Electronic Nature Transition and Magnetism Creation in Vacancy-Defected Ti2CO2 MXene under Biaxial Strain: A DFTB + U Study
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
36440157
PubMed Central
PMC9686191
DOI
10.1021/acsomega.2c05037
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The structural, electronic, and magnetic properties of vacancy defect in Ti2CO2 MXene and the effect of strain have been investigated using the density functional tight-binding (DFTB) approach including spin-polarization with Hubbard onsite correction (DFTB + U). The band gap of pure Ti2CO2 is ∼1.3 eV, which decreases to ∼0.4 and ∼1.1 eV in the case of C- and O-vacancies, respectively, i.e., the semiconducting behavior is retained. In contrast, Ti2CO2 undergoes semiconductor-to-metal transition by the introduction of a single Ti-vacancy. This transition is the result of introduced localized states in the vicinity of the Fermi level by the vacancy. Both Ti- and O-vacancies have zero net magnetic moments. Interestingly, the nonmagnetic (NM) ground state of semiconducting Ti2CO2 turns into a magnetic semiconductor by introducing a C-vacancy with a magnetization of ∼2 μB/cell. Furthermore, we studied the effect of strain on the electronic structure and magnetic properties of Ti-, C-, and O-vacant Ti2CO2. The nature of the band gap in the presence of single O-vacancy remains indirect in both compression and tensile strain, and the size of the band gap decreases. Compression strain on Ti-vacant Ti2CO2 changes metal into a direct semiconductor, and the metallic character remains under tensile biaxial strain. In opposition, a semiconductor-to-metal transition occurs by applying a compressive biaxial strain on C-vacant Ti2CO2. We also find that the magnetism is preserved under tensile strain and suppressed under compression strain on VC-Ti2CO2. Moreover, we show that double C-vacancies maintain magnetism. Our findings provide important characteristics for the application of the most frequent MXene material and should motivate further investigations because experimentally achieved MXenes always contain point defects.
Zobrazit více v PubMed
Bandyopadhyay A.; Ghosh D.; Pati S. K. Effects of point defects on the magnetoelectronic structures of MXenes from first principles. Phys. Chem. Chem. Phys. 2018, 20, 4012–4019. 10.1039/C7CP07165E. PubMed DOI
Hu T.; Yang J.; Wang X. Carbon vacancies in Ti2CT2 MXenes: defects or a new opportunity?. Phys. Chem. Chem. Phys. 2017, 19, 31773–31780. 10.1039/C7CP06593K. PubMed DOI
Wang T.; Li N.; Li Y.; Kai J.-J.; Fan J. M-Site Vacancy-Mediated Adsorption and Diffusion of Sodium on Ti2CO2 MXene. J. Phys. Chem. C 2021, 125, 82–90. 10.1021/acs.jpcc.0c08302. DOI
Akgenc B. Intriguing of two-dimensional Janus surface-functionalized MXenes: An ab initio calculation. Comput. Mater. Sci. 2020, 171, 10923110.1016/j.commatsci.2019.109231. DOI
