The effects of two dietary synbiotics on growth performance, hematological parameters, and nonspecific immune responses in Japanese Eel
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, randomizované kontrolované studie veterinární, práce podpořená grantem
Grantová podpora
2021R1L1A3A04037510
National Research Foundation of Korea
PubMed
38050651
DOI
10.1002/aah.10212
Knihovny.cz E-zdroje
- Klíčová slova
- antibiotics, feed additives, fish diseases, immune response, probiotics,
- MeSH
- Anguilla růst a vývoj MeSH
- Bacillus subtilis MeSH
- dieta * veterinární MeSH
- Enterococcus faecium MeSH
- krmivo pro zvířata * analýza MeSH
- oligosacharidy aplikace a dávkování farmakologie MeSH
- přirozená imunita účinky léků MeSH
- synbiotika * aplikace a dávkování MeSH
- vodní hospodářství metody MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- randomizované kontrolované studie veterinární MeSH
- Názvy látek
- oligosacharidy MeSH
OBJECTIVE: Feed additives have attracted increased attention in aquaculture due to their ability to modulate fish gut microbiota, resulting in improved fish growth and immunity. This study assessed the effects of two synbiotics in Japanese Eel Anguilla japonica: Bacillus subtilis with mannooligosaccharides (MOS) and Enterococcus faecium with fructooligosaccharides (FOS). METHODS: Six diets, including a control (CON) diet, oxytetracycline (OTC) diet, and four synbiotic diets (B. subtilis at 1 × 106 or 1 × 107 colony-forming units [CFU]/g with MOS at 5 g/kg [BS6MO and BS7MO; collectively, BSMOS diets] and E. faecium at 1 × 106 or 1 × 107 CFU/g with FOS at 5 g/kg [EF6FO and EF7FO; collectively, EFFOS diets]), were fed to triplicate groups of 20 fish (average weight ± SD = 6.00 ± 0.07 g) for 8 weeks. RESULT: Fish fed the BSMOS diets showed significantly higher weight gain, specific growth rate (SGR), and feed efficiency compared to fish fed the CON and OTC diets, but the values were not significantly different from those of fish fed the EFFOS diets. Weight gain and SGR of fish that were given EFFOS diets were not significantly different from those of fish fed all other diets. Fish fed the OTC diet showed a higher mean aspartate aminotransferase level, although the difference was not statistically significant. The myeloperoxidase activity of fish fed the BS7MO diet was significantly higher than those of fish receiving all other diets, and the superoxide dismutase activity of fish fed the BS7MO diet was also significantly higher than that of fish fed the EF7FO diet. Overall, the BSMOS synbiotic diets were significantly more effective than the CON diet in enhancing fish survival against a Vibrio anguillarum challenge. CONCLUSION: Our findings suggest that synbiotics can be a preferable alternative to antibiotics in aquaculture.
Aquafeed Research Center National Institute of Fisheries Science Pohang Korea
Feeds and Foods Nutrition Research Center Pukyong National University Busan Korea
Zobrazit více v PubMed
Akhter, N., Wu, B., Memon, A. M., & Mohsin, M. (2015). Probiotics and prebiotics associated with aquaculture: A review. Fish & Shellfish Immunology, 45(2), 733–741. https://doi.org/10.1016/j.fsi.2015.05.038
Akrami, R., Iri, Y., Rostami, H. K., & Razeghi Mansour, M. (2013). Effect of dietary supplementation of fructooligosaccharide (FOS) on growth performance, survival, lactobacillus bacterial population and hemato‐immunological parameters of Stellate Sturgeon (Acipenser stellatus) juvenile. Fish & Shellfish Immunology, 35(4), 1235–1239. https://doi.org/10.1016/j.fsi.2013.07.039
Ambili, T. R., Saravanan, M., Ramesh, M., Abhijith, D. B., & Poopal, R. K. (2013). Toxicological effects of the antibiotic oxytetracycline to an Indian major carp Labeo rohita. Archives of Environmental Contamination and Toxicology, 64(3), 494–503. https://doi.org/10.1007/s00244‐012‐9836‐6
Association of Official Analytical Chemists. (2019). Official methods of analysis of the Association Of Official Analytical Chemists (21st ed.). AOAC International.
