantum mechanics and pure disorder can lead to the emergence of integer (topological) dimensions. Although dIR is based on effective counting, of which p(d) has no a priori knowledge, dIR≥dmax is an exact feature of the ensuing formalism. A possible connection of our results to the recent findings of dIR≈2 in Dirac near-zero modes of thermal quantum chromodynamics is emphasized.

See more in PubMed

Anderson P.W. Absence of Diffusion in Certain Random Lattices. Phys. Rev. 1958;109:1492. doi: 10.1103/PhysRev.109.1492. DOI

Schenk O., Bollhöfer M., Römer R.A. On Large-Scale Diagonalization Techniques for the Anderson Model of Localization. [(accessed on 15 October 2023)];SIAM Rev. 2008 50:91–112. doi: 10.1137/070707002. Available online: http://www.jstor.org/stable/20454065. DOI

Abrahams E., Anderson P.W., Licciardello D.C., Ramakrishnan T.V. Scaling Theory of Localization: Absence of Quantum Diffusion in Two Dimensions. Phys. Rev. Lett. 1979;42:673. doi: 10.1103/PhysRevLett.42.673. DOI

Horváth I., Markoš P. Super-Universality in Anderson Localization. Phys. Rev. Lett. 2022;129:106601. doi: 10.1103/PhysRevLett.129.106601. PubMed DOI

Horváth I., Mendris R. Effective Number Theory: Counting the Identities of a Quantum State. Entropy. 2020;22:1273. doi: 10.3390/e22111273. PubMed DOI PMC

Horváth I. The Measure Aspect of Quantum Uncertainty, of Entanglement, and the Associated Entropies. Quantum Rep. 2021;3:534–548. doi: 10.3390/quantum3030035. DOI

Alexandru A., Horváth I. Unusual Features of QCD Low-Energy Modes in the Infrared Phase. Phys. Rev. Lett. 2021;127:052303. doi: 10.1103/PhysRevLett.127.052303. PubMed DOI

Horváth I., Markoš P., Mendris R. Counting-Based Effective Dimension and Discrete Regularizations. Entropy. 2023;25:482. doi: 10.3390/e25030482. PubMed DOI PMC

Horváth I., Markoš P. Low-dimensional life of critical Anderson electron. Phys. Lett. A. 2023;467:128735. doi: 10.1016/j.physleta.2023.128735. DOI

Aoki H. Critical behaviour of extended states in disordered systems. J. Phys. Solid State Phys. 1983;16:L205. doi: 10.1088/0022-3719/16/6/007. DOI

Soukoulis C.M., Economou E.N. Fractal Character of Eigenstates in Disordered Systems. Phys. Rev. Lett. 1984;52:565. doi: 10.1103/PhysRevLett.52.565. DOI

Castellani C., Peliti L. Multifractal wavefunction at the localisation threshold. J. Phys. Math. Gen. 1986;19:L429. doi: 10.1088/0305-4470/19/8/004. DOI

Evangelou S.N. Multifractal wavefunctions at the mobility edge. J. Phys. Math. Gen. 1990;23:L317. doi: 10.1088/0305-4470/23/7/006. DOI

Schreiber M., Grussbach H. Multifractal wave functions at the Anderson transition. Phys. Rev. Lett. 1991;67:607. doi: 10.1103/PhysRevLett.67.607. PubMed DOI

Janssen M. Multifractal analysis of broadly-distributed observables at criticality. Int. J. Mod. Phys. B. 1994;8:943. doi: 10.1142/S021797929400049X. DOI

Falconer K. Fractal Geometry: Mathematical Foundations and Applications. 3rd ed. Wiley; Hoboken, NJ, USA: 2014.