Anasori B.; Lukatskaya M. R.; Gogotsi Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2017, 2, 1609810.1038/natrevmats.2016.98. DOI
Zhang Y.; Xia W.; Wu Y.; Zhang P. Prediction of MXene based 2D tunable band gap semiconductors: GW quasiparticle calculations. Nanoscale 2019, 11, 3993–4000. 10.1039/C9NR01160A. PubMed DOI
Sarikurt S.; Çakır D.; Keçeli M.; Sevik C. The influence of surface functionalization on thermal transport and thermoelectric properties of MXene monolayers. Nanoscale 2018, 10, 8859–8868. 10.1039/C7NR09144C. PubMed DOI
Guo X.; Zhang P.; Xue J. Ti2CO2 Nanotubes with Negative Strain Energies and Tunable Band Gaps Predicted from First-Principles Calculations. J. Phys. Chem. Lett. 2016, 7, 5280–5284. 10.1021/acs.jpclett.6b02556. PubMed DOI
Hu Q.; Sun D.; Wu Q.; Wang H.; Wang L.; Liu B.; Zhou A.; He J. MXene: ANew Family of Promising Hydrogen Storage Medium. J. Phys. Chem. A 2013, 117, 14253–14260. 10.1021/jp409585v. PubMed DOI
Gao G.; Ding G.; Li J.; Yao K.; Wu M.; Qian M. Monolayer MXenes: promising half-metals and spin gapless semiconductors. Nanoscale 2016, 8, 8986–8994. 10.1039/C6NR01333C. PubMed DOI
Lukatskaya M. R.; Mashtalir O.; Ren C. E.; Dall’Agnese Y.; Rozier P.; Taberna P. L.; Naguib M.; Simon P.; Barsoum M. W.; Gogotsi Y. Cation Intercalation and High Volumetric Capacitance of Two-Dimensional Titanium Carbide. Science 2013, 341, 1502–1505. 10.1126/science.1241488. PubMed DOI
Ling Z.; Ren C. E.; Zhao M.-Q.; Yang J.; Giammarco J. M.; Qiu J.; Barsoum M. W.; Gogotsi Y. Flexible and conductive MXene films and nanocomposites with high capacitance. Proc. Natl. Acad. Sci. U.S.A. 2014, 111, 16676–16681. 10.1073/pnas.1414215111. PubMed DOI PMC
Khan S. A.; Amin B.; Gan L.-Y.; Ahmad I. Strain engineering of electronic structures and photocatalytic responses of MXenes functionalized by oxygen. Phys. Chem. Chem. Phys. 2017, 19, 14738–14744. 10.1039/C7CP02513K. PubMed DOI
Zhang Y.; Zha X.-H.; Luo K.; Qiu N.; Zhou Y.; He J.; Chai Z.; Huang Z.; Huang Q.; Liang Y.; Du S. Tuning the Electrical Conductivity of Ti2CO2 MXene by Varying the Layer Thickness and Applying Strains. J. Phys. Chem. C 2019, 123, 6802–6811. 10.1021/acs.jpcc.8b10888. DOI
Naguib M.; Kurtoglu M.; Presser V.; Lu J.; Niu J.; Heon M.; Hultman L.; Gogotsi Y.; Barsoum M. W. Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2. Adv. Mater. 2011, 23, 4248–4253. 10.1002/adma.201102306. PubMed DOI
Wang H.; Wu Y.; Yuan X.; Zeng G.; Zhou J.; Wang X.; Chew J. W. Clay-Inspired MXene-Based Electrochemical Devices and Photo-Electrocatalyst: State-of-the-Art Progresses and Challenges. Adv. Mater. 2018, 30, 170456110.1002/adma.201704561. PubMed DOI
Jiang Q.; Kurra N.; Alhabeb M.; Gogotsi Y.; Alshareef H. N. All Pseudocapacitive MXene-RuO2 Asymmetric Supercapacitors. Adv. Energy Mater. 2018, 8, 170304310.1002/aenm.201703043. DOI