Aoki, T., & Kitao, T. (1981). Drug resistance and transferable R plasmids in Edwardsiella tarda from fish culture ponds. Fish Pathology, 15(3–4), 277–281. https://doi.org/10.3147/jsfp.15.277
Awad, W. A., Ghareeb, K., Abdel‐Raheem, S., & Böhm, J. (2009). Effects of dietary inclusion of probiotic and synbiotic on growth performance, organ weights, and intestinal histomorphology of broiler chickens. Poultry Science, 88(1), 49–56. https://doi.org/10.3382/ps.2008‐00244
Azevedo, R. V., Fosse Filho, J. C., Pereira, S. L., Cardoso, L. D., Vidal Júnior, M. V., & de Andrade, D. R. (2016). Prebiotic, probiotic and synbiotic supplementation in diets for juvenile Tambaquis at two stocking densities. Pesquisa Agropecuária Brasileira, 51(1), 9–16. https://doi.org/10.1590/S0100‐204X2016000100002
Bae, J. Y., Park, G. H., Lee, J. Y., Okorie, O. E., & Bai, S. C. (2012). Effects of dietary propolis supplementation on growth performance, immune responses, disease resistance and body composition of juvenile eel, Anguilla japonica. Aquaculture International, 20(3), 513–523. https://doi.org/10.1007/s10499‐011‐9482‐4
Bae, J. Y., Park, G. H., Yoo, K. Y., Lee, J. Y., Kim, D. J., & Bai, S. C. (2013). Evaluation of optimum dietary vitamin E requirements using DL‐α‐tocopheryl acetate in the juvenile eel, Anguilla japonica. Journal of Applied Ichthyology, 29(1), 213–217. https://doi.org/10.1111/jai.12001
Bai, S. C., Katya, K., & Yun, H. (2015). Additives in aquafeed: An overview. In D. A. Davis (Ed.), Feed and feeding practices in aquaculture (pp. 171–202). Woodhead Publishing. https://doi.org/10.1016/B978‐0‐08‐100506‐4.00007‐6
Bendiksen, E. Å., Berg, O. K., Jobling, M., Arnesen, A. M., & Måsøval, K. (2003). Digestibility, growth and nutrient utilisation of Atlantic Salmon parr (Salmo salar L.) in relation to temperature, feed fat content and oil source. Aquaculture, 224(1), 283–299. https://doi.org/10.1016/S0044‐8486(03)00218‐7
Beukers, A. G., Zaheer, R., Goji, N., Amoako, K. K., Chaves, A. V., Ward, M. P., & McAllister, T. A. (2017). Comparative genomics of Enterococcus spp. isolated from bovine feces. BMC Microbiology, 17(1), Article 52. https://doi.org/10.1186/s12866‐017‐0962‐1
Biller, J. D., & Takahashi, L. S. (2018). Oxidative stress and fish immune system: Phagocytosis and leukocyte respiratory burst activity. Anais da Academia Brasileira de Ciências, 90, 3403–3414. https://doi.org/10.1590/0001‐3765201820170730
Buentello, J. A., Neill, W. H., & Gatlin, D. M., III. (2010). Effects of dietary prebiotics on the growth, feed efficiency and non‐specific immunity of juvenile Red Drum Sciaenops ocellatus fed soybean‐based diets. Aquaculture Research, 41(3), 411–418. https://doi.org/10.1111/j.1365‐2109.2009.02178.x
Butt, R. L., & Volkoff, H. (2019). Gut microbiota and energy homeostasis in fish. Frontiers in Endocrinology, 10, Article 9. https://doi.org/10.3389/fendo.2019.00009
Cerezuela, R., Meseguer, J., & Esteban, M. A. (2011). Current knowledge in synbiotic use for fish aquaculture: A review. Journal of Aquaculture Research & Development, S1, Article 8. https://doi.org/10.4172/2155‐9546.S1‐008
Chan, C. Y., Tran, N., Pethiyagoda, S., Crissman, C. C., Sulser, T. B., & Phillips, M. J. (2019). Prospects and challenges of fish for food security in Africa. Global Food Security, 20, 17–25. https://doi.org/10.1016/j.gfs.2018.12.002
Chellappa, S., Huntingford, F. A., Strang, R. H. C., & Thomson, R. Y. (1995). Condition factor and hepatosomatic index as estimates of energy status in male Three‐spined Stickleback. Journal of Fish Biology, 47(5), 775–787. https://doi.org/10.1111/j.1095‐8649.1995.tb06002.x
Chitsaz, H., Akrami, R., & Arab Arkadeh, M. (2016). Effect of dietary synbiotics on growth, immune response and body composition of Caspian Roach (Rutilus rutilus). Iranian Journal of Fisheries Sciences, 15(1), 170–182.
