"Activated Borane": A Porous Borane Cluster Polymer as an Efficient Lewis Acid-Based Catalyst
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38026813
PubMed Central
PMC10660343
DOI
10.1021/acscatal.3c04011
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Borane cluster-based porous covalent networks, named activated borane (ActB), were prepared by cothermolysis of decaborane(14) (nido-B10H14) and selected hydrocarbons (toluene, ActB-Tol; cyclohexane, ActB-cyHx; and n-hexane, ActB-nHx) under anaerobic conditions. These amorphous solid powders exhibit different textural and Lewis acid (LA) properties that vary depending on the nature of the constituent organic linker. For ActB-Tol, its LA strength even approaches that of the commonly used molecular LA, B(C6F5)3. Most notably, ActBs can act as heterogeneous LA catalysts in hydrosilylation/deoxygenation reactions with various carbonyl substrates as well as in the gas-phase dehydration of ethanol. These studies reveal the potential of ActBs in catalytic applications, showing (a) the possibility for tuning catalytic reaction outcomes (selectivity) in hydrosilylation/deoxygenation reactions by changing the material's composition and (b) the very high activity toward ethanol dehydration that exceeds the commonly used γ-Al2O3 by achieving a stable conversion of ∼93% with a selectivity for ethylene production of ∼78% during a 17 h continuous period on stream at 240 °C.
Zobrazit více v PubMed
Corma A. Inorganic Solid Acids and Their Use in Acid-Catalyzed Hydrocarbon Reactions. Chem. Rev. 1995, 95, 559–614. 10.1021/cr00035a006. DOI
Busca G. Acid Catalysts in Industrial Hydrocarbon Chemistry. Chem. Rev. 2007, 107, 5366–5410. 10.1021/cr068042e. PubMed DOI
Gao B.; Qiu B.; Zheng M.; Liu Z.; Lu W.-D.; Wang Q.; Xu J.; Deng F.; Lu A.-H. Dynamic Self-Dispersion of Aggregated Boron Clusters into Stable Oligomeric Boron Species on MFI Zeolite Nanosheets under Oxidative Dehydrogenation of Propane. ACS Catal. 2022, 12, 7368–7376. 10.1021/acscatal.2c01622. DOI
Qiu B.; Lu W.-D.; Gao X.-Q.; Sheng J.; Yan B.; Ji M.; Lu A.-H. Borosilicate zeolite enriched in defect boron sites boosting the low-temperature oxidative dehydrogenation of propane. J. Catal. 2022, 408, 133–141. 10.1016/j.jcat.2022.02.017. DOI
Altvater N. R.; Dorn R. W.; Cendejas M. C.; McDermott W. P.; Thomas B.; Rossini A. J.; Hermans I. B-MWW Zeolite: The Case Against Single-Site Catalysis. Angew. Chem., Int. Ed. 2020, 59, 6546–6550. 10.1002/anie.201914696. PubMed DOI PMC
Cendejas M. C.; Dorn R. W.; McDermott W. P.; Lebrón-Rodríguez E. A.; Mark L. O.; Rossini A. J.; Hermans I. Controlled Grafting Synthesis of Silica-Supported Boron for Oxidative Dehydrogenation Catalysis. J. Phys. Chem. C 2021, 125, 12636–12649. 10.1021/acs.jpcc.1c01899. DOI
de Farias A. M. D.; Esteves A. M. L.; Ziarelli F.; Caldarelli S.; Fraga M. A.; Appel L. G. Boria modified alumina probed by methanol dehydration and IR spectroscopy. Appl. Surf. Sci. 2004, 227, 132–138. 10.1016/j.apsusc.2003.11.052. DOI