Yu X.-f.; Li Y.-c.; Cheng J.-b.; Liu Z.-b.; Li Q.-z.; Li W.-z.; Yang X.; Xiao B. Monolayer Ti2CO2: A Promising Candidate for NH3 Sensor or Capturer with High Sensitivity and Selectivity. ACS Appl. Mater. Interfaces 2015, 7, 13707–13713. 10.1021/acsami.5b03737. PubMed DOI
Morales-García Á.; Fernandez-Fernandez A.; Vines F.; Illas F. CO2 abatement using two-dimensional MXene carbides. J. Mater. Chem. A 2018, 6, 3381–3385. 10.1039/C7TA11379J. DOI
Persson I.; Halim J.; Lind H.; Hansen T. W.; Wagner J. B.; Naslund L.-A.; Darakchieva V.; Palisaitis J.; Rosen J.; Persson P. O. A. 2D Transition Metal Carbides (MXenes) for Carbon Capture. Adv. Mater. 2019, 31, 180547210.1002/adma.201805472. PubMed DOI
Zhao L.; Dong B.; et al. Interdiffusion Reaction-Assisted Hybridization of Two-Dimensional Metal–Organic Frameworks and Ti3C2Tx sheets for Electrocatalytic Oxygen Evolution. ACS Nano 2017, 11, 5800–5807. 10.1021/acsnano.7b01409. PubMed DOI
Gouveia J. D.; Morales-Garcia A.; Vines F.; Illas F.; Gomes J. R. MXenes as promising catalysts for water dissociation. Appl. Catal., B 2020, 260, 11819110.1016/j.apcatb.2019.118191. DOI
Gouveia J. D.; Morales-Garcia A.; Vines F.; Gomes J. R. B.; Illas F. Facile Heterogeneously Catalyzed Nitrogen Fixation by MXenes. ACS Catal. 2020, 10, 5049–5056. 10.1021/acscatal.0c00935. DOI
Guo J.; Sun Y.; Liu B.; Zhang Q.; Peng Q. Two-dimensional scandium-based carbides (MXene)Band gap modulation and optical properties. J. Alloys Compd. 2017, 712, 752–759. 10.1016/j.jallcom.2017.04.149. DOI
Lai S.; Jeon J.; Jang S. K.; Xu J.; Choi Y. J.; Park J.-H.; Hwang E.; Lee S. Surface group modification and carrier transport properties of layered transition metal carbides (Ti2CTx, T: -OH, −F and −O). Nanoscale 2015, 7, 19390–19396. 10.1039/C5NR06513E. PubMed DOI
Khazaei M.; Arai M.; Sasaki T.; Chung C.-Y.; Venkataramanan N. S.; Estili M.; Sakka Y.; Kawazoe Y. Novel Electronic and Magnetic Properties of Two-Dimensional Transition Metal Carbides and Nitrides. Adv. Funct. Mater. 2013, 23, 2185–2192. 10.1002/adfm.201202502. DOI
Ketolainen T.; Karlický F. Optical gaps and excitons in semiconducting transition metal carbides (MXenes). J. Mater. Chem. C 2022, 10, 3919–3928. 10.1039/D2TC00246A. DOI
Johari P.; Shenoy V. B. Modulating Optical Properties of Graphene Oxide: Role of Prominent Functional Groups. ACS Nano 2011, 5, 7640–7647. 10.1021/nn202732t. PubMed DOI
Mashtalir O.; Naguib M.; Mochalin V. N.; Dall’Agnese Y.; Heon M.; Barsoum M. W.; Gogotsi Y. Intercalation and delamination of layered carbides and carbonitrides. Nat. Commun. 2013, 4, 171610.1038/ncomms2664. PubMed DOI
Harris K. J.; Bugnet M.; Naguib M.; Barsoum M. W.; Goward G. R. Direct Measurement of Surface Termination Groups and Their Connectivity in the 2D MXene V2CTx Using NMR Spectroscopy. J. Phys. Chem. C 2015, 119, 13713–13720. 10.1021/acs.jpcc.5b03038. DOI
Hope M. A.; Forse A. C.; Griffith K. J.; Lukatskaya M. R.; Ghidiu M.; Gogotsi Y.; Grey C. P. NMR reveals the surface functionalisation of Ti3C2 MXene. Phys. Chem. Chem. Phys. 2016, 18, 5099–5102. 10.1039/C6CP00330C. PubMed DOI
