An aperiodic chiral tiling by topological molecular self-assembly
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
24-11064S
Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
202775
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation)
221265
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation)
212167
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation)
PubMed
39747821
PubMed Central
PMC11696205
DOI
10.1038/s41467-024-55405-5
PII: 10.1038/s41467-024-55405-5
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Studying the self-assembly of chiral molecules in two dimensions offers insights into the fundamentals of crystallization. Using scanning tunneling microscopy, we examine an uncommon aggregation of polyaromatic chiral molecules on a silver surface. Dense packing is achieved through a chiral triangular tiling of triads, with N and N ± 1 molecules at the edges. The triangles feature a random distribution of mirror-isomers, with a significant excess of one isomer. Chirality at the domain boundaries causes a lateral shift, producing three distinct topological defects where six triangles converge. These defects partially contribute to the formation of supramolecular spirals. The observation of different equal-density arrangements suggests that entropy maximization must play a crucial role. Despite the potential for regular patterns, all observed tiling is aperiodic. Differences from previously reported aperiodic molecular assemblies, such as Penrose tiling, are discussed. Our findings demonstrate that two-dimensional molecular self-assembly can be governed by topological constraints, leading to aperiodic tiling induced by intermolecular forces.
Department of Chemistry University of Zürich Zürich Switzerland
Empa Swiss Federal Laboratories for Materials Science and Technology Dübendorf Switzerland
Nanosurf Lab Institute of Physics of the Czech Academy of Sciences Prague Czech Republic
Univ Angers CNRS MOLTECH Anjou SFR MATRIX F 49000 Angers France
Zobrazit více v PubMed
Grünbaum, B. & Shephard, C. G. Tilings and Patterns (Freeman, 1986).
Baake, M. & Grimm, U. Aperiodic Order. Vol 1. A Mathematical Invitation Vol. 149 (Cambridge University Press, 2013).
Penrose, R. Pentaplexity—a class of non-periodic tilings of the plane. Eureka39, 16–22 (1978).
Wang, H. Proving theorems by pattern recognition—II. Bell Syst. Tech. J.40, 1–41 (1961).
Winfree, E., Liu, F., Wenzler, L. A. & Seeman, N. C. Design and self-assembly of two-dimensional DNA crystals. Nature394, 539–544 (1998). PubMed
Smith, D., Myers, J. S., Kaplan, C. S. & Goodman-Strauss, C. An aperiodic monotile. Comb. Theory4, #6/1–91 (2024).
Smith, D., Myers, J. S., Kaplan, C. S. & Goodman-Strauss, C. A chiral aperiodic monotile. Comb. Theory4, #13/1–#1325 (2024).
Schirmann, J., Franca, S., Flicker, F. & Grushin, A. G. Physical properties of an aperiodic monotile with graphene-like features, chirality, and zero modes. Phys. Rev. Lett.132, 086402 (2024). PubMed
McManus, C. Right Hand, Left Hand, The Origins of Asymmetry in Brains, Bodies, Atoms and Cultures (Weidenfeld & Nicolson, 2002).
Wagniere, G. H. On Chirality and the Universal Asymmetry (Wiley, 2007).
Ernst, K.-H., Wild, F. R. W. P., Blacque, O. & Berke, H. Alfred Werner’s Coordination Chemistry: new insights from old samples. Angew. Chem. Int. Ed.50, 10780–10787 (2011). PubMed
Ramberg, P. J. Chemical Structure, Spatial Arrangement. The Early History of Stereochemistry 1874–1914 (Ashgate, 2003).
Ernst, K.-H. On the validity of calling Wallach’s rule Wallach’s rule. Isr. J. Chem.57, 24–30 (2016).
Sheldon, R. A. Chirotechnology (Marcel Dekker, 1993).
Jacques, J., Collet, A. & Wilen, S. H. Enantiomers, Racemates, and Resolutions (Krieger Pub. Co., 1994).
Dutta, S. & Gellman, A. J. Enantiomer surface chemistry: conglomerate versus racemate formation on surfaces. Chem. Soc. Rev.46, 7787–7839 (2017). PubMed
Pasteur, L. Recherches sur les relations qui peuvent exister entre la forme cristalline: la composition chimique et les sens de la polarisation rotatoire. Ann. Chim. Phys.24, 442–459 (1848).
Shen, Y. & Chen, C.-F. Helicenes: synthesis and applications. Chem. Rev.112, 1463–1535 (2012). PubMed
Yang, Y., Correa da Costa, R., Fuchter, M. J. & Campbell, A. J. Circularly polarized light detection by a chiral organic semiconductor transistor. Nat. Photon.7, 634–638 (2013).
Safari, M. R., Matthes, F., Schneider, C. M., Ernst, K.-H. & Bürgler, D. Spin-selective electron transport through single chiral molecules. Small19, 2308233/1–2308233/7 (2023). PubMed
Kettner, M. et al. Chirality-dependent electron spin filtering by molecular monolayers of helicenes. J. Phys. Chem. Lett.9, 2025–2030 (2018). PubMed
Pop, F., Zigon, N. & Avarvari, N. Main-group-based electro- and photoactive chiral materials. Chem. Rev.119, 8435–8478 (2019). PubMed
Safari, M. R. et al. Enantioselective adsorption on magnetic surfaces. Adv. Mater.36, 202308666/1–202308666/8 (2024). PubMed
Ernst, K.-H. Stereochemical recognition of helicenes on metal surfaces. Acc. Chem. Res.49, 1182–1190 (2016). PubMed
Wäckerlin, C. et al. Surface-assisted diastereoselective Ullmann coupling of bishelicenes. Chem. Commun.52, 12694–12697 (2016). PubMed
Grimme, S. & Peyerimhoff, S. D. Theoretical study of the structures and racemization barriers of [n]helicenes (n = 3–6, 8). Chem. Phys.204, 411–417 (1996).
