Modeling size and edge functionalization of MXene-based quantum dots and their effect on electronic and magnetic properties
Status PubMed-not-MEDLINE Language English Country England, Great Britain Media electronic-ecollection
Document type Journal Article
PubMed
38059028
PubMed Central
PMC10696970
DOI
10.1039/d3na00474k
PII: d3na00474k
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
In the last six years, the synthesis of MXene-based quantum dots (MXQDs) has gained widespread attention. Due to the quantum confinement effect, it is possible to significantly improve their properties compared to 2D counterparts, such as higher chemical stability and better electronic and optical properties. However, despite the growing interest in their properties, much remains unexplored. One of the biggest challenges is to study in more detail the structure of quantum dots, in particular, their edge functionalization and its effect on their properties. In this paper, the structural stability and electronic and magnetic properties of Ti2CO2 QDs based on different lateral dimensions and edge functionalization (-O, -F, and -OH) are investigated using density functional theory. The study shows that the energy gap of Ti2CO2-O QDs decreases with increasing lateral size for both nonmagnetic (spin-unpolarized, close shell) and magnetic (spin-polarized, open shell) cases. Furthermore, the magnetic behavior of quantum dots was revealed by shrinking from 2D Ti2CO2 to 0D Ti2CO2 QDs with lateral dimensions below 1.4 nm. The binding energy confirms the stability of all three types of edge functionalization, while the most stable structure was observed under fully saturated edge oxygenation. Moreover, it was also found that the spin density distribution and the energy gap of Ti2CO2-X QDs (X = O, F, and OH) are both dependent on the type of atom saturation. Size and edge confinement modeling has been demonstrated to be an effective tool for tuning the electronic and magnetic properties of MXQDs. Moreover, the observed enhanced spin polarization together with tunable magnetic properties makes the ultrafine Ti2CO2-X QDs promising candidates for spintronic applications.
See more in PubMed
Naguib M. Kurtoglu M. Presser V. Lu J. Niu J. Heon M. Hultman L. Gogotsi Y. Barsoum M. W. Adv. Mater. 2011;23:4248–4253. doi: 10.1002/adma.201102306. PubMed DOI
Naguib M. Mochalin V. N. Barsoum M. W. Gogotsi Y. Adv. Mater. 2014;26:992–1005. doi: 10.1002/adma.201304138. PubMed DOI
Zhu J. Ha E. Zhao G. Zhou Y. Huang D. Yue G. Hu L. Sun N. Wang Y. Lee L. Y. S. Xu C. Wong K.-Y. Astruc D. Zhao P. Coord. Chem. Rev. 2017;352:306–327. doi: 10.1016/j.ccr.2017.09.012. DOI
Xiong D. Li X. Bai Z. Lu S. Small. 2018;14:1703419. doi: 10.1002/smll.201703419. PubMed DOI
Ketolainen T. Karlický F. J. Mater. Chem. C. 2022;10:3919–3928. doi: 10.1039/D2TC00246A. DOI
Kumar N. Karlický F. Appl. Phys. Lett. 2023;122:183102. doi: 10.1063/5.0143313. DOI
Sakhraoui T. Karlický F. ACS Omega. 2022;7:42221–42232. doi: 10.1021/acsomega.2c05037. PubMed DOI PMC
Ding Y. Nie X. Dong H. Rujisamphan N. Li Y. Phys. E. 2020;124:114328. doi: 10.1016/j.physe.2020.114328. DOI
Xue Q. Zhang H. Zhu M. Pei Z. Li H. Wang Z. Huang Y. Huang Y. Deng Q. Zhou J. Du S. Huang Q. Zhi C. Adv. Mater. 2017;29:1604847. doi: 10.1002/adma.201604847. PubMed DOI
Wang X. Sun G. Li N. Chen P. Chem. Soc. Rev. 2016;45:2239–2262. doi: 10.1039/C5CS00811E. PubMed DOI
Pan D. Zhang J. Li Z. Wu M. Adv. Mater. 2010;22:734–738. doi: 10.1002/adma.200902825. PubMed DOI
Chen P. Li N. Chen X. Ong W.-J. Zhao X. 2D Materials. 2017;5:014002. doi: 10.1088/2053-1583/aa8d37. DOI
Huo B. Liu B. Chen T. Cui L. Xu G. Liu M. Liu J. Langmuir. 2017;33:10673–10678. doi: 10.1021/acs.langmuir.7b01699. PubMed DOI
Zhang Z. Zhang J. Chen N. Qu L. Energy Environ. Sci. 2012;5:8869–8890. doi: 10.1039/C2EE22982J. DOI
Quan X. Wenjing Y. Yangyang W. Shengkun L. Zheng L. Wee-Jun O. Neng L. Appl. Mater. Today. 2019;16:90–101. doi: 10.1016/j.apmt.2019.05.001. DOI
Guan Q. Ma J. Yang W. Zhang R. Zhang X. Dong X. Fan Y. Cai L. Cao Y. Zhang Y. Li N. Xu Q. Nanoscale. 2019;11:14123–14133. doi: 10.1039/C9NR04421C. PubMed DOI