Wang H.-H.; Cui Y.-L.; Zaorsky N. G.; Lan J.; Deng L.; Zeng X.-L.; Wu Z.-Q.; Tao Z.; Guo W.-H.; Wang Q.-X.; et al. Mesenchymal stem cells generate pericytes to promote tumor recurrence via vasculogenesis after stereotactic body radiation therapy. Cancer Lett. 2016, 375, 349–359. 10.1016/j.canlet.2016.02.033. PubMed DOI
Karlsson L. H.; Birch J.; Halim J.; Barsoum M. W.; Persson P. O. A. Atomically Resolved Structural and Chemical Investigation of Single MXene Sheets. Nano Lett. 2015, 15, 4955–4960. 10.1021/acs.nanolett.5b00737. PubMed DOI
Ibragimova R.; Puska M. J.; Komsa H.-P. pH-Dependent Distribution of Functional Groups on Titanium-Based MXenes. ACS Nano 2019, 13, 9171–9181. 10.1021/acsnano.9b03511. PubMed DOI PMC
Naguib M.; Mashtalir O.; Carle J.; Presser V.; Lu J.; Hultman L.; Gogotsi Y.; Barsoum M. W. Two-Dimensional Transition Metal Carbides. ACS Nano 2012, 6, 1322–1331. 10.1021/nn204153h. PubMed DOI
Wang C.; Han H.; Guo Y. Stabilities and electronic properties of vacancy-doped Ti2CO2. Comput. Mater. Sci. 2019, 159, 127–135. 10.1016/j.commatsci.2018.12.007. DOI
Zha X.-H.; Huang Q.; He J.; He H.; Zhai J.; Francisco J. S.; Du S. The thermal and electrical properties of the promising semiconductor MXene Hf2CO2. Sci. Rep. 2016, 6, 2797110.1038/srep27971. PubMed DOI PMC
Zhu Q.; Chu Y.; Wang Z.; Chen N.; Lin L.; Liu F.; Pan Q. Robust superhydrophobic polyurethane sponge as a highly reusable oil-absorption material. J. Mater. Chem. A 2013, 1, 5386–5393. 10.1039/c3ta00125c. DOI
Ding Y.-m.; Nie X.; Dong H.; Rujisamphan N.; Li Y. Many-body effects in an MXene Ti2CO2 monolayer modified by tensile strain: GW-BSE calculations. Nanoscale Adv. 2020, 2, 2471–2477. 10.1039/C9NA00632J. PubMed DOI PMC
Xie Y.; Kent P. R. C. Hybrid density functional study of structural and electronic properties of functionalized Tin+1Xn (X=C, N) monolayers. Phys. Rev. B 2013, 87, 23544110.1103/PhysRevB.87.235441. DOI
Zhang J.-J.; Dong S. Superconductivity of monolayer Mo2C: The key role of functional groups. J. Chem. Phys. 2017, 146, 03470510.1063/1.4974085. PubMed DOI
Akgenc B. New predicted two-dimensional MXenes and their structural, electronic and lattice dynamical properties. Solid State Commun. 2019, 303–304, 11373910.1016/j.ssc.2019.113739. DOI
Champagne A.; Shi L.; Ouisse T.; Hackens B.; Charlier J.-C. Electronic and vibrational properties of V2C-based MXenes: From experiments to first-principles modeling. Phys. Rev. B 2018, 97, 11543910.1103/PhysRevB.97.115439. DOI
Zhang X.; He T.; Meng W.; Jin L.; Li Y.; Dai X.; Liu G. Mn2C Monolayer: Hydrogenation/Oxygenation-Induced Strong Ferromagnetism and Potential Applications. J. Phys. Chem. C 2019, 123, 16388–16392. 10.1021/acs.jpcc.9b04445. DOI
Urbankowski P.; Anasori B.; Makaryan T.; Er D.; Kota S.; Walsh P. L.; Zhao M.; Shenoy V. B.; Barsoum M. W.; Gogotsi Y. Synthesis of two-dimensional titanium nitride Ti4N3 (MXene). Nanoscale 2016, 8, 11385–11391. 10.1039/C6NR02253G. PubMed DOI