Chaichana E.; Boonsinvarothai N.; Chitpong N.; Jongsomjit B. Catalytic dehydration of ethanol to ethylene and diethyl ether over alumina catalysts containing different phases with boron modification. J. Porous Mater. 2019, 26, 599–610. 10.1007/s10934-018-0663-7. DOI
Delmastro A.; Gozzelino G.; Mazza D.; Vallino M.; Busca G.; Lorenzelli V. Characterization of microporous amorphous alumina–boria. J. Chem. Soc., Faraday Trans. 1992, 88, 2065–2070. 10.1039/FT9928802065. DOI
Forni L.; Fornasari G.; Tosi C.; Trifirò F.; Vaccari A.; Dumeignil F.; Grimblot J. Non-conventional sol–gel synthesis for the production of boron-alumina catalyst applied to the vapour phase Beckmann rearrangement. Appl. Catal., A 2003, 248, 47–57. 10.1016/S0926-860X(03)00147-9. DOI
Kröcher O.; Elsener M. Hydrolysis and oxidation of gaseous HCN over heterogeneous catalysts. Appl. Catal., B 2009, 92, 75–89. 10.1016/j.apcatb.2009.07.021. DOI
Curtin T.; McMonagle J. B.; Hodnett B. K. Influence of boria loading on the acidity of B2O3/Al2O3 catalysts for the conversion of cyclohexanone oxime to caprolactam. Appl. Catal., A 1992, 93, 91–101. 10.1016/0926-860X(92)80296-O. DOI
Yang W.; Kim K. D.; O’Dell L. A.; Wang L.; Xu H.; Ruan M.; Wang W.; Ryoo R.; Jiang Y.; Huang J. Brønsted acid sites formation through penta-coordinated aluminum species on alumina-boria for phenylglyoxal conversion. J. Catal. 2022, 416, 375–386. 10.1016/j.jcat.2022.11.012. DOI
Lam J.; Szkop K. M.; Mosaferi E.; Stephan D. W. FLP catalysis: main group hydrogenations of organic unsaturated substrates. Chem. Soc. Rev. 2019, 48, 3592–3612. 10.1039/C8CS00277K. PubMed DOI
Stephan D. W. Diverse Uses of the Reaction of Frustrated Lewis Pair (FLP) with Hydrogen. J. Am. Chem. Soc. 2021, 143, 20002–20014. 10.1021/jacs.1c10845. PubMed DOI
Piers W. E.; Chivers T. Pentafluorophenylboranes: from obscurity to applications. Chem. Soc. Rev. 1997, 26, 345–354. 10.1039/cs9972600345. DOI
Lawson J. R.; Melen R. L. Tris(pentafluorophenyl)borane and Beyond: Modern Advances in Borylation Chemistry. Inorg. Chem. 2017, 56, 8627–8643. 10.1021/acs.inorgchem.6b02911. PubMed DOI
Wanglee Y.-J.; Hu J.; White R. E.; Lee M.-Y.; Stewart S. M.; Perrotin P.; Scott S. L. Borane-Induced Dehydration of Silica and the Ensuing Water-Catalyzed Grafting of B(C6F5)3 To Give a Supported, Single-Site Lewis Acid, ≡SiOB(C6F5)2. J. Am. Chem. Soc. 2012, 134, 355–366. 10.1021/ja207838j. PubMed DOI
Tian J.; Wang S.; Feng Y.; Li J.; Collins S. Borane-functionalized oxide supports: development of active supported metallocene catalysts at low aluminoxane loading. J. Mol. Catal. A: Chem. 1999, 144, 137–150. 10.1016/S1381-1169(98)00341-0. DOI
Correa S. A.; Diaz-Droguett D. E.; Galland G. B.; Maraschin T. G.; De Sousa Basso N.; Dogan F.; Rojas R. S. Modification of rGO by B(C6F5)3 to generated single-site Lewis Acid rGO-O-B(C6F5)2 as co activator of nickel complex, to produce highly disperse rGO-PE nanocomposite. Appl. Catal., A 2019, 580, 149–157. 10.1016/j.apcata.2019.05.004. DOI
Horton T. A. R.; Wang M.; Shaver M. P. Polymeric frustrated Lewis pairs in CO2/cyclic ether coupling catalysis. Chem. Sci. 2022, 13, 3845–3850. 10.1039/D2SC00894G. PubMed DOI PMC
