Examining the association between posttraumatic stress disorder and disruptions in cortical networks identified using data-driven methods
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
P30 HD003352
NICHD NIH HHS - United States
IK2 RX002922
RRD VA - United States
IK2 CX001680
CSRD VA - United States
R01 MH105535
NIMH NIH HHS - United States
R01 MH116147
NIMH NIH HHS - United States
R01 MH119227
NIMH NIH HHS - United States
R56 AG058854
NIA NIH HHS - United States
T32 MH018931
NIMH NIH HHS - United States
P50 AA012870
NIAAA NIH HHS - United States
R01 MH129832
NIMH NIH HHS - United States
R01 AG059874
NIA NIH HHS - United States
UL1 TR001863
NCATS NIH HHS - United States
R21 MH112956
NIMH NIH HHS - United States
K01 MH118428
NIMH NIH HHS - United States
R01 AG067103
NIA NIH HHS - United States
R01 MH105355
NIMH NIH HHS - United States
R01 MH111671
NIMH NIH HHS - United States
R01 MH106574
NIMH NIH HHS - United States
IK1 RX002325
RRD VA - United States
R01 MH129742
NIMH NIH HHS - United States
I01 RX000622
RRD VA - United States
U54 EB020403
NIBIB NIH HHS - United States
R01 MH117601
NIMH NIH HHS - United States
R01 MH043454
NIMH NIH HHS - United States
R21 MH102634
NIMH NIH HHS - United States
R01 MH131532
NIMH NIH HHS - United States
K01 MH118467
NIMH NIH HHS - United States
PubMed
38017161
PubMed Central
PMC10789873
DOI
10.1038/s41386-023-01763-5
PII: 10.1038/s41386-023-01763-5
Knihovny.cz E-zdroje
- MeSH
- emoce MeSH
- lidé MeSH
- magnetická rezonanční tomografie MeSH
- mozek MeSH
- posttraumatická stresová porucha * psychologie MeSH
- prefrontální mozková kůra MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Posttraumatic stress disorder (PTSD) is associated with lower cortical thickness (CT) in prefrontal, cingulate, and insular cortices in diverse trauma-affected samples. However, some studies have failed to detect differences between PTSD patients and healthy controls or reported that PTSD is associated with greater CT. Using data-driven dimensionality reduction, we sought to conduct a well-powered study to identify vulnerable networks without regard to neuroanatomic boundaries. Moreover, this approach enabled us to avoid the excessive burden of multiple comparison correction that plagues vertex-wise methods. We derived structural covariance networks (SCNs) by applying non-negative matrix factorization (NMF) to CT data from 961 PTSD patients and 1124 trauma-exposed controls without PTSD. We used regression analyses to investigate associations between CT within SCNs and PTSD diagnosis (with and without accounting for the potential confounding effect of trauma type) and symptom severity in the full sample. We performed additional regression analyses in subsets of the data to examine associations between SCNs and comorbid depression, childhood trauma severity, and alcohol abuse. NMF identified 20 unbiased SCNs, which aligned closely with functionally defined brain networks. PTSD diagnosis was most strongly associated with diminished CT in SCNs that encompassed the bilateral superior frontal cortex, motor cortex, insular cortex, orbitofrontal cortex, medial occipital cortex, anterior cingulate cortex, and posterior cingulate cortex. CT in these networks was significantly negatively correlated with PTSD symptom severity. Collectively, these findings suggest that PTSD diagnosis is associated with widespread reductions in CT, particularly within prefrontal regulatory regions and broader emotion and sensory processing cortical regions.