Choi, W., Moniruzzaman, M., Bae, J., Hamidoghli, A., Lee, S., Choi, Y.‐H., Min, T., & Bai, S. C. (2022). Evaluation of dietary probiotic bacteria and processed yeast (GroPro‐Aqua) as the alternative of antibiotics in juvenile Olive Flounder Paralichthys olivaceus. Antibiotics, 11(2), Article 129. https://doi.org/10.3390/antibiotics11020129
Conforto, E., Vílchez‐Gómez, L., Parrinello, D., Parisi, M. G., Esteban, M. Á., Cammarata, M., & Guardiola, F. A. (2021). Role of mucosal immune response and histopathological study in European Eel (Anguilla anguilla L.) intraperitoneal challenged by Vibrio anguillarum or Tenacibaculum soleae. Fish & Shellfish Immunology, 114, 330–339. https://doi.org/10.1016/j.fsi.2021.05.011
Dawood, M. A. O., Eweedah, N. M., Moustafa, E. M., & Shahin, M. G. (2020). Synbiotic effects of Aspergillus oryzae and β‐glucan on growth and oxidative and immune responses of Nile Tilapia, Oreochromis niloticus. Probiotics and Antimicrobial Proteins, 12(1), 172–183. https://doi.org/10.1007/s12602‐018‐9513‐9
Deng, Y., Zhang, Y., Chen, H., Xu, L., Wang, Q., & Feng, J. (2020). Gut–liver immune response and gut microbiota profiling reveal the pathogenic mechanisms of Vibrio harveyi in pearl gentian grouper (Epinephelus lanceolatus♂ × E. fuscoguttatus♀). Frontiers in Immunology, 11, Article 607754. https://doi.org/10.3389/fimmu.2020.607754
Dotta, G., Alves de Andrade, J. I., Tavares‐Gonçalves, E. L., Brum, A. J. J., Mattos, A. A., Maraschin, M., & Laterça‐Martins, M. (2014). Leukocyte phagocytosis and lysozyme activity in Nile Tilapia fed supplemented diet with natural extracts of propolis and Aloe barbadensis. Fish & Shellfish Immunology, 39(2), 280–284. https://doi.org/10.1016/j.fsi.2014.05.020
Dvergedal, H., Sandve, S. R., Angell, I. L., Klemetsdal, G., & Rudi, K. (2020). Association of gut microbiota with metabolism in juvenile Atlantic Salmon. Microbiome, 8(1), Article 160. https://doi.org/10.1186/s40168‐020‐00938‐2
Egusa, S. (1976). Some bacterial diseases of freshwater fishes in Japan. Fish Pathology, 10(2), 103–114. https://doi.org/10.3147/jsfp.10.103
Firouzbakhsh, F., Mehrabi, Z., Heydari, M., Khalesi, M. K., & Tajick, M. A. (2014). Protective effects of a synbiotic against experimental Saprolegnia parasitica infection in Rainbow Trout (Oncorhynchus mykiss). Aquaculture Research, 45(4), 609–618. https://doi.org/10.1111/j.1365‐2109.2012.03261.x
Food and Agriculture Organization of the United Nations. (2022). The state of world fisheries and aquaculture 2022: Towards blue transformation. Food and Agriculture Organization of the United Nations.
Food and Agriculture Organization of the United Nations. (2023). FishStatJ – Software for fishery and aquaculture statistical time series. Food and Agriculture Organization of the United Nations, Fisheries and Aquaculture Department.
Gaffar, M. A., Zaman, M. K., Islam, M. S., Islam, M., Hossain, M. K., Shahriar, S. I. M., & Shahjahan, M. (2023). Effects of probiotics on growth, survival, and intestinal and liver morphometry of Gangetic Mystus (Mystus cavasius). Saudi Journal of Biological Sciences, 30(7), Article 103683. https://doi.org/10.1016/j.sjbs.2023.103683
Goh, J. X. H., Tan, L. T. H., Law, J. W. F., Ser, H. L., Khaw, K. Y., Letchumanan, V., Lee, L.‐H., & Goh, B.‐H. (2022). Harnessing the potentialities of probiotics, prebiotics, synbiotics, paraprobiotics, and postbiotics for shrimp farming. Reviews in Aquaculture, 14(3), 1478–1557. https://doi.org/10.1111/raq.12659
Gomez Quintero, D. F., Kok, C. R., & Hutkins, R. (2022). The future of synbiotics: Rational formulation and design. Frontiers in Microbiology, 13, Article 919725. https://doi.org/10.3389/fmicb.2022.919725
