• This record comes from PubMed

Modeling size and edge functionalization of MXene-based quantum dots and their effect on electronic and magnetic properties

. 2023 Dec 05 ; 5 (24) : 7067-7076. [epub] 20231109

Status PubMed-not-MEDLINE Language English Country England, Great Britain Media electronic-ecollection

Document type Journal Article

In the last six years, the synthesis of MXene-based quantum dots (MXQDs) has gained widespread attention. Due to the quantum confinement effect, it is possible to significantly improve their properties compared to 2D counterparts, such as higher chemical stability and better electronic and optical properties. However, despite the growing interest in their properties, much remains unexplored. One of the biggest challenges is to study in more detail the structure of quantum dots, in particular, their edge functionalization and its effect on their properties. In this paper, the structural stability and electronic and magnetic properties of Ti2CO2 QDs based on different lateral dimensions and edge functionalization (-O, -F, and -OH) are investigated using density functional theory. The study shows that the energy gap of Ti2CO2-O QDs decreases with increasing lateral size for both nonmagnetic (spin-unpolarized, close shell) and magnetic (spin-polarized, open shell) cases. Furthermore, the magnetic behavior of quantum dots was revealed by shrinking from 2D Ti2CO2 to 0D Ti2CO2 QDs with lateral dimensions below 1.4 nm. The binding energy confirms the stability of all three types of edge functionalization, while the most stable structure was observed under fully saturated edge oxygenation. Moreover, it was also found that the spin density distribution and the energy gap of Ti2CO2-X QDs (X = O, F, and OH) are both dependent on the type of atom saturation. Size and edge confinement modeling has been demonstrated to be an effective tool for tuning the electronic and magnetic properties of MXQDs. Moreover, the observed enhanced spin polarization together with tunable magnetic properties makes the ultrafine Ti2CO2-X QDs promising candidates for spintronic applications.

See more in PubMed

Naguib M. Kurtoglu M. Presser V. Lu J. Niu J. Heon M. Hultman L. Gogotsi Y. Barsoum M. W. Adv. Mater. 2011;23:4248–4253. doi: 10.1002/adma.201102306. PubMed DOI

Naguib M. Mochalin V. N. Barsoum M. W. Gogotsi Y. Adv. Mater. 2014;26:992–1005. doi: 10.1002/adma.201304138. PubMed DOI

Zhu J. Ha E. Zhao G. Zhou Y. Huang D. Yue G. Hu L. Sun N. Wang Y. Lee L. Y. S. Xu C. Wong K.-Y. Astruc D. Zhao P. Coord. Chem. Rev. 2017;352:306–327. doi: 10.1016/j.ccr.2017.09.012. DOI

Xiong D. Li X. Bai Z. Lu S. Small. 2018;14:1703419. doi: 10.1002/smll.201703419. PubMed DOI

Ketolainen T. Karlický F. J. Mater. Chem. C. 2022;10:3919–3928. doi: 10.1039/D2TC00246A. DOI

Kumar N. Karlický F. Appl. Phys. Lett. 2023;122:183102. doi: 10.1063/5.0143313. DOI

Sakhraoui T. Karlický F. ACS Omega. 2022;7:42221–42232. doi: 10.1021/acsomega.2c05037. PubMed DOI PMC

Ding Y. Nie X. Dong H. Rujisamphan N. Li Y. Phys. E. 2020;124:114328. doi: 10.1016/j.physe.2020.114328. DOI

Xue Q. Zhang H. Zhu M. Pei Z. Li H. Wang Z. Huang Y. Huang Y. Deng Q. Zhou J. Du S. Huang Q. Zhi C. Adv. Mater. 2017;29:1604847. doi: 10.1002/adma.201604847. PubMed DOI

Wang X. Sun G. Li N. Chen P. Chem. Soc. Rev. 2016;45:2239–2262. doi: 10.1039/C5CS00811E. PubMed DOI

Pan D. Zhang J. Li Z. Wu M. Adv. Mater. 2010;22:734–738. doi: 10.1002/adma.200902825. PubMed DOI

Chen P. Li N. Chen X. Ong W.-J. Zhao X. 2D Materials. 2017;5:014002. doi: 10.1088/2053-1583/aa8d37. DOI

Huo B. Liu B. Chen T. Cui L. Xu G. Liu M. Liu J. Langmuir. 2017;33:10673–10678. doi: 10.1021/acs.langmuir.7b01699. PubMed DOI

Zhang Z. Zhang J. Chen N. Qu L. Energy Environ. Sci. 2012;5:8869–8890. doi: 10.1039/C2EE22982J. DOI

Quan X. Wenjing Y. Yangyang W. Shengkun L. Zheng L. Wee-Jun O. Neng L. Appl. Mater. Today. 2019;16:90–101. doi: 10.1016/j.apmt.2019.05.001. DOI

Guan Q. Ma J. Yang W. Zhang R. Zhang X. Dong X. Fan Y. Cai L. Cao Y. Zhang Y. Li N. Xu Q. Nanoscale. 2019;11:14123–14133. doi: 10.1039/C9NR04421C. PubMed DOI

Xu G. Niu Y. Yang X. Jin Z. Wang Y. Xu Y. Niu H. Adv. Opt. Mater. 2018;6:1800951. doi: 10.1002/adom.201800951. DOI

Feng J. Guo Q. Liu H. Chen D. Tian Z. Xia F. Ma S. Yu L. Dong L. Carbon. 2019;155:491–498. doi: 10.1016/j.carbon.2019.09.009. DOI

Abdelsalam H. Elhaes H. Ibrahim M. A. Chem. Phys. Lett. 2018;695:138–148. doi: 10.1016/j.cplett.2018.02.015. DOI