ARQ National Psychotrauma Centre Diemen The Netherlands
Center for Healthy Minds University of Wisconsin Madison Madison WI USA
Comprehensive Injury Center Medical College of Wisconsin Milwaukee WI USA
Del Monte Institute for Neuroscience University of Rochester Medical Center Rochester NY USA
Department of Clinical Psychology University of Groningen Groningen The Netherlands
Department of Comparative Medicine Yale University New Haven CT USA
Department of Experimental Clinical and Health Psychology Ghent University Ghent Belgium
Department of Medical Imaging Jinling Hospital Medical School of Nanjing University Jiangsu China
Department of Neurology University of Utah Salt Lake City UT USA
Department of Neuroscience Yale University New Haven CT USA
Department of Psychiatry Amsterdam University Medical Center Amsterdam The Netherlands
Department of Psychiatry and Behavioral Science Texas A and M University College Station TX USA
Department of Psychiatry and Neuroscience Institute University of Cape Town Cape Town South Africa
Department of Psychiatry Columbia University Medical Center New York NY USA
Department of Psychiatry Harvard Medical School Boston MA USA
Department of Psychiatry of Behavioral Sciences Baylor College of Medicine Houston TX USA
Department of Psychiatry Stellenbosch University Cape Town South Africa
Department of Psychiatry University of Michigan Ann Arbor MI USA
Department of Psychiatry University of Minnesota Minneapolis MN USA
Department of Psychiatry University of Wisconsin Madison Madison WI USA
Department of Psychiatry Yale University School of Medicine New Haven CT USA
Department of Psychology and Neuroscience Baylor University Waco TX USA
Department of Psychology The Education University of Hong Kong Hong Kong China
Department of Psychology University of Chinese Academy of Sciences Beijing China
Department of Psychology University of Wisconsin Madison Madison WI USA
Department of Psychology University of Wisconsin Milwaukee Milwaukee WI USA
Department of Psychology Vanderbilt University Nashville TN USA
Department of Psychology Yale University New Haven CT USA
Department of Radiology Washington University in St Louis St Louis MO USA
Division of Clinical Neuroscience National Center for PTSD West Haven CT USA
Division of Depression and Anxiety Disorders McLean Hospital Belmont MA USA
Division of Women's Mental Health McLean Hospital Belmont MA USA
Duke UNC Brain Imaging and Analysis Center Duke University Durham NC USA
George E Wahlen Veterans Affairs Medical Center Salt Lake City UT USA
Institute for Technology in Psychiatry McLean Hospital Harvard University Belmont MA USA
Institute of Medical Psychology and Systems Neuroscience University of Münster Münster Germany
Minneapolis VA Health Care System Minneapolis MN USA
Munroe Meyer Institute University of Nebraska Medical Center Omaha NE USA
New York State Psychiatric Institute New York NY USA
Zobrazit více v PubMed
Kilpatrick DG, Resnick HS, Milanak ME, Miller MW, Keyes KM, Friedman MJ. National Estimates of Exposure to Traumatic Events and PTSD Prevalence Using DSM-IV and DSM-5 Criteria. J Trauma Stress. 2013;26:537–47. doi: 10.1002/jts.21848. PubMed DOI PMC
American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders. 5th ed. Washington, DC: American Psychiatric Association; 2013.