Yolsal U.; Horton T. A. R.; Wang M.; Shaver M. P. Cyclic Ether Triggers for Polymeric Frustrated Lewis Pair Gels. J. Am. Chem. Soc. 2021, 143, 12980–12984. 10.1021/jacs.1c06408. PubMed DOI PMC
Vidal F.; McQuade J.; Lalancette R.; Jäkle F. ROMP-Boranes as Moisture-Tolerant and Recyclable Lewis Acid Organocatalysts. J. Am. Chem. Soc. 2020, 142, 14427–14431. 10.1021/jacs.0c05454. PubMed DOI
Chen L.; Liu R.; Yan Q. Polymer Meets Frustrated Lewis Pair: Second-Generation CO2-Responsive Nanosystem for Sustainable CO2 Conversion. Angew. Chem., Int. Ed. 2018, 57, 9336–9340. 10.1002/anie.201804034. PubMed DOI
Yolsal U.; Horton T. A. R.; Wang M.; Shaver M. P. Polymer-supported Lewis acids and bases: Synthesis and applications. Prog. Polym. Sci. 2020, 111, 10131310.1016/j.progpolymsci.2020.101313. DOI
Zhang C.; Wang J.; Su W.; Lin Z.; Ye Q. Synthesis, Characterization, and Density Functional Theory Studies of Three-Dimensional Inorganic Analogues of 9,10-Diboraanthracene—A New Class of Lewis Superacids. J. Am. Chem. Soc. 2021, 143, 8552–8558. 10.1021/jacs.1c03057. PubMed DOI
Akram M. O.; Tidwell J. R.; Dutton J. L.; Martin C. D. Tris(ortho-carboranyl)borane: An Isolable, Halogen-Free, Lewis Superacid. Angew. Chem., Int. Ed. 2022, 61, e20221207310.1002/anie.202212073. PubMed DOI PMC
Yruegas S.; Axtell J. C.; Kirlikovali K. O.; Spokoyny A. M.; Martin C. D. Synthesis of 9-borafluorene analogues featuring a three-dimensional 1,1′-bis(o-carborane) backbone. Chem. Commun. 2019, 55, 2892–2895. 10.1039/C8CC10087J. PubMed DOI PMC
Fujino A.; Ito S.-i.; Goto T.; Ishibiki R.; Kondo J. N.; Fujitani T.; Nakamura J.; Hosono H.; Kondo T. Hydrogenated Borophene Shows Catalytic Activity as Solid Acid. ACS Omega 2019, 4, 14100–14104. 10.1021/acsomega.9b02020. PubMed DOI PMC
Li Q.; Kolluru V. S. C.; Rahn M. S.; Schwenker E.; Li S.; Hennig R. G.; Darancet P.; Chan M. K. Y.; Hersam M. C. Synthesis of borophane polymorphs through hydrogenation of borophene. Science 2021, 371, 1143–1148. 10.1126/science.abg1874. PubMed DOI
Bůžek D.; Škoch K.; Ondrušová S.; Kloda M.; Bavol D.; Mahun A.; Kobera L.; Lang K.; Londesborough M. G. S.; Demel J. ″Activated Borane″ - A Porous Borane Cluster Network as an Effective Adsorbent for Removing Organic Pollutants. Chem.—Eur. J. 2022, 28, e20220188510.1002/chem.202201885. PubMed DOI
Demel J.; Kloda M.; Lang K.; Škoch K.; Hynek J.; Opravil A.; Novotný M.; Bould J.; Ehn M.; Londesborough M. G. S. Direct Phenylation of nido-B10H14. J. Org. Chem. 2022, 87, 10034–10043. 10.1021/acs.joc.2c00997. PubMed DOI
Hermanek S. Boron-11 NMR spectra of boranes, main-group heteroboranes, and substituted derivatives. Factors influencing chemical shifts of skeletal atoms. Chem. Rev. 1992, 92, 325–362. 10.1021/cr00010a007. DOI
Harazono T.; Hiroyama Y.; Watanabe T. Solid State NMR of 11B and 13C in Boron Carbide, B12C3 and 11B Enriched B12C3. Bull. Chem. Soc. Jpn. 1996, 69, 2419–2423. 10.1246/bcsj.69.2419. DOI
Mauri F.; Vast N.; Pickard C. J. Atomic Structure of Icosahedral B4C Boron Carbide from a First Principles Analysis of NMR Spectra. Phys. Rev. Lett. 2001, 87, 08550610.1103/PhysRevLett.87.085506. PubMed DOI