Hamidoghli, A., Bae, J., Won, S., Lee, S., Kim, D.‐J., & Bai, S. C. (2019). A review on Japanese Eel (Anguilla japonica) aquaculture, with special emphasis on nutrition. Reviews in Fisheries Science & Aquaculture, 27(2), 226–241. https://doi.org/10.1080/23308249.2019.1583165
Hamsah, H., Widanarni, W., Alimuddin, A., Yuhana, M., Junior, M. Z., & Hidayatullah, D. (2019). Immune response and resistance of Pacific white shrimp larvae administered probiotic, prebiotic, and synbiotic through the bio‐encapsulation of Artemia sp. Aquaculture International, 27(2), 567–580. https://doi.org/10.1007/s10499‐019‐00346‐w
Hasan, M. T., Jang, W. J., Kim, H., Lee, B.‐J., Kim, K. W., Hur, S. W., Lim, S. G., Bai, S. C., & Kong, I.‐S. (2018a). Synergistic effects of dietary Bacillus sp. SJ‐10 plus β‐glucooligosaccharides as a synbiotic on growth performance, innate immunity and streptococcosis resistance in Olive Flounder (Paralichthys olivaceus). Fish & Shellfish Immunology, 82, 544–553. https://doi.org/10.1016/j.fsi.2018.09.002
Hasan, T., Jang, W. J., Tak, J. Y., Lee, B.‐J., Kim, K. W., Hur, S. W., Han, H.‐S., Kim, B.‐S., Min, D.‐H., Kim, S.‐K., & Kong, I.‐S. (2018b). Effects of Lactococcuslactis subsp. lactis I2 with β‐glucooligosaccharides on growth, innate immunity and streptococcosis resistance in Olive Flounder (Paralichthys olivaceus). Journal of Microbiology and Biotechnology, 28(9), 1433–1442. https://doi.org/10.4014/jmb.1805.05011
Hassaan, M. S., Soltan, M. A., & Ghonemy, M. M. R. (2014). Effect of synbiotics between Bacillus licheniformis and yeast extract on growth, hematological and biochemical indices of the Nile Tilapia (Oreochromis niloticus). The Egyptian Journal of Aquatic Research, 40(2), 199–208. https://doi.org/10.1016/j.ejar.2014.04.001
Holt, J. G., Krieg, N. R., Sneath, P. H. A., Stanley, J. T., & William, S. T. (1994). Bergey's manual of determinative bacteriology. Lippincott Williams & Wilkins.
Huang, X.‐J., Choi, Y.‐K., Im, H.‐S., Yarimaga, O., Yoon, E., & Kim, H.‐S. (2006). Aspartate aminotransferase (AST/GOT) and alanine aminotransferase (ALT/GPT) detection techniques. Sensors (Basel, Switzerland), 6(7), 756–782. https://doi.org/10.3390/s6070756
Hultmark, D., Steiner, H., Rasmuson, T., & Boman, H. G. (1980). Insect immunity. Purification and properties of three inducible bactericidal proteins from hemolymph of immunized pupae of Hyalophora cecropia. European Journal of Biochemistry, 106(1), 7–16. https://doi.org/10.1111/j.1432‐1033.1980.tb05991.x
Hung, Y. W., Lin, Y. H., Chan, C. Y., Wang, W. S., Chiu, C.‐F., Chiu, C.‐C., Chiu, H.‐W., Tsai, W.‐H., & Hung, S.‐W. (2019). Pharmacokinetic study of amoxicillin in Japanese Eel Anguilla japonica by high performance liquid chromatography with fluorescence detection. Aquaculture Reports, 13, Article 100184. https://doi.org/10.1016/j.aqrep.2019.100184
Hunn, J. T. B., & Greer, I. E. (1991). Influence of sampling on the blood chemistry of Atlantic Salmon. The Progressive Fish‐Culturist, 53(3), 184–187. https://doi.org/10.1577/1548‐8640(1991)053<0184:IOSOTB>2.3.CO;2
Huynh, T. G., Cheng, A. C., Chi, C. C., Chiu, K. H., & Liu, C. H. (2018). A synbiotic improves the immunity of white shrimp, Litopenaeus vannamei: Metabolomic analysis reveal compelling evidence. Fish & Shellfish Immunology, 79, 284–293. https://doi.org/10.1016/j.fsi.2018.05.031
Huynh, T. G., Shiu, Y. L., Nguyen, T. P., Truong, Q. P., Chen, J. C., & Liu, C.‐H. (2017). Current applications, selection, and possible mechanisms of actions of synbiotics in improving the growth and health status in aquaculture: A review. Fish & Shellfish Immunology, 64, 367–382. https://doi.org/10.1016/j.fsi.2017.03.035
Ighwela, K., Ahmad, A., & Abol‐Munafi, A. (2014). The selection of viscerosomatic and hepatosomatic indices for the measurement and analysis of Oreochromis niloticus condition fed with varying dietary maltose levels. International Journal of Fauna and Biological Studies, 1(3), 18–20.