Etkin A, Wager TD. Functional Neuroimaging of Anxiety: A Meta-Analysis of Emotional Processing in PTSD, Social Anxiety Disorder, and Specific Phobia. Am J Psychiatry. 2007;164:1476–88. doi: 10.1176/appi.ajp.2007.07030504. PubMed DOI PMC
Karl A, Schaefer M, Malta L, Dorfel D, Rohleder N, Werner A. A meta-analysis of structural brain abnormalities in PTSD. Neurosci Biobehav Rev. 2006;30:1004–31. doi: 10.1016/j.neubiorev.2006.03.004. PubMed DOI
O’Doherty DCM, Chitty KM, Saddiqui S, Bennett MR, Lagopoulos J. A systematic review and meta-analysis of magnetic resonance imaging measurement of structural volumes in posttraumatic stress disorder. Psychiatry Res Neuroimaging. 2015;232:1–33. doi: 10.1016/j.pscychresns.2015.01.002. PubMed DOI
Corbo V, Salat DH, Amick MM, Leritz EC, Milberg WP, McGlinchey RE. Reduced cortical thickness in veterans exposed to early life trauma. Psychiatry Res Neuroimaging. 2014;223:53–60. doi: 10.1016/j.pscychresns.2014.04.013. PubMed DOI PMC
Geuze E, Westenberg HGM, Heinecke A, de Kloet CS, Goebel R, Vermetten E. Thinner prefrontal cortex in veterans with posttraumatic stress disorder. Neuroimage. 2008;41:675–81. doi: 10.1016/j.neuroimage.2008.03.007. PubMed DOI
Gold AL, Sheridan MA, Peverill M, Busso DS, Lambert HK, Alves S, et al. Childhood abuse and reduced cortical thickness in brain regions involved in emotional processing. J Child Psychol Psychiatry. 2016;57:1154–64. doi: 10.1111/jcpp.12630. PubMed DOI PMC
Sadeh N, Spielberg JM, Logue MW, Wolf EJ, Smith AK, Lusk J, et al. SKA2 methylation is associated with decreased prefrontal cortical thickness and greater PTSD severity among trauma-exposed veterans. Mol Psychiatry. 2016;21:357–63. doi: 10.1038/mp.2015.134. PubMed DOI PMC
Sullivan DR, Morrison FG, Wolf EJ, Logue MW, Fortier CB, Salat DH, et al. The PPM1F gene moderates the association between PTSD and cortical thickness. J Affect Disord. 2019;259:201–9. doi: 10.1016/j.jad.2019.08.055. PubMed DOI PMC
Wrocklage KM, Averill LA, Cobb Scott J, Averill CL, Schweinsburg B, Trejo M, et al. Cortical thickness reduction in combat exposed U.S. veterans with and without PTSD. Eur Neuropsychopharmacol. 2017;27:515–25. doi: 10.1016/j.euroneuro.2017.02.010. PubMed DOI PMC
Bing X, Ming-guo Q, Ye Z, Jing-na Z, Min L, Han C, et al. Alterations in the cortical thickness and the amplitude of low-frequency fluctuation in patients with post-traumatic stress disorder. Brain Res. 2013;1490:225–32. doi: 10.1016/j.brainres.2012.10.048. PubMed DOI
Crombie KM, Ross MC, Letkiewicz AM, Sartin-Tarm A, Cisler JM. Differential relationships of PTSD symptom clusters with cortical thickness and grey matter volumes among women with PTSD. Sci Rep. 2021;11:1825. doi: 10.1038/s41598-020-80776-2. PubMed DOI PMC
Ross MC, Sartin-Tarm AS, Letkiewicz AM, Crombie KM, Cisler JM. Distinct cortical thickness correlates of early life trauma exposure and posttraumatic stress disorder are shared among adolescent and adult females with interpersonal violence exposure. Neuropsychopharmacology. 2021;46:741–9. doi: 10.1038/s41386-020-00918-y. PubMed DOI PMC
Lindemer ER, Salat DH, Leritz EC, McGlinchey RE, Milberg WP. Reduced cortical thickness with increased lifetime burden of PTSD in OEF/OIF Veterans and the impact of comorbid TBI. Neuroimage Clin. 2013;2:601–11. doi: 10.1016/j.nicl.2013.04.009. PubMed DOI PMC