Diaz M.; Jaballas J.; Arias J.; Lee H.; Onak T. 13C NMR Studies on Carboranes and Derivatives: Experimental/Calculational Correlations. J. Am. Chem. Soc. 1996, 118, 4405–4410. 10.1021/ja954089y. DOI
Beckett M. A.; Strickland G. C.; Holland J. R.; Sukumar Varma K. A convenient n.m.r. method for the measurement of Lewis acidity at boron centres: correlation of reaction rates of Lewis acid initiated epoxide polymerizations with Lewis acidity. Polymer 1996, 37, 4629–4631. 10.1016/0032-3861(96)00323-0. DOI
Lang S.; Benz M.; Obenaus U.; Himmelmann R.; Hunger M. Novel Approach for the Characterization of Lewis Acidic Solid Catalysts by Solid-State NMR Spectroscopy. ChemCatChem. 2016, 8, 2031–2036. 10.1002/cctc.201600372. DOI
Wiper P. V.; Amelse J.; Mafra L. Multinuclear solid-state NMR characterization of the Brønsted/Lewis acid properties in the BP HAMS-1B (H-[B]-ZSM-5) borosilicate molecular sieve using adsorbed TMPO and TBPO probe molecules. J. Catal. 2014, 316, 240–250. 10.1016/j.jcat.2014.05.017. DOI
Hradsky D.; Machac P.; Skoda D.; Leonova L.; Sazama P.; Pastvova J.; Kaucky D.; Vsiansky D.; Moravec Z.; Styskalik A. Catalytic performance of micro-mesoporous zirconosilicates prepared by non-hydrolytic sol-gel in ethanol-acetaldehyde conversion to butadiene and related reactions. Appl. Catal., A 2023, 652, 11903710.1016/j.apcata.2023.119037. DOI
Britovsek G. J. P.; Ugolotti J.; White A. J. P. From B(C6F5)3 to B(OC6F5)3: Synthesis of (C6F5)2BOC6F5 and C6F5B(OC6F5)2 and Their Relative Lewis Acidity. Organometallics 2005, 24, 1685–1691. 10.1021/om049091p. DOI
Beringhelli T.; Donghi D.; Maggioni D.; D’Alfonso G. Solution structure, dynamics and speciation of perfluoroaryl boranes through 1H, 11B and 19F NMR spectroscopy. Coord. Chem. Rev. 2008, 252, 2292–2313. 10.1016/j.ccr.2008.01.018. DOI
Lewiński J.; Kubicki D.. NMR Spectroscopy, Heteronuclei, B, Al, Ga, In, Tl. In Encyclopedia of Spectroscopy and Spectrometry, 3rd ed.; Lindon J. C.; Tranter G. E.; Koppenaal D. W., Eds.; Academic Press: Oxford, 2017; pp 318–329.
Zhang X.; Wang R.; Yang X.; Zhang F. Comparison of four catalysts in the catalytic dehydration of ethanol to ethylene. Microporous Mesoporous Mater. 2008, 116, 210–215. 10.1016/j.micromeso.2008.04.004. DOI
Xin H.; Li X.; Fang Y.; Yi X.; Hu W.; Chu Y.; Zhang F.; Zheng A.; Zhang H.; Li X. Catalytic dehydration of ethanol over post-treated ZSM-5 zeolites. J. Catal. 2014, 312, 204–215. 10.1016/j.jcat.2014.02.003. DOI
Bi J.; Guo X.; Liu M.; Wang X. High effective dehydration of bio-ethanol into ethylene over nanoscale HZSM-5 zeolite catalysts. Catal. Today 2010, 149, 143–147. 10.1016/j.cattod.2009.04.016. DOI
Li Y.; Yang Q.; Yang J.; Li C. Mesoporous aluminosilicates synthesized with single molecular precursor (sec-BuO)2AlOSi(OEt)3 as aluminum source. Microporous Mesoporous Mater. 2006, 91, 85–91. 10.1016/j.micromeso.2005.11.021. DOI
Styskalik A.; Kordoghli I.; Poleunis C.; Delcorte A.; Moravec Z.; Simonikova L.; Kanicky V.; Aprile C.; Fusaro L.; Debecker D. P. Hybrid mesoporous aluminosilicate catalysts obtained by non-hydrolytic sol–gel for ethanol dehydration. J. Mater. Chem. A 2020, 8, 23526–23542. 10.1039/D0TA07016E. DOI
