Spin-Selective Electron Transport Through Single Chiral Molecules
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
PubMed
38050945
DOI
10.1002/smll.202308233
Knihovny.cz E-zdroje
- Klíčová slova
- CISS effect, chirality, ferromagnetic substrate, scanning probe microscopy, single‐molecule studies,
- Publikační typ
- časopisecké články MeSH
The interplay between chirality and magnetism is a source of fascination among scientists for over a century. In recent years, chirality-induced spin selectivity (CISS) has attracted renewed interest. It is observed that electron transport through layers of homochiral molecules leads to a significant spin polarization of several tens of percent. Despite the abundant experimental evidence gathered through mesoscopic transport measurements, the exact mechanism behind CISS remains elusive. This study reports spin-selective electron transport through single helical aromatic hydrocarbons that are sublimed in vacuo onto ferromagnetic cobalt surfaces and examined with spin-polarized scanning tunneling microscopy (SP-STM) at a temperature of 5 K. Direct comparison of two enantiomers under otherwise identical conditions revealed magnetochiral conductance asymmetries of up to 50% when either the molecular handedness is exchanged or the magnetization direction of the STM tip or Co substrate is reversed. Importantly, the results rule out electron-phonon coupling and ensemble effects as primary mechanisms responsible for CISS.
Fakultät für Physik Universität Duisburg Essen 47057 Duisburg Germany
Institut für Chemie Universität Zürich 8057 Zürich Switzerland
Nanosurf Laboratory Institute of Physics The Czech Academy of Sciences 16200 Prague Czech Republic
Peter Grünberg Institute Electronic Properties Forschungszentrum Jülich 52425 Jülich Germany
Zobrazit více v PubMed
L. Pasteur, Œuvres de Pasteur, Vol. 1, Recherches sur la dissymétrie moléculaire des produits organiques naturels, Masson et Cie, Paris 1922, pp. 329.
W. A. Bonner, Origins Life Evol. Biosphere 1995, 25, 175.
T. Ulbricht, F. Vester, Tetrahedron 1962, 18, 629.
D. Campbell, P. Farago, Nature 1985, 318, 52.
S. Mayer, C. Nolting, J. Kessler, J. Phys. B: At. Mol. Opt. Phys. 1996, 29, 3497.
A. Busalla, M. Musigmann, K. Blum, D. Thompson, Complete Scattering Experiments, Differential Cross Section and Spin Asymmetries for Collisions Between Electrons and Oriented Chiral Molecules, Springer, Boston, MA 2002, pp. 93–109.
S. Mahurin, M. McGinnis, J. S. Bogard, L. D. Hulett, R. M. Pagni, R. N. Compton, Chirality 2001, 13, 636.
K. Ray, S. P. Ananthavel, D. H. Waldeck, R. Naaman, Science 1999, 283, 814.
B. Göhler, V. Hamelbeck, T. Z. Markus, M. Kettner, G. F. Hanne, Z. Vager, R. Naaman, H. Zacharias, Science 2011, 331, 894.
M. Kettner, V. V. Maslyuk, D. Nürenberg, J. Seibel, R. Gutierrez, G. Cuniberti, K. H. Ernst, H. Zacharias, J. Phys. Chem. Lett. 2018, 9, 2025.
Z. Xie, T. Z. Markus, S. R. Cohen, Z. Vager, R. Gutierrez, R. Naaman, Nano Lett. 2011, 11, 4652.
S. P. Mathew, P. C. Mondal, H. Moshe, Y. Mastai, R. Naaman, Appl. Phys. Lett. 2014, 105, 242408.
M. Kettner, B. Göhler, H. Zacharias, D. Mishra, V. Kiran, R. Naaman, C. Fontanesi, D. H. Waldeck, S. Sek, J. Pawowski, J. Juhaniewicz, J. Phys. Chem. C 2015, 119, 14542.