Clausen AN, Clarke E, Phillips RD, Haswell C, Morey RA. Combat exposure, posttraumatic stress disorder, and head injuries differentially relate to alterations in cortical thickness in military Veterans. Neuropsychopharmacology. 2020;45:491–8. doi: 10.1038/s41386-019-0539-9. PubMed DOI PMC
Woodward SH, Schaer M, Kaloupek DG, Cediel L, Eliez S. Smaller Global and Regional Cortical Volume in Combat-Related Posttraumatic Stress Disorder. Arch Gen Psychiatry. 2009;66:1373. doi: 10.1001/archgenpsychiatry.2009.160. PubMed DOI
Dickie EW, Brunet A, Akerib V, Armony JL. Anterior cingulate cortical thickness is a stable predictor of recovery from post-traumatic stress disorder. Psychol Med. 2013;43:645–53. doi: 10.1017/S0033291712001328. PubMed DOI
Heyn SA, Herringa RJ. Longitudinal cortical markers of persistence and remission of pediatric PTSD. Neuroimage Clin. 2019;24:102028. doi: 10.1016/j.nicl.2019.102028. PubMed DOI PMC
Jeong H, Lee YJ, Kim N, Jeon S, Jun JY, Yoo SY, et al. Increased medial prefrontal cortical thickness and resilience to traumatic experiences in North Korean refugees. Sci Rep. 2021;11:14910. doi: 10.1038/s41598-021-94452-6. PubMed DOI PMC
Lyoo IK, Kim JE, Yoon SJ, Hwang J, Bae S, Kim DJ. The Neurobiological Role of the Dorsolateral Prefrontal Cortex in Recovery From Trauma. Arch Gen Psychiatry. 2011;68:701. doi: 10.1001/archgenpsychiatry.2011.70. PubMed DOI
Averill LA, Abdallah CG, Pietrzak RH, Averill CL, Southwick SM, Krystal JH, et al. Combat exposure severity is associated with reduced cortical thickness in combat veterans: a preliminary report. Chronic Stress. 2017;1:1–9. PubMed PMC
Clouston SAP, Deri Y, Horton M, Tang C, Diminich E, DeLorenzo C, et al. Reduced cortical thickness in World Trade Center responders with cognitive impairment. Alzheimer’s & Dementia: Diagnosis. Assess Dis Monit. 2020;12:e12059. PubMed PMC
Demers LA, Olson EA, Crowley DJ, Rauch SL, Rosso IM. Dorsal Anterior Cingulate Thickness Is Related to Alexithymia in Childhood Trauma-Related PTSD. PLoS One. 2015;10:e0139807. doi: 10.1371/journal.pone.0139807. PubMed DOI PMC
Knight LK, Naaz F, Stoica T, Depue BE. Lifetime PTSD and geriatric depression symptomatology relate to altered dorsomedial frontal and amygdala morphometry. Psychiatry Res Neuroimaging. 2017;267:59–68. doi: 10.1016/j.pscychresns.2017.07.003. PubMed DOI
Landré L, Destrieux C, Baudry M, Barantin L, Cottier J-P, Martineau J, et al. Preserved subcortical volumes and cortical thickness in women with sexual abuse-related PTSD. Psychiatry Res Neuroimaging. 2010;183:181–6. doi: 10.1016/j.pscychresns.2010.01.015. PubMed DOI
Rinne-Albers MA, Boateng CP, van der Werff SJ, Lamers-Winkelman F, Rombouts SA, Vermeiren RR, et al. Preserved cortical thickness, surface area and volume in adolescents with PTSD after childhood sexual abuse. Sci Rep. 2020;10:3266. doi: 10.1038/s41598-020-60256-3. PubMed DOI PMC
Rosada C, Bauer M, Golde S, Metz S, Roepke S, Otte C, et al. Childhood trauma and cortical thickness in healthy women, women with post-traumatic stress disorder, and women with borderline personality disorder. Psychoneuroendocrinology. 2023;153:106118. doi: 10.1016/j.psyneuen.2023.106118. PubMed DOI