Sternik M.; Wdowik U. D. Probing the impact of magnetic interactions on the lattice dynamics of two-dimensional Ti2X (X = C, N) MXenes. Phys. Chem. Chem. Phys. 2018, 20, 7754–7763. 10.1039/C7CP08270C. PubMed DOI
Chakraborty P.; Das T.; Nafday D.; Boeri L.; Saha-Dasgupta T. Manipulating the mechanical properties of Ti2C MXene: Effect of substitutional doping. Phys. Rev. B 2017, 95, 18410610.1103/PhysRevB.95.184106. DOI
Perdew J. P.; Burke K.; Ernzerhof M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. 10.1103/PhysRevLett.77.3865. PubMed DOI
Krukau A. V.; Vydrov O. A.; Izmaylov A. F.; Scuseria G. E. Influence of the exchange screening parameter on the performance of screened hybrid functionals. J. Chem. Phys. 2006, 125, 22410610.1063/1.2404663. PubMed DOI
Hybertsen M. S.; Louie S. G. Electron correlation in semiconductors and insulators: Band gaps and quasiparticle energies. Phys. Rev. B 1986, 34, 5390–5413. 10.1103/PhysRevB.34.5390. PubMed DOI
Yu X.-f.; Cheng J.-b.; Liu Z.-b.; Li Q.-z.; Li W.-z.; Yang X.; Xiao B. The band gap modulation of monolayer Ti2CO2 by strain. RSC Adv. 2015, 5, 30438–30444. 10.1039/C5RA01586C. DOI
Gandi A. N.; Alshareef H. N.; Schwingenschlögl U. Thermoelectric Performance of the MXenes M2CO2 (M = Ti, Zr, or Hf). Chem. Mater. 2016, 28, 1647–1652. 10.1021/acs.chemmater.5b04257. DOI
Zhang X.; Lei J.; Wu D.; Zhao X.; Jing Y.; Zhou Z. A Ti-anchored Ti2CO2 monolayer (MXene) as a single-atom catalyst for CO oxidation. J. Mater. Chem. A 2016, 4, 4871–4876. 10.1039/C6TA00554C. DOI
Zhang X.; Zhang Z.; Li J.; Zhao X.; Wu D.; Zhou Z. Ti2CO2 MXene: a highly active and selective photocatalyst for CO2 reduction. J. Mater. Chem. A 2017, 5, 12899–12903. 10.1039/C7TA03557H. DOI
Zhao Y.; Zhao J. Functional group-dependent anchoring effect of titanium carbide-based MXenes for lithium-sulfur batteries: A computational study. Appl. Surf. Sci. 2017, 412, 591–598. 10.1016/j.apsusc.2017.04.013. DOI
Sim E. S.; Yi G. S.; Je M.; Lee Y.; Chung Y.-C. Understanding the anchoring behavior of titanium carbide-based MXenes depending on the functional group in LiS batteries: A density functional theory study. J. Power Sources 2017, 342, 64–69. 10.1016/j.jpowsour.2016.12.042. DOI
Tran T. T.; Bray K.; Ford M. J.; Toth M.; Aharonovich I. Quantum emission from hexagonal boron nitride monolayers. Nat. Nanotechnol. 2016, 11, 37–41. 10.1038/nnano.2015.242. PubMed DOI
Nair R. R.; Sepioni M.; Tsai I.-L.; Lehtinen O.; Keinonen J.; Krasheninnikov A. V.; Thomson T.; Geim A. K.; Grigorieva I. V. Spin-half paramagnetism in graphene induced by point defects. Nat. Phys. 2012, 8, 199–202. 10.1038/nphys2183. DOI
Qiu H.; Xu T.; Wang Z.; Ren W.; Nan H.; Ni Z.; Chen Q.; Yuan S.; Miao F.; Song F.; et al. Hopping transport through defect-induced localized states in molybdenum disulphide. Nat. Commun. 2013, 4, 264210.1038/ncomms3642. PubMed DOI