Maeda, M., Nakayama, R., De Feyter, S., Tobe, Y. & Tahara, K. Hierarchical two-dimensional molecular assembly through dynamic combination of conformational states at the liquid/solid interface. Chem. Sci.11, 9254–9261 (2020). PubMed PMC
Clair, S., Abel, M. & Porte, A. Mesoscopic arrays from supramolecular self-assembly. Angew. Chem. Int. Ed.49, 8237–8239 (2010). PubMed
Jasper-Tönnies, T., Gruber, M., Ulrich, S., Herges, R. & Berndt, R. Coverage-controlled superstructures of c3-symmetric molecules: honeycomb versus hexagonal tiling. Angew. Chem. Int. Ed.59, 7008–7017 (2020). PubMed PMC
Medeiros, P. V. C., Gueorguiev, G. K. & Stafström, S. Benzene, coronene, and circumcoronene adsorbed on gold, and a gold cluster adsorbed on graphene: structural and electronic properties. Phys. Rev. B85, 205423/1–205423/7 (2012).
Blunt, M. O. et al. Random tiling and topological defects in a two-dimensional molecular network. Science322, 1077–1081 (2008). PubMed
Garrahan, J. P., Stannard, A., Blunt, M. O. & Beton, P. H. Molecular random tilings as glasses. Proc. Natl Acad. Sci. USA106, 15209–15213 (2009). PubMed PMC
Urgel, J. I. et al. V. Quasicrystallinity expressed in two-dimensional coordination networks. Nat. Chem.8, 657–662 (2016). PubMed
Stannard, A. et al. Broken symmetry and the variation of critical properties in the phase behaviour of supramolecular rhombus tilings. Nat. Chem.4, 112–117 (2012). PubMed
Stannard, A., Blunt, M. O., Beton, P. H. & Garrahan, J. P. Entropically stabilized growth of a two-dimensional random tiling. Phys. Rev. E82, 041109/1–5 (2009). PubMed
Zhang, Y. et al. One-dimensionally disordered chiral sorting by racemic tiling in a surface-confined supramolecular assembly of achiral tectons. Angew. Chem. Int. Ed.56, 7797–7802 (2017). PubMed
Mairena, A. et al. Heterochiral to homochiral transition in pentahelicene 2D crystallization induced by second-layer nucleation. ACS Nano11, 865–871 (2017). PubMed
Parschau, M. & Ernst, K.-H. Disappearing enantiomorphs: single handedness in racemate crystals. Angew. Chem. Int. Ed.54, 14422–14426 (2015). PubMed
Wang, X., Miller, D. S., Bukusoglu, E., de Pablo, J. J. & Abbott, N. L. Topological defects in liquid crystals as templates for molecular self-assembly. Nat. Mater.15, 106–112 (2016). PubMed PMC
Tkalec, U., Ravnik, M., Čopar, S., Žumer, S. & Muševič, I. Reconfigurable knots and links in chiral nematic colloids. Science333, 62–65 (2011). PubMed
Yazyev, O. V. & Louie, S. G. Topological defects in graphene: dislocations and grain boundaries. Phys. Rev. B81, 195420 (2010).
Berger, R. The Undecidability of the Domino Problem; Memoirs of the American Mathematical Society Vol. 66 (American Mathematical Society, 1966).
Jeandel, R. & Rao, M. An aperiodic set of 11 Wang tiles. Advances in Combinatorics, #1/1–37 (2021).
Mikhael, J. et al. Archimedean-like tiling on decagonal quasicrystalline surfaces. Nature454, 501–504 (2008). PubMed
Franke, K. J. et al. Quasicrystalline epitaxial single element monolayers on icosahedral Al-Pd-Mn and decagonal Al-Ni-Co quasicrystal surfaces. Phys. Rev. Lett.89, 156104 (2002). PubMed
Förster, S., Meinel, K., Hammer, R., Trautmann, M. & Widdra, W. Quasicrystalline structure formation in a classical crystalline thin-film system. Nature502, 215–218 (2013). PubMed
Paßens, M. et al. Interface-driven formation of a two-dimensional dodecagonal fullerene quasicrystal. Nat. Commun.8, 15367 (2017). PubMed PMC
Talapin, D. V. et al. Quasicrystalline order in self-assembled binary nanoparticle superlattices. Nature461, 964–967 (2009). PubMed
Zhang, Y. Q. et al. Complex supramolecular interfacial tessellation through convergent multi-step reaction of a dissymmetric simple organic precursor. Nat. Chem.10, 296–304 (2018). PubMed
Wasio, N. et al. Self-assembly of hydrogen-bonded two-dimensional quasicrystals. Nature507, 86–89 (2014). PubMed
Peyrot, D. & Silly, F. Toward two-dimensional tessellation through halogen bonding between molecules and on-surface-synthesized covalent multimers. Int. J. Mol. Sci.24, 11291/1–12 (2023). PubMed PMC
Brooks, M. A. & Scott, L. T. 1,2-Shifts of hydrogen atoms in aryl radicals. J. Am. Chem. Soc.121, 5444–5449 (1999).
Sheldrick, G. M. Crystal structure refinement with SHELX. Acta Cryst. C.71, 3–8 (2015). PubMed PMC
Sheldrick, G. M. SHELXT-Integrated space-group and crystal-structure determination. Acta Cryst. A71, 3–8 (2015). PubMed PMC
Farrugia, L. J. WinGX and ORTEP for Windows: an update. J. Appl. Cryst.45, 849–854 (2012).
Voigt, J. et al. An aperiodic chiral tiling by topological molecular self-assembly. Zenodo10.5281/zenodo.11683281 (2024). PubMed PMC