Sun D, Haswell CC, Morey RA, De Bellis MD. Brain structural covariance network centrality in maltreated youth with PTSD and in maltreated youth resilient to PTSD. Dev Psychopathol. 2019;31:557–71. doi: 10.1017/S0954579418000093. PubMed DOI PMC
Li S, Huang X, Li L, Du F, Li J, Bi F, et al. Posttraumatic Stress Disorder: Structural Characterization with 3-T MR Imaging. Radiology. 2016;280:537–44. doi: 10.1148/radiol.2016150477. PubMed DOI
Qi S, Mu Y, Liu K, Zhang J, Huan Y, Tan Q, et al. Cortical inhibition deficits in recent onset PTSD after a single prolonged trauma exposure. Neuroimage Clin. 2013;3:226–33. doi: 10.1016/j.nicl.2013.08.013. PubMed DOI PMC
Li L, Zhang Y, Zhao Y, Li Z, Kemp GJ, Wu M, et al. Cortical thickness abnormalities in patients with post-traumatic stress disorder: A vertex-based meta-analysis. Neurosci Biobehav Rev. 2022;134:104519. doi: 10.1016/j.neubiorev.2021.104519. PubMed DOI
Galatzer-Levy IR, Bryant RA. 636,120 Ways to Have Posttraumatic Stress Disorder. Perspect Psychol Sci. 2013;8:651–62. doi: 10.1177/1745691613504115. PubMed DOI
Sotiras A, Resnick SM, Davatzikos C. Finding imaging patterns of structural covariance via Non-Negative Matrix Factorization. Neuroimage. 2015;108:1–16. doi: 10.1016/j.neuroimage.2014.11.045. PubMed DOI PMC
Sotiras A, Toledo JB, Gur RE, Gur RC, Satterthwaite TD, Davatzikos C. Patterns of coordinated cortical remodeling during adolescence and their associations with functional specialization and evolutionary expansion. Proc Natl Acad Sci. 2017;114:3527–32. doi: 10.1073/pnas.1620928114. PubMed DOI PMC
Cui Z, Li H, Xia CH, Larsen B, Adebimpe A, Baum GL, et al. Individual Variation in Functional Topography of Association Networks in Youth. Neuron. 2020;106:340–53.e8. doi: 10.1016/j.neuron.2020.01.029. PubMed DOI PMC
Sun D, Adduru VR, Phillips RD, Bouchard HC, Sotiras A, Michael AM, et al. Adolescent alcohol use is linked to disruptions in age-appropriate cortical thinning: an unsupervised machine learning approach. Neuropsychopharmacology. 2023;48:317–26. doi: 10.1038/s41386-022-01457-4. PubMed DOI PMC
Kalantar-Hormozi H, Patel R, Dai A, Ziolkowski J, Dong H-M, Holmes A, et al. A cross-sectional and longitudinal study of human brain development: The integration of cortical thickness, surface area, gyrification index, and cortical curvature into a unified analytical framework. Neuroimage. 2023;268:119885. doi: 10.1016/j.neuroimage.2023.119885. PubMed DOI
Wang F, Lian C, Wu Z, Zhang H, Li T, Meng Y, et al. Developmental topography of cortical thickness during infancy. Proc Natl Acad Sci. 2019;116:15855–60. doi: 10.1073/pnas.1821523116. PubMed DOI PMC
Pehlivanova M, Wolf DH, Sotiras A, Kaczkurkin A, Moore TM, Ciric R, et al. Diminished Cortical Thickness is Associated with Impulsive Choice in Adolescence. J Neurosci. 2018;38:2200–17. doi: 10.1523/JNEUROSCI.2200-17.2018. PubMed DOI PMC
Kaczkurkin AN, Park SS, Sotiras A, Moore TM, Calkins ME, Cieslak M, et al. Evidence for Dissociable Linkage of Dimensions of Psychopathology to Brain Structure in Youths. Am J Psychiatry. 2019;176:1000–9. doi: 10.1176/appi.ajp.2019.18070835. PubMed DOI PMC
Jirsaraie RJ, Kaczkurkin AN, Rush S, Piiwia K, Adebimpe A, Bassett DS, et al. Accelerated cortical thinning within structural brain networks is associated with irritability in youth. Neuropsychopharmacology. 2019;44:2254–62. doi: 10.1038/s41386-019-0508-3. PubMed DOI PMC