Ina‐Salwany, M. Y., Al‐saari, N., Mohamad, A., Mursidi, F.‐A., Mohd‐Aris, A., Amal, M. N. A., Kasai, H., Mino, S., Sawabe, T., & Zamri‐Saad, M. (2019). Vibriosis in fish: A review on disease development and prevention. Journal of Aquatic Animal Health, 31(1), 3–22. https://doi.org/10.1002/aah.10045
Kaplan, E. L., & Meier, P. (1958). Nonparametric estimation from incomplete observations. Journal of the American Statistical Association, 53(282), 457–481. https://doi.org/10.1080/01621459.1958.10501452
Katsika, L., Huesca Flores, M., Kotzamanis, Y., Estevez, A., & Chatzifotis, S. (2021). Understanding the interaction effects between dietary lipid content and rearing temperature on growth performance, feed utilization, and fat deposition of Sea Bass (Dicentrarchus labrax). Animals: An Open Access Journal from MDPI, 11(2), Article 392. https://doi.org/10.3390/ani11020392
Khalesi, S., Johnson, D. W., Campbell, K., Williams, S., Fenning, A., Saluja, S., & Irwin, C. (2018). Effect of probiotics and synbiotics consumption on serum concentrations of liver function test enzymes: A systematic review and meta‐analysis. European Journal of Nutrition, 57(6), 2037–2053. https://doi.org/10.1007/s00394‐017‐1568‐y
Kobayashi, T., & Miyazaki, T. (1996). Rhabdoviral dermatitis in Japanese Eel, Anguilla japonica. Fish Pathology, 31(4), 183–190. https://doi.org/10.3147/jsfp.31.183
Kumar, P., Jain, K. K., Sardar, P., Jayant, M., & Tok, N. C. (2018). Effect of dietary synbiotic on growth performance, body composition, digestive enzyme activity and gut microbiota in Cirrhinus mrigala (Ham.) fingerlings. Aquaculture Nutrition, 24(3), 921–929. https://doi.org/10.1111/anu.12628
Kumar, R., Mukherjee, S. C., Ranjan, R., & Nayak, S. K. (2008). Enhanced innate immune parameters in Labeo rohita (Ham.) following oral administration of Bacillus subtilis. Fish & Shellfish Immunology, 24(2), 168–172. https://doi.org/10.1016/j.fsi.2007.10.008
Kuroki, M., Okamura, A., Yamada, Y., Hayasaka, S., & Tsukamoto, K. (2019). Evaluation of optimum temperature for the early larval growth of Japanese Eel in captivity. Fisheries Science, 85(5), 801–809. https://doi.org/10.1007/s12562‐019‐01317‐z
Lara‐Flores, M., & Olvera‐Novoa, M. A. (2013). The use of lactic acid bacteria isolated from intestinal tract of Nile Tilapia (Oreochromis niloticus), as growth promoters in fish fed low protein diets. Latin American Journal of Aquatic Research, 41(3), 490–497. https://doi.org/10.3856/vol41‐issue3‐fulltext‐12
Lazado, C. C., Caipang, C. M. A., & Estante, E. G. (2015). Prospects of host‐associated microorganisms in fish and penaeids as probiotics with immunomodulatory functions. Fish & Shellfish Immunology, 45(1), 2–12. https://doi.org/10.1016/j.fsi.2015.02.023
Lee, S., Katya, K., Hamidoghli, A., Hong, J., Kim, D.‐J., & Bai, S. C. (2018). Synergistic effects of dietary supplementation of Bacillus subtilis WB60 and mannanoligosaccharide (MOS) on growth performance, immunity and disease resistance in Japanese Eel, Anguilla japonica. Fish & Shellfish Immunology, 83, 283–291. https://doi.org/10.1016/j.fsi.2018.09.031
Lee, S., Katya, K., Park, Y., Won, S., Seong, M., Hamidoghli, A., & Bai, S. C. (2017). Comparative evaluation of dietary probiotics Bacillus subtilis WB60 and Lactobacillus plantarum KCTC3928 on the growth performance, immunological parameters, gut morphology and disease resistance in Japanese Eel, Anguilla japonica. Fish & Shellfish Immunology, 61, 201–210. https://doi.org/10.1016/j.fsi.2016.12.035
Lee, S., Moniruzzaman, M., Yun, H., Park, Y., Mann, J., & Bai, S. (2016). Comparative studies on effects of extruded pellets and dough type diets on growth, body composition, hematology and gut histology of juvenile Japanese Eel, Anguilla japonica (Temminck et Schlegel). Journal of Fisheries and Aquatic Science, 11, 378–384. https://doi.org/10.3923/jfas.2016.378.384
Li, Z., Deng, H., Zhou, Y., Tan, Y., Wang, X., Han, Y., Liu, Y., Wang, Y., Yang, R., Bi, Y., & Zhi, F. (2017). Bioluminescence imaging to track Bacteroides fragilis inhibition of Vibrio parahaemolyticus infection in mice. Frontiers in Cellular and Infection Microbiology, 7, Article 170. https://doi.org/10.3389/fcimb.2017.00170