Ugeda M. M.; Brihuega I.; Guinea F.; Gomez-Rodriguez J. M. Missing Atom as a Source of Carbon Magnetism. Phys. Rev. Lett. 2010, 104, 09680410.1103/PhysRevLett.104.096804. PubMed DOI
Eckmann A.; Felten A.; Mishchenko A.; Britnell L.; Krupke R.; Novoselov K. S.; Casiraghi C. Probing the Nature of Defects in Graphene by Raman Spectroscopy. Nano Lett. 2012, 12, 3925–3930. 10.1021/nl300901a. PubMed DOI
Komsa H.-P.; Krasheninnikov A. V. Native defects in bulk and monolayer MoS2from first principles. Phys. Rev. B 2015, 91, 12530410.1103/PhysRevB.91.125304. DOI
Sang X.; Xie Y.; Lin M.-W.; Alhabeb M.; Van Aken K. L.; Gogotsi Y.; Kent P. R. C.; Xiao K.; Unocic R. R. Atomic Defects in Monolayer Titanium Carbide (Ti3C2Tx) MXene. ACS Nano 2016, 10, 9193–9200. 10.1021/acsnano.6b05240. PubMed DOI
Xiao-Hong L.; Xiang-Ying S.; Rui-Zhou Z. Effect of vacancies on the structural and electronic properties of Ti2CO2. RSC Adv. 2019, 9, 27646–27651. 10.1039/C9RA04393D. PubMed DOI PMC
Bafekry A.; Nguyen C. V.; Stampfl C.; Akgenc B.; Ghergherehchi M. Oxygen Vacancies in the Single Layer of Ti2CO2 MXene: Effects of Gating Voltage, Mechanical Strain, and Atomic Impurities. Phys. Status Solidi B 2020, 257, 200034310.1002/pssb.202000343. DOI
Noh J.-Y.; Kim H.; Kim Y.-S. Stability and electronic structures of native defects in single-layer MoS2. Phys. Rev. B 2014, 89, 20541710.1103/PhysRevB.89.205417. DOI
Salehi S.; Saffarzadeh A. Atomic defect states in monolayers of MoS2 and WS2. Surf. Sci. 2016, 651, 215–221. 10.1016/j.susc.2016.05.003. DOI
Li J.; Du Y.; Huo C.; Wang S.; Cui C. Thermal stability of two-dimensional Ti2C nanosheets. Ceram. Int. 2015, 41, 2631–2635. 10.1016/j.ceramint.2014.10.070. DOI
Li J.; Shan Z.; Ma E. Elastic strain engineering for unprecedented materials properties. MRS Bull. 2014, 39, 108–114. 10.1557/mrs.2014.3. DOI
Li Z.; Liu X.; Wang X.; Yang Y.; Liu S.-C.; Shi W.; Li Y.; Xing X.; Xue D.-J.; Hu J.-S. Strain-engineering the in-plane electrical anisotropy of GeSe monolayers. Phys. Chem. Chem. Phys. 2020, 22, 914–918. 10.1039/C9CP05058B. PubMed DOI
Zhang H.; Yang G.; Zuo X.; Tang H.; Yang Q.; Li G. Computational studies on the structural, electronic and optical properties of graphene-like MXenes (M2CT2, M = Ti, Zr, Hf; T = O, F, OH) and their potential applications as visible-light driven photocatalysts. J. Mater. Chem. A 2016, 4, 12913–12920. 10.1039/C6TA04628B. DOI
Siriwardane E. M. D.; Çakir D. Strain engineering of electronic and magnetic properties of double-transition metal ferromagnetic semiconductor MXenes. J. Appl. Phys. 2019, 125, 08252710.1063/1.5054131. DOI
Zhou W.; Liu Y.; Yang Y.; Wu P. Band Gap Engineering of SnO2 by Epitaxial Strain: Experimental and Theoretical Investigations. J. Phys. Chem. C 2014, 118, 6448–6453. 10.1021/jp500546r. DOI
Horzum S.; Sahin H.; Cahangirov S.; Cudazzo P.; Rubio A.; Serin T.; Peeters F. M. Phonon softening and direct to indirect band gap crossover in strained single-layer MoSe2. Phys. Rev. B 2013, 87, 12541510.1103/PhysRevB.87.125415. DOI