Luking KR, Jirsaraie RJ, Tillman R, Luby JL, Barch DM, Sotiras A. Timing and Type of Early Psychopathology Symptoms Predict Longitudinal Change in Cortical Thickness From Middle Childhood Into Early Adolescence. Biol Psychiatry Cogn Neurosci Neuroimaging. 2022;7:397–405. PubMed PMC
Neufeld NH, Kaczkurkin AN, Sotiras A, Mulsant BH, Dickie EW, Flint AJ, et al. Structural brain networks in remitted psychotic depression. Neuropsychopharmacology. 2020;45:1223–31. doi: 10.1038/s41386-020-0646-7. PubMed DOI PMC
Yang W, Jin S, Duan W, Yu H, Ping L, Shen Z, et al. The effects of childhood maltreatment on cortical thickness and gray matter volume: a coordinate-based meta-analysis. Psychol Med. 2023;53:1681–99. doi: 10.1017/S0033291723000661. PubMed DOI
Li Q, Zhao Y, Chen Z, Long J, Dai J, Huang X, et al. Meta-analysis of cortical thickness abnormalities in medication-free patients with major depressive disorder. Neuropsychopharmacology. 2020;45:703–12. doi: 10.1038/s41386-019-0563-9. PubMed DOI PMC
Suh JS, Schneider MA, Minuzzi L, MacQueen GM, Strother SC, Kennedy SH, et al. Cortical thickness in major depressive disorder: A systematic review and meta-analysis. Prog Neuropsychopharmacol Biol Psychiatry. 2019;88:287–302. doi: 10.1016/j.pnpbp.2018.08.008. PubMed DOI
Debell F, Fear NT, Head M, Batt-Rawden S, Greenberg N, Wessely S, et al. A systematic review of the comorbidity between PTSD and alcohol misuse. Soc Psychiatry Psychiatr Epidemiol. 2014;49:1401–25. doi: 10.1007/s00127-014-0855-7. PubMed DOI
Rytwinski NK, Scur MD, Feeny NC, Youngstrom EA. The Co-Occurrence of Major Depressive Disorder Among Individuals With Posttraumatic Stress Disorder: A Meta-Analysis. J Trauma Stress. 2013;26:299–309. doi: 10.1002/jts.21814. PubMed DOI
Fischl B. FreeSurfer. Neuroimage. 2012;62:774–81. doi: 10.1016/j.neuroimage.2012.01.021. PubMed DOI PMC
Fortin JP, Cullen N, Sheline YI, Taylor WD, Aselcioglu I, Cook PA, et al. Harmonization of cortical thickness measurements across scanners and sites. Neuroimage. 2018;167:104–20. doi: 10.1016/j.neuroimage.2017.11.024. PubMed DOI PMC
Logue MW, van Rooij SJH, Dennis EL, Davis SL, Hayes JP, Stevens JS, et al. Smaller Hippocampal Volume in Posttraumatic Stress Disorder: A Multisite ENIGMA-PGC Study: Subcortical Volumetry Results From Posttraumatic Stress Disorder Consortia. Biol Psychiatry. 2018;83:244–53. doi: 10.1016/j.biopsych.2017.09.006. PubMed DOI PMC
Fortin JP, Parker D, Tunç B, Watanabe T, Elliott MA, Ruparel K, et al. Harmonization of multi-site diffusion tensor imaging data. Neuroimage. 2017;161:149–70. doi: 10.1016/j.neuroimage.2017.08.047. PubMed DOI PMC
Radua J, Vieta E, Shinohara R, Kochunov P, Quidé Y, Green MJ, et al. Increased power by harmonizing structural MRI site differences with the ComBat batch adjustment method in ENIGMA. Neuroimage. 2020;218:116956. doi: 10.1016/j.neuroimage.2020.116956. PubMed DOI PMC
Bernstein DP, Fink L, Handelsman L, Foote J, Lovejoy M, Wenzel K, et al. Initial reliability and validity of a new retrospective measure of child abuse and neglect. Am J Psychiatry. 1994;151:1132–6. doi: 10.1176/ajp.151.8.1132. PubMed DOI
Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J R Stat Soc: Ser B (Methodol) 1995;57:289–300.
https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/p.adjust.