Lim, J.‐W., Mendis, W. R. H., Jeong, B.‐C., Lim, T. J., Ahn, J. C., Jung, S.‐J., & Kang, S. Y. (2022). Optimization of Eucommia ulmoides Oliver bark extracts by Box‐Behnken design and their effects on growth performance, plasma biochemical and immunological parameters, and antioxidant enzyme‐ and inflammation‐related genes expression in Japanese Eel, Anguilla japonica. Aquaculture Reports, 26, Article 101320. https://doi.org/10.1016/j.aqrep.2022.101320
López Nadal, A., Ikeda‐Ohtsubo, W., Sipkema, D., Peggs, D., McGurk, C., Forlenza, M., Wiegertjes, G. F., & Brugman, S. (2020). Feed, microbiota, and gut immunity: Using the Zebrafish model to understand fish health. Frontiers in Immunology, 11, Article 114. https://doi.org/10.3389/fimmu.2020.00114
Magnadóttir, B. (2006). Innate immunity of fish (overview). Fish & Shellfish Immunology, 20(2), 137–151. https://doi.org/10.1016/j.fsi.2004.09.006
Mao, Q., Sun, X., Sun, J., Zhang, F., Lv, A., Hu, X., & Guo, Y. (2020). A candidate probiotic strain of Enterococcus faecium from the intestine of the Crucian Carp Carassius auratus. AMB Express, 10(1), Article 40. https://doi.org/10.1186/s13568‐020‐00973‐0
Mehrabi, Z., Firouzbakhsh, F., & Jafarpour, A. (2012). Effects of dietary supplementation of synbiotic on growth performance, serum biochemical parameters and carcass composition in Rainbow Trout (Oncorhynchus mykiss) fingerlings. Journal of Animal Physiology and Animal Nutrition, 96(3), 474–481. https://doi.org/10.1111/j.1439‐0396.2011.01167.x
Miyanishi, H., & Nagano, N. (2022). Reproductive farming technology in Japanese Eel and Chub Mackerel. Aquaculture and Fisheries, 7, 595–600. https://doi.org/10.1016/j.aaf.2022.03.003
Nakano, T., Hayashi, S., & Nagamine, N. (2018). Effect of excessive doses of oxytetracycline on stress‐related biomarker expression in Coho Salmon. Environmental Science and Pollution Research, 25(8), 7121–7128. https://doi.org/10.1007/s11356‐015‐4898‐4
National Research Council. (2011). Nutrient requirements of fish and shrimp. The National Academies Press.
Nayak, S. K. (2010). Probiotics and immunity: A fish perspective. Fish & Shellfish Immunology, 29(1), 2–14. https://doi.org/10.1016/j.fsi.2010.02.017
Nekoubin, H., & Sudagar, M. (2012). Assessment of the effects of synbiotic (Biomin imbo) via supplementation with artificial diet (with different protein levels) on growth performance and survival rate in Grass Carp (Ctenopharyngodon idella). World Journal of Zoology, 7(3), 236–240.
Nguyen, T.‐T., Nguyen, P.‐T., Pham, M.‐N., Razafindralambo, H., Hoang, Q.‐K., & Nguyen, H.‐T. (2022). Synbiotics: A new route of self‐production and applications to human and animal health. Probiotics and Antimicrobial Proteins, 14(5), 980–993. https://doi.org/10.1007/s12602‐022‐09960‐2
Nikoskelainen, S., Ouwehand, A., Salminen, S., & Bylund, G. (2001). Protection of Rainbow Trout (Oncorhynchus mykiss) from furunculosis by Lactobacillus rhamnosus. Aquaculture, 198(3), 229–236. https://doi.org/10.1016/S0044‐8486(01)00593‐2
Okazaki, S., Yasumoto, S., Koyama, S., Tsuchiaka, S., Naoi, Y., Omatsu, T., Ono, S., & Mizutani, T. (2016). Detection of Japanese Eel endothelial cells‐infecting virus in Anguilla japonica elvers. The Journal of Veterinary Medical Science, 78(4), 705–707. https://doi.org/10.1292/jvms.15‐0515
Park, Y., Kim, H., Won, S., Hamidoghli, A., Hasan, M. T., Kong, I.‐S., & Bai, S. C. (2020). Effects of two dietary probiotics (Bacillus subtilis or licheniformis) with two prebiotics (mannan or fructo oligosaccharide) in Japanese Eel, Anguilla japonica. Aquaculture Nutrition, 26(2), 316–327. https://doi.org/10.1111/anu.12993
Pepi, M., & Focardi, S. (2021). Antibiotic‐resistant bacteria in aquaculture and climate change: A challenge for health in the Mediterranean area. International Journal of Environmental Research and Public Health, 18(11), Article 5723. https://doi.org/10.3390/ijerph18115723