Fei R.; Yang L. Strain-Engineering the Anisotropic Electrical Conductance of Few-Layer Black Phosphorus. Nano Lett. 2014, 14, 2884–2889. 10.1021/nl500935z. PubMed DOI
Aradi B.; Hourahine B.; Frauenheim T. DFTB+, a Sparse Matrix-Based Implementation of the DFTB Method. J. Phys. Chem. A 2007, 111, 5678–5684. 10.1021/jp070186p. PubMed DOI
Hourahine B.; Aradi B.; Blum V.; et al. DFTB+, a software package for efficient approximate density functional theory based atomistic simulations. J. Chem. Phys. 2020, 152, 12410110.1063/1.5143190. PubMed DOI
Elstner M.; Porezag D.; Jungnickel G.; Elsner J.; Haugk M.; Frauenheim T.; Suhai S.; Seifert G. Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties. Phys. Rev. B 1998, 58, 7260–7268. 10.1103/PhysRevB.58.7260. DOI
Zheng G.; Witek H. A.; Bobadova-Parvanova P.; Irle S.; Musaev D. G.; Prabhakar R.; Morokuma K.; Lundberg M.; Elstner M.; Köhler C.; Frauenheim T. Parameter Calibration of Transition-Metal Elements for the Spin-Polarized Self-Consistent-Charge Density-Functional Tight-Binding (DFTB) Method: Sc, Ti, Fe, Co, and Ni. J. Chem. Theory Comput. 2007, 3, 1349–1367. 10.1021/ct600312f. PubMed DOI
Enyashin A.; Ivanovskii A. Atomic structure, comparative stability and electronic properties of hydroxylated Ti2C and Ti3C2 nanotubes. Comput. Theor. Chem. 2012, 989, 27–32. 10.1016/j.comptc.2012.02.034. DOI
Enyashin A. N.; Ivanovskii A. L. Structural and Electronic Properties and Stability of MXenes Ti2C and Ti3C2 Functionalized by Methoxy Groups. J. Phys. Chem. C 2013, 117, 13637–13643. 10.1021/jp401820b. DOI
Enyashin A.; Ivanovskii A. Two-dimensional titanium carbonitrides and their hydroxylated derivatives: Structural, electronic properties and stability of MXenes Ti3C2-xNx(OH)2 from DFTB calculations. J. Solid State Chem. 2013, 207, 42–48. 10.1016/j.jssc.2013.09.010. DOI
Sakhraoui T.; Karlický F. DFTB investigations of the electronic and magnetic properties of fluorographene with vacancies and with adsorbed chemical groups. Phys. Chem. Chem. Phys. 2022, 24, 3312–3321. 10.1039/D1CP00995H. PubMed DOI
Guo X.; Zhang X.; Zhao S.; Huang Q.; Xue J. High adsorption capacity of heavy metals on two-dimensional MXenes: an ab initio study with molecular dynamics simulation. Phys. Chem. Chem. Phys. 2016, 18, 228–233. 10.1039/C5CP06078H. PubMed DOI
Aryasetiawan F.; Karlsson K.; Jepsen O.; Schönberger U. Calculations of Hubbard U from first-principles. Phys. Rev. B 2006, 74, 12510610.1103/PhysRevB.74.125106. DOI
Eyert V. A Comparative Study on Methods for Convergence Acceleration of Iterative Vector Sequences. J. Comput. Phys. 1996, 124, 271–285. 10.1006/jcph.1996.0059. DOI
Momma K.; Izumi F. VESTA3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44, 1272–1276. 10.1107/S0021889811038970. DOI