Eklund A, Nichols TE, Knutsson H. Cluster failure: Why fMRI inferences for spatial extent have inflated false-positive rates. Proc Natl Acad Sci. 2016;113:7900–5. doi: 10.1073/pnas.1602413113. PubMed DOI PMC
Button KS, Ioannidis JPA, Mokrysz C, Nosek BA, Flint J, Robinson ESJ, et al. Power failure: why small sample size undermines the reliability of neuroscience. Nat Rev Neurosci. 2013;14:365–76. doi: 10.1038/nrn3475. PubMed DOI
Marek S, Tervo-Clemmens B, Calabro FJ, Montez DF, Kay BP, Hatoum AS, et al. Reproducible brain-wide association studies require thousands of individuals. Nature. 2022;603:654–60. doi: 10.1038/s41586-022-04492-9. PubMed DOI PMC
Wang X, Xie H, Chen T, Cotton AS, Salminen LE, Logue MW, et al. Cortical volume abnormalities in posttraumatic stress disorder: an ENIGMA-psychiatric genomics consortium PTSD workgroup mega-analysis. Mol Psychiatry. 2020. 10.1038/s41380-020-00967-1. PubMed PMC
Grasby KL, Jahanshad N, Painter JN, Colodro-Conde L, Bralten J, Hibar DP, et al. The genetic architecture of the human cerebral cortex. Science. 1979;2020:367. PubMed PMC
Fonzo GA, Flagan TM, Sullivan S, Allard CB, Grimes EM, Simmons AN, et al. Neural functional and structural correlates of childhood maltreatment in women with intimate-partner violence-related posttraumatic stress disorder. Psychiatry Res Neuroimaging. 2013;211:93–103. doi: 10.1016/j.pscychresns.2012.08.006. PubMed DOI PMC
Liberzon I, Abelson JL. Context Processing and the Neurobiology of Post-Traumatic Stress Disorder. Neuron. 2016;92:14–30. doi: 10.1016/j.neuron.2016.09.039. PubMed DOI PMC
Aupperle RL, Allard CB, Grimes EM, Simmons AN, Flagan T, Behrooznia M, et al. Dorsolateral prefrontal cortex activation during emotional anticipation and neuropsychological performance in posttraumatic stress disorder. Arch Gen Psychiatry. 2012;69:360–71. doi: 10.1001/archgenpsychiatry.2011.1539. PubMed DOI
Hooker CI, Knight RT. The role of lateral orbitofrontal cortex in the inhibitory control of emotion. The Orbitofrontal Cortex. Oxford: Oxford University Press; 2006. p. 307–24.
Rule RR, Shimamura AP, Knight RT. Orbitofrontal cortex and dynamic filtering of emotional stimuli. Cogn Affect Behav Neurosci. 2002;2:264–70. doi: 10.3758/CABN.2.3.264. PubMed DOI
Herringa R, Phillips M, Almeida J, Insana S, Germain A. Post-traumatic stress symptoms correlate with smaller subgenual cingulate, caudate, and insula volumes in unmedicated combat veterans. Psychiatry Res Neuroimaging. 2012;203:139–45. doi: 10.1016/j.pscychresns.2012.02.005. PubMed DOI PMC
Kasai K, Yamasue H, Gilbertson MW, Shenton ME, Rauch SL, Pitman RK. Evidence for Acquired Pregenual Anterior Cingulate Gray Matter Loss from a Twin Study of Combat-Related Posttraumatic Stress Disorder. Biol Psychiatry. 2008;63:550–6. doi: 10.1016/j.biopsych.2007.06.022. PubMed DOI PMC
Pitman RK, Rasmusson AM, Koenen KC, Shin LM, Orr SP, Gilbertson MW, et al. Biological studies of post-traumatic stress disorder. Nat Rev Neurosci. 2012;13:769–87. doi: 10.1038/nrn3339. PubMed DOI PMC
Berman Z, Assaf Y, Tarrasch R, Joel D. Assault-related self-blame and its association with PTSD in sexually assaulted women: an MRI inquiry. Soc Cogn Affect Neurosci. 2018;13:775–84. doi: 10.1093/scan/nsy044. PubMed DOI PMC
Brewin CR, Gregory JD, Lipton M, Burgess N. Intrusive images in psychological disorders: Characteristics, neural mechanisms, and treatment implications. Psychol Rev. 2010;117:210–32. doi: 10.1037/a0018113. PubMed DOI PMC