Halsey T.C., Jensen M.H., Kadanoff L.P., Procaccia I., Shraiman B.I. Fractal measures and their singularities: The characterization of strange sets. Phys. Rev. A. 1986;33:1141. doi: 10.1103/PhysRevA.33.1141. PubMed DOI

Mildenberger A., Evers F., Mirlin A.D. Dimensionality dependence of the wave-function statistics at the Anderson transition. Phys. Rev. B. 2002;66:033109. doi: 10.1103/PhysRevB.66.033109. DOI

Vasquez L.J., Rodriguez A., Römer R.A. Multifractal analysis of the metal-insulator transition in the three-dimensional Anderson model. I. Symmetry relation under typical averaging. Phys. Rev. B. 2008;78:195106. doi: 10.1103/PhysRevB.78.195106. DOI

Rodriguez A., Vasquez L.J., Römer R.A. Multifractal analysis of the metal-insulator transition in the three-dimensional Anderson model. II. Symmetry relation under ensemble averaging. Phys. Rev. B. 2008;78:195107. doi: 10.1103/PhysRevB.78.195107. DOI

Rodriguez A., Vasquez L.J., Slevin K., Römer R.A. Multifractal finite-size scaling and universality at the Anderson transition. Phys. Rev. B. 2011;84:134209. doi: 10.1103/PhysRevB.84.134209. DOI

Ujfalusi L., Varga I. Finite-size scaling and multifractality at the Anderson transition for the three Wigner-Dyson symmetry classes in three dimensions. Phys. Rev. B. 2015;91:184206. doi: 10.1103/PhysRevB.91.184206. DOI

Slevin K., Ohtsuki T. Critical Exponent of the Anderson Transition Using Massively Parallel Supercomputing. J. Phys. Soc. Jpn. 2018;87:094703. doi: 10.7566/JPSJ.87.094703. DOI

Bollhöfer M., Notay Y. JADAMILU: A software code for computing selected eigenvalues of large sparse symmetric matrices. Comput. Phys. Commun. 2007;177:951–964. doi: 10.1016/j.cpc.2007.08.004. DOI

Evers F., Mirlin A.D. Anderson transitions. Rev. Mod. Phys. 2008;80:1355. doi: 10.1103/RevModPhys.80.1355. DOI

Grassberger P. Generalizations of the Hausdorff dimension of fractal measures. Phys. Lett. A. 1985;107:101–105. doi: 10.1016/0375-9601(85)90724-8. DOI

Burmistrov I.S. Comment on “Super-Universality in Anderson Localization”. Phys. Rev. Lett. 2023;131:139701. doi: 10.1103/PhysRevLett.131.139701. PubMed DOI

Horváth I., Markoš P. Horváth and Markoš Reply. Phys. Rev. Lett. 2023;131:139702. doi: 10.1103/PhysRevLett.131.139702. PubMed DOI

Horváth I., Markoš P. Response to Comment on “Super-universality in Anderson localization”. arXiv. 20222212.02912 PubMed

Alexandru A., Horváth I. Anderson metal-to-critical transition in QCD. Phys. Lett. B. 2022;833:137370. doi: 10.1016/j.physletb.2022.137370. DOI

Garcia-Garcia A.M., Osborn J.C. Chiral phase transition and Anderson localization in the instanton liquid model for QCD. Nucl. Phys. A. 2006;770:141–161. doi: 10.1016/j.nuclphysa.2006.02.011. DOI

Garcia-Garcia A.M., Osborn J.C. Chiral phase transition in lattice QCD as a metal-insulator transition. Phys. Rev. D. 2007;75:034503. doi: 10.1103/PhysRevD.75.034503. DOI

Kovacs T.G., Pittler F. Anderson Localization in Quark-Gluon Plasma. Phys. Rev. Lett. 2010;105:192001. doi: 10.1103/PhysRevLett.105.192001. PubMed DOI

Giordano M., Kovacs T.G., Pittler F. Universality and the QCD Anderson Transition. Phys. Rev. Lett. 2014;112:102002. doi: 10.1103/PhysRevLett.112.102002. PubMed DOI

Ujfalusi L., Giordano M., Pittler F., Kovács T.G., Varga I. Anderson transition and multifractals in the spectrum of the Dirac operator of quantum chromodynamics at high temperature. Phys. Rev. D. 2015;92:094513. doi: 10.1103/PhysRevD.92.094513. DOI

Alexandru A., Horváth I. Possible new phase of thermal QCD. Phys. Rev. D. 2019;100:094507. doi: 10.1103/PhysRevD.100.094507. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...