Bould J.; Clegg W.; Teat S. J.; Barton L.; Rath N. P.; Thornton-Pett M.; Kennedy J. D. An approach to megalo-boranes. Mixed and multiple cluster fusions involving iridaborane and platinaborane cluster compounds. Crystal structure determinations by conventional and synchrotron methods. Inorg. Chim. Acta 1999, 289, 95–124. 10.1016/S0020-1693(99)00071-7. DOI
Parks D. J.; Blackwell J. M.; Piers W. E. Studies on the Mechanism of B(C6F5)3-Catalyzed Hydrosilation of Carbonyl Functions. J. Org. Chem. 2000, 65, 3090–3098. 10.1021/jo991828a. PubMed DOI
Piers W. E.; Marwitz A. J. V.; Mercier L. G. Mechanistic Aspects of Bond Activation with Perfluoroarylboranes. Inorg. Chem. 2011, 50, 12252–12262. 10.1021/ic2006474. PubMed DOI
Rendler S.; Oestreich M. Conclusive Evidence for an SN2-Si Mechanism in the B(C6F5)3-Catalyzed Hydrosilylation of Carbonyl Compounds: Implications for the Related Hydrogenation. Angew. Chem., Int. Ed. 2008, 47, 5997–6000. 10.1002/anie.200801675. PubMed DOI
Oestreich M.; Hermeke J.; Mohr J. A unified survey of Si–H and H–H bond activation catalysed by electron-deficient boranes. Chem. Soc. Rev. 2015, 44, 2202–2220. 10.1039/C4CS00451E. PubMed DOI
Parks D. J.; Piers W. E. Tris(pentafluorophenyl)boron-Catalyzed Hydrosilation of Aromatic Aldehydes, Ketones, and Esters. J. Am. Chem. Soc. 1996, 118, 9440–9441. 10.1021/ja961536g. DOI
Fang H.; Oestreich M. Defunctionalisation catalysed by boron Lewis acids. Chem. Sci. 2020, 11, 12604–12615. 10.1039/D0SC03712E. PubMed DOI PMC
Prabhudesai V. S.; Gurrala L.; Vinu R. Catalytic Hydrodeoxygenation of Lignin-Derived Oxygenates: Catalysis, Mechanism, and Effect of Process Conditions. Energy Fuels 2022, 36, 1155–1188. 10.1021/acs.energyfuels.1c02640. DOI
Kumar A.; Jindal M.; Maharana S.; Thallada B. Lignin Biorefinery: New Horizons in Catalytic Hydrodeoxygenation for the Production of Chemicals. Energy Fuels 2021, 35, 16965–16994. 10.1021/acs.energyfuels.1c01651. DOI
Perego C.; Bosetti A.; Ricci M.; Millini R. Zeolite Materials for Biomass Conversion to Biofuel. Energy Fuels 2017, 31, 7721–7733. 10.1021/acs.energyfuels.7b01057. DOI
Shi Y.; Xing E.; Wu K.; Wang J.; Yang M.; Wu Y. Recent progress on upgrading of bio-oil to hydrocarbons over metal/zeolite bifunctional catalysts. Catal. Sci. Technol. 2017, 7, 2385–2415. 10.1039/C7CY00574A. DOI
Tang X.; Ding W.; Li H. Improved hydrodeoxygenation of bio-oil model compounds with polymethylhydrosiloxane by Brønsted acidic zeolites. Fuel 2021, 290, 11988310.1016/j.fuel.2020.119883. DOI
Witsuthammakul A.; Sooknoi T. Selective hydrodeoxygenation of bio-oil derived products: ketones to olefins. Catal. Sci. Technol. 2015, 5, 3639–3648. 10.1039/C5CY00367A. DOI
Christensen D. B.; Mortensen R. L.; Kramer S.; Kegnæs S. Study of CoCu Alloy Nanoparticles Supported on MOF-Derived Carbon for Hydrosilylation of Ketones. Catal. Lett. 2020, 150, 1537–1545. 10.1007/s10562-019-03065-2. DOI
Le Roux E.; De Mallmann A.; Merle N.; Taoufik M.; Anwander R. Immobilization of Heteroleptic Bis(oxazoline) Zinc Catalysts on SBA-15 for Asymmetric Hydrosilylation. Organometallics 2015, 34, 5146–5154. 10.1021/acs.organomet.5b00714. DOI