P. C. Mondal, N. Kantor‐Uriel, S. P. Mathew, F. Tassinari, C. Fontanesi, R. Naaman, Adv. Mater. 2015, 27, 1924.
B. P. Bloom, V. Kiran, V. Varade, R. Naaman, D. H. Waldeck, Nano Lett. 2016, 16, 4583.
V. Kiran, S. P. Mathew, S. R. Cohen, I. H. Delgado, J. Lacour, R. Naaman, Adv. Mater. 2016, 28, 1957.
V. Kiran, S. R. Cohen, R. Naaman, J. Chem. Phys. 2017, 146, 092302.
V. Varade, T. Markus, K. Vankayala, N. Friedman, M. Sheves, D. H. Waldeck, R. Naaman, Phys. Chem. Chem. Phys. 2018, 20, 1091.
F. Tassinari, D. R. Jayarathna, N. Kantor‐Uriel, K. L. Davis, V. Varade, C. Achim, R. Naaman, Adv. Mater. 2018, 30, 1706423.
G. Bullard, F. Tassinari, C. H. Ko, A. K. Mondal, R. Wang, S. Mishra, R. Naaman, M. J. Therien, J. Am. Chem. Soc. 2019, 141, 14707.
C. Kulkarni, A. K. Mondal, T. K. Das, G. Grinbom, F. Tassinari, M. F. Mabesoone, E. Meijer, R. Naaman, Adv. Mater. 2020, 32, 1904965.
T. N. H. Nguyen, L. Rasabathina, O. Hellwig, A. Sharma, G. Salvan, S. Yochelis, Y. Paltiel, L. T. Baczewski, C. Tegenkamp, ACS Appl. Mater. Interfaces 2022, 14, 38013.
A. C. Aragonès, E. Medina, M. Ferrer‐Huerta, N. Gimeno, M. Teixidó, J. L. Palma, N. Tao, J. M. Ugalde, E. Giralt, I. Díez‐Pérez, V. Mujica, Small 2017, 13, 1602519.
D. Slawig, T. N. H. Nguyen, S. Yochelis, Y. Paltiel, C. Tegenkamp, Phys. Rev. B 2020, 102, 115425.
C. Yang, Y. Li, S. Zhou, Y. Guo, C. Jia, Z. Liu, K. N. Houk, Y. Dubi, X. Guo, Nat. Chem. 2023, 15, 972.
J. De La Figuera, J. E. Prieto, C. Ocal, R. Miranda, Phys. Rev. B 1993, 47, 13043.
O. Pietzsch, A. Kubetzka, M. Bode, R. Wiesendanger, Phys. Rev. Lett. 2004, 92, 057202.
O. Pietzsch, S. Okatov, A. Kubetzka, M. Bode, S. Heinze, A. Lichtenstein, R. Wiesendanger, Phys. Rev. Lett. 2006, 96, 237203.
N. N. Negulyaev, V. S. Stepanyuk, P. Bruno, L. Diekhöner, P. Wahl, K. Kern, Phys. Rev. B 2008, 77, 125437.
H. Oka, P. A. Ignatiev, S. Wedekind, G. Rodary, L. Niebergall, V. S. Stepanyuk, D. Sander, J. Kirschner, Science 2010, 327, 843.
T. Esat, R. Friedrich, F. Matthes, V. Caciuc, N. Atodiresei, S. Blügel, D. E. Bürgler, F. S. Tautz, C. M. Schneider, Phys. Rev. B 2017, 95, 094409.
M. R. Safari, F. Matthes, K.‐H. Ernst, D. E. Bürgler, C. M. Schneider, Nanomaterials 2022, 12, 3281.
M. R. Safari, F. Matthes, V. Caciuc, N. Atodiresei, C. M. Schneider, K.‐H. Ernst, D. E. Bürgler, Adv. Mater. 2023, 202308666, https://doi.org/10.1002/adma.202308666.
M. Metzelaars, S. Schleicher, T. Hattori, B. Borca, F. Matthes, S. Sanz, D. E. Bürgler, J. Rawson, C. M. Schneider, P. Kögerler, Chem. Sci. 2021, 12, 8430.
A. Dianat, R. Gutierrez, H. Alpern, V. Mujica, A. Ziv, S. Yochelis, O. Millo, Y. Paltiel, G. Cuniberti, Nano Lett. 2020, 20, 7077.
J. Tersoff, D. R. Hamann, Phys. Rev. Lett. 1983, 50, 1998.
T. K. Das, F. Tassinari, R. Naaman, J. Fransson, J. Phys. Chem. C 2022, 126, 3257.