Puri, P., Sharma, J. G., & Singh, R. (2022). Biotherapeutic microbial supplementation for ameliorating fish health: Developing trends in probiotics, prebiotics, and synbiotics use in finfish aquaculture. Animal Health Research Reviews, 23(2), 113–135. https://doi.org/10.1017/S1466252321000165
Qin, Z., Yang, X., Chen, G., Park, C., & Liu, Z. (2020). Crosstalks between gut microbiota and Vibrio cholerae. Frontiers in Cellular and Infection Microbiology, 10, Article 582554. https://doi.org/10.3389/fcimb.2020.582554
Quade, M. J., & Roth, J. A. (1997). A rapid, direct assay to measure degranulation of bovine neutrophil primary granules. Veterinary Immunology and Immunopathology, 58(3–4), 239–248. https://doi.org/10.1016/S0165‐2427(97)00048‐2
Rahimnejad, S., Guardiola, F. A., Leclercq, E., Ángeles Esteban, M., Castex, M., Sotoudeh, E., & Lee, S.‐M. (2018). Effects of dietary supplementation with Pediococcus acidilactici MA18/5M, galactooligosaccharide and their synbiotic on growth, innate immunity and disease resistance of rockfish (Sebastes schlegeli). Aquaculture, 482, 36–44. https://doi.org/10.1016/j.aquaculture.2017.09.020
Reda, R. M., Ibrahim, R. E., Ahmed, E.‐N. G., & El‐Bouhy, Z. M. (2013). Effect of oxytetracycline and florfenicol as growth promoters on the health status of cultured Oreochromis niloticus. The Egyptian Journal of Aquatic Research, 39(4), 241–248. https://doi.org/10.1016/j.ejar.2013.12.001
Ringø, E., Dimitroglou, A., Hoseinifar, S. H., & Davies, S. J. (2014). Prebiotics in finfish: An update. In D. Merrifield & E. Ringø (Eds.), Aquaculture nutrition (pp. 360–400). John Wiley & Sons.
Rungrassamee, W., Kingcha, Y., Srimarut, Y., Maibunkaew, S., Karoonuthaisiri, N., & Visessanguan, W. (2014). Mannooligosaccharides from copra meal improves survival of the Pacific white shrimp (Litopenaeus vannamei) after exposure to Vibrio harveyi. Aquaculture, 434, 403–410. https://doi.org/10.1016/j.aquaculture.2014.08.032
Samanta, P., Pal, S., Mukherjee, A. K., & Ghosh, A. R. (2014). Evaluation of metabolic enzymes in response to Excel Mera 71, a glyphosate‐based herbicide, and recovery pattern in freshwater teleostean fishes. BioMed Research International, 2014, Article 425159. https://doi.org/10.1155/2014/425159
Shalaby, A. M., Khattab, Y. A., & Abdel Rahman, A. M. (2006). Effects of garlic (Allium sativum) and chloramphenicol on growth performance, physiological parameters and survival of Nile Tilapia (Oreochromis niloticus). Journal of Venomous Animals and Toxins Including Tropical Diseases, 12, 172–201. https://doi.org/10.1590/S1678‐91992006000200003
Song, S. K., Beck, B. R., Kim, D., Park, J., Kim, J., Kim, H. D., & Ringø, E. (2014). Prebiotics as immunostimulants in aquaculture: A review. Fish & Shellfish Immunology, 40(1), 40–48. https://doi.org/10.1016/j.fsi.2014.06.016
Staykov, Y., Spring, P., Denev, S., & Sweetman, J. (2007). Effect of a mannan oligosaccharide on the growth performance and immune status of Rainbow Trout (Oncorhynchus mykiss). Aquaculture International, 15(2), 153–161. https://doi.org/10.1007/s10499‐007‐9096‐z
Tachibana, L., Telli, G. S., de Carla Dias, D., Gonçalves, G. S., Ishikawa, C. M., Cavalcante, R. B., Natori, M. M., Hamed, S. B., & Ranzani‐Paiva, M. J. T. (2020). Effect of feeding strategy of probiotic Enterococcus faecium on growth performance, hematologic, biochemical parameters and non‐specific immune response of Nile Tilapia. Aquaculture Reports, 16, Article 100277. https://doi.org/10.1016/j.aqrep.2020.100277
Tanaka, H., Kagawa, H., Ohta, H., Unuma, T., & Nomura, K. (2003). The first production of glass eel in captivity: Fish reproductive physiology facilitates great progress in aquaculture. Fish Physiology and Biochemistry, 28(1), 493–497. https://doi.org/10.1023/B:FISH.0000030638.56031.ed
Taufik, D., Arief, M., & Kenconojati, H. (2019). The effect of different level of probiotic addition on commercial feed against digestibility and efficiency of Nile Tilapia feed (Oreochromis niloticus). IOP Conference Series: Earth and Environmental Science, 236, Article 012074. https://doi.org/10.1088/1755‐1315/236/1/012074