Kim MJ, Chey J, Chung A, Bae S, Khang H, Ham B, et al. Diminished rostral anterior cingulate activity in response to threat-related events in posttraumatic stress disorder. J Psychiatr Res. 2008;42:268–77. doi: 10.1016/j.jpsychires.2007.02.003. PubMed DOI
Shin LM, Bush G, Milad MR, Lasko NB, Brohawn KH, Hughes KC, et al. Exaggerated Activation of Dorsal Anterior Cingulate Cortex During Cognitive Interference: A Monozygotic Twin Study of Posttraumatic Stress Disorder. Am J Psychiatry. 2011;168:979–85. doi: 10.1176/appi.ajp.2011.09121812. PubMed DOI PMC
Harricharan S, Rabellino D, Frewen PA, Densmore M, Théberge J, McKinnon MC, et al. <scp>fMRI</scp> functional connectivity of the periaqueductal gray in <scp>PTSD</scp> and its dissociative subtype. Brain Behav. 2016;6:e00579. doi: 10.1002/brb3.579. PubMed DOI PMC
Webb EK, Huggins AA, Belleau EL, Taubitz LE, Hanson JL, DeRoon-Cassini TA, et al. Acute Posttrauma Resting-State Functional Connectivity of Periaqueductal Gray Prospectively Predicts Posttraumatic Stress Disorder Symptoms. Biol Psychiatry Cogn Neurosci Neuroimaging. 2020;5:891–900. PubMed PMC
Morey RA, Lancaster SC, Haswell CC. Trauma Re-experiencing Symptoms Modulate Topology of Intrinsic Functional Networks. Biol Psychiatry. 2015;78:156–8. doi: 10.1016/j.biopsych.2015.06.001. PubMed DOI PMC
Todd RM, MacDonald MJ, Sedge P, Robertson A, Jetly R, Taylor MJ, et al. Soldiers With Posttraumatic Stress Disorder See a World Full of Threat: Magnetoencephalography Reveals Enhanced Tuning to Combat-Related Cues. Biol Psychiatry. 2015;78:821–9. doi: 10.1016/j.biopsych.2015.05.011. PubMed DOI
Herz N, Bar-Haim Y, Tavor I, Tik N, Sharon H, Holmes EA, et al. Neuromodulation of Visual Cortex Reduces the Intensity of Intrusive Memories. Cereb Cortex. 2022;32:408–17. doi: 10.1093/cercor/bhab217. PubMed DOI PMC
Badura-Brack A, McDermott TJ, Heinrichs-Graham E, Ryan TJ, Khanna MM, Pine DS, et al. Veterans with PTSD demonstrate amygdala hyperactivity while viewing threatening faces: A MEG study. Biol Psychol. 2018;132:228–32. doi: 10.1016/j.biopsycho.2018.01.005. PubMed DOI PMC
Lazarov A, Bar-Haim Y. Emerging Domain-Based Treatments for Pediatric Anxiety Disorders. Biol Psychiatry. 2021;89:716–25. doi: 10.1016/j.biopsych.2020.08.030. PubMed DOI
Lerch JP, Yiu AP, Martinez-Canabal A, Pekar T, Bohbot VD, Frankland PW, et al. Maze training in mice induces MRI-detectable brain shape changes specific to the type of learning. Neuroimage. 2011;54:2086–95. doi: 10.1016/j.neuroimage.2010.09.086. PubMed DOI
Taubert M, Lohmann G, Margulies DS, Villringer A, Ragert P. Long-term effects of motor training on resting-state networks and underlying brain structure. Neuroimage. 2011;57:1492–8. doi: 10.1016/j.neuroimage.2011.05.078. PubMed DOI
Weisberg SM, Ekstrom AD. Hippocampal volume and navigational ability: The map(ping) is not to scale. Neurosci Biobehav Rev. 2021;126:102–12. doi: 10.1016/j.neubiorev.2021.03.012. PubMed DOI PMC
Miller GA, Chapman JP. Misunderstanding analysis of covariance. J Abnorm Psychol. 2001;110:40–48. doi: 10.1037/0021-843X.110.1.40. PubMed DOI
Elhai JD, de Francisco Carvalho L, Miguel FK, Palmieri PA, Primi R, Frueh BC. Testing whether posttraumatic stress disorder and major depressive disorder are similar or unique constructs. J Anxiety Disord. 2011;25(Apr 1):404–10. doi: 10.1016/j.janxdis.2010.11.003. PubMed DOI
Stander VA, Thomsen CJ, Highfill-McRoy RM. Etiology of depression comorbidity in combat-related PTSD: a review of the literature. Clin Psychol Rev. 2014;34:87–98. doi: 10.1016/j.cpr.2013.12.002. PubMed DOI