Xu G. Niu Y. Yang X. Jin Z. Wang Y. Xu Y. Niu H. Adv. Opt. Mater. 2018;6:1800951. doi: 10.1002/adom.201800951. DOI
Feng J. Guo Q. Liu H. Chen D. Tian Z. Xia F. Ma S. Yu L. Dong L. Carbon. 2019;155:491–498. doi: 10.1016/j.carbon.2019.09.009. DOI
Abdelsalam H. Elhaes H. Ibrahim M. A. Chem. Phys. Lett. 2018;695:138–148. doi: 10.1016/j.cplett.2018.02.015. DOI
Li Y. Shu H. Niu X. Wang J. J. Phys. Chem. C. 2015;119:24950–24957. doi: 10.1021/acs.jpcc.5b05935. DOI
Abdelsalam H. Saroka V. A. Ali M. Teleb N. H. Elhaes H. Ibrahim M. A. Phys. E. 2019;108:339–346. doi: 10.1016/j.physe.2018.07.022. DOI
Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Petersson G. A., Nakatsuji H., Li X., Caricato M., Marenich A. V., Bloino J., Janesko B. G., Gomperts R., Mennucci B. and Hratch D. J., Gaussian 16, Revision B.01, 2016
Dennington R., Keith T. A. and Millam J. M., GaussView Version 6, Semichem Inc., Shawnee Mission, KS, 2019
Chai J.-D. Head-Gordon M. J. Chem. Phys. 2008;128:084106. doi: 10.1063/1.2834918. PubMed DOI
Rassolov V. A. Ratner M. A. Pople J. A. Redfern P. C. Curtiss L. A. J. Comput. Chem. 2001;22:976–984. doi: 10.1002/jcc.1058. DOI
Yanai T. Tew D. P. Handy N. C. Chem. Phys. Lett. 2004;393:51–57. doi: 10.1016/j.cplett.2004.06.011. DOI
Becke A. D. J. Chem. Phys. 1993;98:5648–5652. doi: 10.1063/1.464913. DOI
Lee C. Yang W. Parr R. G. Phys. Rev. B: Condens. Matter Mater. Phys. 1988;37:785–789. doi: 10.1103/PhysRevB.37.785. PubMed DOI
Vosko S. H. Wilk L. Nusair M. Can. J. Phys. 1980;58:1200–1211. doi: 10.1139/p80-159. DOI
Krukau A. V. Vydrov O. A. Izmaylov A. F. Scuseria G. E. J. Chem. Phys. 2006;125:224106. doi: 10.1063/1.2404663. PubMed DOI
Perdew J. P. Burke K. Ernzerhof M. Phys. Rev. Lett. 1997;78:1396. doi: 10.1103/PhysRevLett.78.1396. PubMed DOI
Becke A. D. Phys. Rev. A. 1988;38:3098–3100. doi: 10.1103/PhysRevA.38.3098. PubMed DOI
Perdew J. P. Ruzsinszky A. Csonka G. I. Constantin L. A. Sun J. Phys. Rev. Lett. 2011;106:179902. doi: 10.1103/PhysRevLett.106.179902. PubMed DOI
Zhao Y. Truhlar D. G. J. Chem. Phys. 2006;125:194101. doi: 10.1063/1.2370993. PubMed DOI
McLean A. D. Chandler G. S. J. Chem. Phys. 1980;72:5639–5648. doi: 10.1063/1.438980. DOI
Raghavachari K. Trucks G. W. J. Chem. Phys. 1989;91:1062–1065. doi: 10.1063/1.457230. DOI
Kendall R. A. Dunning T. H. Harrison R. J. J. Chem. Phys. 1992;96:6796–6806. doi: 10.1063/1.462569. DOI
Weigend F. Phys. Chem. Chem. Phys. 2006;8:1057–1065. doi: 10.1039/B515623H. PubMed DOI
Bacskay G. B. Chem. Phys. 1981;61:385–404. doi: 10.1016/0301-0104(81)85156-7. DOI
Szabo A. and Ostlund N. S., Modern Quantum Chemistry, Dover Publications, Mineola, New York, 1996
Karlický F. Otyepka M. Int. J. Quantum Chem. 2014;114:987–992. doi: 10.1002/qua.24627. DOI
Karlický F. Otyepka M. J. Chem. Theory Comput. 2011;7:2876–2885. doi: 10.1021/ct200372y. PubMed DOI
Reiher M. Salomon O. Artur Hess B. Theor. Chem. Acc. 2001;107:48–55.
Radoń M. Phys. Chem. Chem. Phys. 2014;16:14479–14488. doi: 10.1039/C3CP55506B. PubMed DOI
Dubecký M. Minárik S. Karlický F. J. Chem. Phys. 2023;158:054703. doi: 10.1063/5.0140315. PubMed DOI
Ding Y. Nie X. Dong H. Rujisamphan N. Li Y. Nanoscale Adv. 2020;2:2471–2477. doi: 10.1039/C9NA00632J. PubMed DOI PMC
Sudolská M. Dubecký M. Sarkar S. Reckmeier C. J. Zbořil R. Rogach A. L. Otyepka M. J. Phys. Chem. C. 2015;119:13369–13373. doi: 10.1021/acs.jpcc.5b04080. DOI
Pearson R. G. Acc. Chem. Res. 1993;26:250–255. doi: 10.1021/ar00029a004. DOI
Wang W. L. Meng S. Kaxiras E. Nano Lett. 2008;8:241–245. doi: 10.1021/nl072548a. PubMed DOI
Fernández-Rossier J. Palacios J. J. Phys. Rev. Lett. 2007;99:177204. doi: 10.1103/PhysRevLett.99.177204. PubMed DOI
Magda G. Z. Jin X. Hagymási I. Vancsó P. Osváth Z. Nemes-Incze P. Hwang C. Biró L. P. Tapasztó L. Nature. 2014;514:608–611. doi: 10.1038/nature13831. PubMed DOI
Sun Y. Zheng Y. Pan H. Chen J. Zhang W. Fu L. Zhang K. Tang N. Du Y. npj Quantum Mater. 2017;5:2397–4648.
Ibragimova R. Puska M. J. Komsa H.-P. ACS Nano. 2019;13:9171–9181. doi: 10.1021/acsnano.9b03511. PubMed DOI PMC