Torrecillas, S., Montero, D., & Izquierdo, M. (2014). Improved health and growth of fish fed mannan oligosaccharides: Potential mode of action. Fish & Shellfish Immunology, 36(2), 525–544. https://doi.org/10.1016/j.fsi.2013.12.029
Vaezi, M., Khara, H., & Shenavar, A. (2016). Synbiotic (Biomin imbo) alters gut bacterial microflora of Russian Sturgeon, Acipenser guldenstadti (Brandt & Ratzeburg, 1833) in a time‐dependent pattern. Journal of Parasitic Diseases, 40(4), 1189–1192. https://doi.org/10.1007/s12639‐015‐0647‐3
Wakiya, R., Itakura, H., Imayoshi, Y., & Kaifu, K. (2022). Agonistic behaviour of wild eels and depressed survival and growth of farmed eels in mixed rearing experiments. Journal of Fish Biology, 100(6), 1365–1374. https://doi.org/10.1111/jfb.15047
Wang, Y.‐B., Tian, Z.‐Q., Yao, J.‐T., & Li, W. (2008). Effect of probiotics, Enteroccus faecium, on tilapia (Oreochromis niloticus) growth performance and immune response. Aquaculture, 277(3), 203–207. https://doi.org/10.1016/j.aquaculture.2008.03.007
Watts, J. E. M., Schreier, H. J., Lanska, L., & Hale, M. S. (2017). The rising tide of antimicrobial resistance in aquaculture: Sources, sinks and solutions. Marine Drugs, 15(6), Article 158. https://doi.org/10.3390/md15060158
Won, S., Hamidoghli, A., Choi, W., Park, Y., Jang, W. J., Kong, I.‐S., & Bai, S. C. (2020). Effects of Bacillus subtilis WB60 and Lactococcus lactis on growth, immune responses, histology and gene expression in Nile Tilapia, Oreochromis niloticus. Microorganisms, 8(1), Article 67. https://doi.org/10.3390/microorganisms8010067
Wuertz, S., Schroeder, A., & Wanka, K. M. (2021). Probiotics in fish nutrition—Long‐standing household remedy or native nutraceuticals? Watermark, 13(10), Article 1348. https://doi.org/10.3390/w13101348
Xu, T., & Zhang, X.‐H. (2014). Edwardsiella tarda: An intriguing problem in aquaculture. Aquaculture, 431, 129–135. https://doi.org/10.1016/j.aquaculture.2013.12.001
Yamada, Y., Okamura, A., Mikawa, N., Utoh, T., Horie, N., Tanaka, S., Miller, M. J., & Tsukamoto, K. (2009). Ontogenetic changes in phototactic behavior during metamorphosis of artificially reared Japanese Eel Anguilla japonica larvae. Marine Ecology Progress Series, 379, 241–251. https://doi.org/10.3354/meps07912
Yarahmadi, P., Moradi, N., & Ghysvandi, N. (2014). The effect of dietary supplemented with Synbiotic (Biomin IMBO®) on growth performance, carcass composition, hematological and serum biochemical parameters of Common Carp (Cyprinus carpio Linnaeus, 1758, Cyprinidae). Journal of Chemical, Biological and Physical Sciences, 4, Article 2129.
Ye, J.‐D., Wang, K., Li, F.‐D., & Sun, Y. Z. (2011). Single or combined effects of fructo‐ and mannan oligosaccharide supplements and Bacillus clausii on the growth, feed utilization, body composition, digestive enzyme activity, innate immune response and lipid metabolism of the Japanese Flounder Paralichthys olivaceus. Aquaculture Nutrition, 17(4), e902–e911.
Zhang, Q., Tan, B., Mai, K., Zhang, W., Ma, H., Ai, Q., Wang, X., & Liufu, Z. (2011). Dietary administration of Bacillus (B. licheniformis and B. subtilis) and isomaltooligosaccharide influences the intestinal microflora, immunological parameters and resistance against Vibrio alginolyticus in shrimp, Penaeus japonicus (Decapoda: Penaeidae). Aquaculture Research, 42(7), 943–952. https://doi.org/10.1111/j.1365‐2109.2010.02677.x
Zheng, C., Cai, X., Huang, M., Mkingule, I., Sun, C., Qian, S. C., Wu, Z., Han, B., & Fei, H. (2019). Effect of biological additives on Japanese Eel (Anguilla japonica) growth performance, digestive enzymes activity and immunology. Fish & Shellfish Immunology, 84, 704–710. https://doi.org/10.1016/j.fsi.2018.10.048
Zubaidah, A., Yuhana, M., & Widanarni. (2015). Encapsulated synbiotic dietary supplementation at different dosages to prevent vibriosis in white shrimp, Litopenaeus vannamei. HAYATI Journal of Biosciences, 22(4), 163–168. https://doi.org/10.1016/j.hjb.2015.10.007