Lázaro G.; Fernández-Alvarez F. J.; Iglesias M.; Horna C.; Vispe E.; Sancho R.; Lahoz F. J.; Iglesias M.; Pérez-Torrente J. J.; Oro L. A. Heterogeneous catalysts based on supported Rh–NHC complexes: synthesis of high molecular weight poly(silyl ether)s by catalytic hydrosilylation. Catal. Sci. Technol. 2014, 4, 62–70. 10.1039/C3CY00598D. DOI
Keess S.; Simonneau A.; Oestreich M. Direct and Transfer Hydrosilylation Reactions Catalyzed by Fully or Partially Fluorinated Triarylboranes: A Systematic Study. Organometallics 2015, 34, 790–799. 10.1021/om501284a. DOI
Mahdi T.; Stephan D. W. Facile Protocol for Catalytic Frustrated Lewis Pair Hydrogenation and Reductive Deoxygenation of Ketones and Aldehydes. Angew. Chem., Int. Ed. 2015, 54, 8511–8514. 10.1002/anie.201503087. PubMed DOI
Chang C. D.; Silvestri A. J. The conversion of methanol and other O-compounds to hydrocarbons over zeolite catalysts. J. Catal. 1977, 47, 249–259. 10.1016/0021-9517(77)90172-5. DOI
Korstanje T. J.; Jastrzebski J. T. B. H.; Klein Gebbink R. J. M. Catalytic Dehydration of Benzylic Alcohols to Styrenes by Rhenium Complexes. ChemSusChem 2010, 3, 695–697. 10.1002/cssc.201000055. PubMed DOI
Bertero N. M.; Trasarti A. F.; Apesteguía C. R.; Marchi A. J. Liquid-phase dehydration of 1-phenylethanol on solid acids: Influence of catalyst acidity and pore structure. Appl. Catal., A 2013, 458, 28–38. 10.1016/j.apcata.2013.03.018. DOI
Styskalik A.; Vykoukal V.; Fusaro L.; Aprile C.; Debecker D. P. Mildly acidic aluminosilicate catalysts for stable performance in ethanol dehydration. Appl. Catal., B 2020, 271, 11892610.1016/j.apcatb.2020.118926. DOI
Wang Z.; O’Dell L. A.; Zeng X.; Liu C.; Zhao S.; Zhang W.; Gaborieau M.; Jiang Y.; Huang J. Insight into Three-Coordinate Aluminum Species on Ethanol-to-Olefin Conversion over ZSM-5 Zeolites. Angew. Chem., Int. Ed. 2019, 58, 18061–18068. 10.1002/anie.201910987. PubMed DOI
Phung T. K.; Proietti Hernández L.; Lagazzo A.; Busca G. Dehydration of ethanol over zeolites, silica alumina and alumina: Lewis acidity, Brønsted acidity and confinement effects. Appl. Catal., A 2015, 493, 77–89. 10.1016/j.apcata.2014.12.047. DOI
Phung T. K.; Lagazzo A.; Rivero Crespo M. Á.; Sánchez Escribano V.; Busca G. A study of commercial transition aluminas and of their catalytic activity in the dehydration of ethanol. J. Catal. 2014, 311, 102–113. 10.1016/j.jcat.2013.11.010. DOI
Neelakandeswari N.; Karvembu R.; Dharmaraj N. Mesoporous Nickel–Aluminosilicate Nanocomposite: A Solid Acid Catalyst for Ether Synthesis. J. Nanosci. Nanotechnol. 2013, 13, 2853–2863. 10.1166/jnn.2013.7419. PubMed DOI
Amoureux J.-P.; Fernandez C.; Steuernagel S. ZFiltering in MQMAS NMR. J. Magn. Reson., Ser. A 1996, 123, 116–118. 10.1006/jmra.1996.0221. PubMed DOI
Equbal A.; Bjerring M.; Madhu P. K.; Nielsen N. C. Improving spectral resolution in biological solid-state NMR using phase-alternated rCW heteronuclear decoupling. Chem. Phys. Lett. 2015, 635, 339–344. 10.1016/j.cplett.2015.07.008. DOI
Brus J. Heating of samples induced by fast magic-angle spinning. Solid State Nucl. Magn. Reson. 2000, 16, 151–160. 10.1016/S0926-2040(00)00061-8. PubMed DOI