Li Y. Shu H. Niu X. Wang J. J. Phys. Chem. C. 2015;119:24950–24957. doi: 10.1021/acs.jpcc.5b05935. DOI

Abdelsalam H. Saroka V. A. Ali M. Teleb N. H. Elhaes H. Ibrahim M. A. Phys. E. 2019;108:339–346. doi: 10.1016/j.physe.2018.07.022. DOI

Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Petersson G. A., Nakatsuji H., Li X., Caricato M., Marenich A. V., Bloino J., Janesko B. G., Gomperts R., Mennucci B. and Hratch D. J., Gaussian 16, Revision B.01, 2016

Dennington R., Keith T. A. and Millam J. M., GaussView Version 6, Semichem Inc., Shawnee Mission, KS, 2019

Chai J.-D. Head-Gordon M. J. Chem. Phys. 2008;128:084106. doi: 10.1063/1.2834918. PubMed DOI

Rassolov V. A. Ratner M. A. Pople J. A. Redfern P. C. Curtiss L. A. J. Comput. Chem. 2001;22:976–984. doi: 10.1002/jcc.1058. DOI

Yanai T. Tew D. P. Handy N. C. Chem. Phys. Lett. 2004;393:51–57. doi: 10.1016/j.cplett.2004.06.011. DOI

Becke A. D. J. Chem. Phys. 1993;98:5648–5652. doi: 10.1063/1.464913. DOI

Lee C. Yang W. Parr R. G. Phys. Rev. B: Condens. Matter Mater. Phys. 1988;37:785–789. doi: 10.1103/PhysRevB.37.785. PubMed DOI

Vosko S. H. Wilk L. Nusair M. Can. J. Phys. 1980;58:1200–1211. doi: 10.1139/p80-159. DOI

Krukau A. V. Vydrov O. A. Izmaylov A. F. Scuseria G. E. J. Chem. Phys. 2006;125:224106. doi: 10.1063/1.2404663. PubMed DOI

Perdew J. P. Burke K. Ernzerhof M. Phys. Rev. Lett. 1997;78:1396. doi: 10.1103/PhysRevLett.78.1396. PubMed DOI

Becke A. D. Phys. Rev. A. 1988;38:3098–3100. doi: 10.1103/PhysRevA.38.3098. PubMed DOI

Perdew J. P. Ruzsinszky A. Csonka G. I. Constantin L. A. Sun J. Phys. Rev. Lett. 2011;106:179902. doi: 10.1103/PhysRevLett.106.179902. PubMed DOI

Zhao Y. Truhlar D. G. J. Chem. Phys. 2006;125:194101. doi: 10.1063/1.2370993. PubMed DOI

McLean A. D. Chandler G. S. J. Chem. Phys. 1980;72:5639–5648. doi: 10.1063/1.438980. DOI

Raghavachari K. Trucks G. W. J. Chem. Phys. 1989;91:1062–1065. doi: 10.1063/1.457230. DOI

Kendall R. A. Dunning T. H. Harrison R. J. J. Chem. Phys. 1992;96:6796–6806. doi: 10.1063/1.462569. DOI

Weigend F. Phys. Chem. Chem. Phys. 2006;8:1057–1065. doi: 10.1039/B515623H. PubMed DOI

Bacskay G. B. Chem. Phys. 1981;61:385–404. doi: 10.1016/0301-0104(81)85156-7. DOI

Szabo A. and Ostlund N. S., Modern Quantum Chemistry, Dover Publications, Mineola, New York, 1996

Karlický F. Otyepka M. Int. J. Quantum Chem. 2014;114:987–992. doi: 10.1002/qua.24627. DOI

Karlický F. Otyepka M. J. Chem. Theory Comput. 2011;7:2876–2885. doi: 10.1021/ct200372y. PubMed DOI

Reiher M. Salomon O. Artur Hess B. Theor. Chem. Acc. 2001;107:48–55.

Radoń M. Phys. Chem. Chem. Phys. 2014;16:14479–14488. doi: 10.1039/C3CP55506B. PubMed DOI

Dubecký M. Minárik S. Karlický F. J. Chem. Phys. 2023;158:054703. doi: 10.1063/5.0140315. PubMed DOI

Ding Y. Nie X. Dong H. Rujisamphan N. Li Y. Nanoscale Adv. 2020;2:2471–2477. doi: 10.1039/C9NA00632J. PubMed DOI PMC

Sudolská M. Dubecký M. Sarkar S. Reckmeier C. J. Zbořil R. Rogach A. L. Otyepka M. J. Phys. Chem. C. 2015;119:13369–13373. doi: 10.1021/acs.jpcc.5b04080. DOI

Pearson R. G. Acc. Chem. Res. 1993;26:250–255. doi: 10.1021/ar00029a004. DOI

Wang W. L. Meng S. Kaxiras E. Nano Lett. 2008;8:241–245. doi: 10.1021/nl072548a. PubMed DOI

Fernández-Rossier J. Palacios J. J. Phys. Rev. Lett. 2007;99:177204. doi: 10.1103/PhysRevLett.99.177204. PubMed DOI

Magda G. Z. Jin X. Hagymási I. Vancsó P. Osváth Z. Nemes-Incze P. Hwang C. Biró L. P. Tapasztó L. Nature. 2014;514:608–611. doi: 10.1038/nature13831. PubMed DOI

Sun Y. Zheng Y. Pan H. Chen J. Zhang W. Fu L. Zhang K. Tang N. Du Y. npj Quantum Mater. 2017;5:2397–4648.

Ibragimova R. Puska M. J. Komsa H.-P. ACS Nano. 2019;13:9171–9181. doi: 10.1021/acsnano.9b03511. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...