Hong L.; Klie R. F.; Öğüt S. First-principles study of size- and edge-dependent properties of MXene nanoribbons. Phys. Rev. B 2016, 93, 11541210.1103/PhysRevB.93.115412. DOI
Li L. Lattice dynamics and electronic structures of Ti3C2O2 and Mo2TiC2O2 (MXenes): The effect of Mo substitution. Comput. Mater. Sci. 2016, 124, 8–14. 10.1016/j.commatsci.2016.07.008. DOI
Wan Q.; Li S.; Liu J.-B. First-Principle Study of Li-Ion Storage of Functionalized Ti2C Monolayer with Vacancies. ACS Appl. Mater. Interfaces 2018, 10, 6369–6377. 10.1021/acsami.7b18369. PubMed DOI
Guo Z.; Miao N.; Zhou J.; Pan Y.; Sun Z. Coincident modulation of lattice and electron thermal transport performance in MXenes via surface functionalization. Phys. Chem. Chem. Phys. 2018, 20, 19689–19697. 10.1039/C8CP02564A. PubMed DOI
Yang E.; Ji H.; Kim J.; Kim H.; Jung Y. Exploring the possibilities of two-dimensional transition metal carbides as anode materials for sodium batteries. Phys. Chem. Chem. Phys. 2015, 17, 5000–5005. 10.1039/C4CP05140H. PubMed DOI
Karlický F.; Turoň J. Fluorographane C2FH: Stable and wide band gap insulator with huge excitonic effect. Carbon 2018, 135, 134–144. 10.1016/j.carbon.2018.04.006. DOI
Jiang X.; Kuklin A. V.; Baev A.; Ge Y.; Ågren H.; Zhang H.; Prasad P. N. Two-dimensional MXenes: From morphological to optical, electric, and magnetic properties and applications. Phys. Rep. 2020, 848, 1–58. 10.1016/j.physrep.2019.12.006. DOI
Dubecký M.; Karlický F.; Minárik S.; Mitas L. Fundamental gap of fluorographene by many-body GW and fixed-node diffusion Monte Carlo methods. J. Chem. Phys. 2020, 153, 18470610.1063/5.0030952. PubMed DOI
Zhang H.; Hu T.; Wang X.; Li Z.; Hu M.; Wu E.; Zhou Y. Discovery of carbon-vacancy ordering in Nb4AlC3–x under the guidance of first-principles calculations. Sci. Rep. 2015, 5, 1419210.1038/srep14192. PubMed DOI PMC
Hu R.; Li Y. H.; Zhang Z. H.; Fan Z. Q.; Sun L. O-Vacancy-line defective Ti2CO2 nanoribbons: novel magnetism, tunable carrier mobility, and magnetic device behaviors. J. Mater. Chem. C 2019, 7, 7745–7759. 10.1039/C9TC01807G. DOI
Gibson J. M. Reading and Writing with Electron Beams. Phys. Today 1997, 50, 56–61. 10.1063/1.881964. DOI
Komsa H.-P.; Kotakoski J.; Kurasch S.; Lehtinen O.; Kaiser U.; Krasheninnikov A. V. Two-Dimensional Transition Metal Dichalcogenides under Electron Irradiation: Defect Production and Doping. Phys. Rev. Lett. 2012, 109, 03550310.1103/PhysRevLett.109.035503. PubMed DOI
Su X.; Guo R.-G.; Xu S.; Wang S.-J.; Li X.-H.; Cui H.-L. Influence of O-vacancy concentration on the structural, electronic properties and quantum capacitance of monolayer Ti2CO2: A first-principles study. Vacuum 2022, 196, 11074010.1016/j.vacuum.2021.110740. DOI
Lee Y.; Cho S. B.; Chung Y.-C. Tunable Indirect to Direct Band Gap Transition of Monolayer Sc2CO2 by the Strain Effect. ACS Appl. Mater. Interfaces 2014, 6, 14724–14728. 10.1021/am504233d. PubMed DOI
Lin Z.; Carvalho B. R.; Kahn E.; Lv R.; Rao R.; Terrones H.; Pimenta M. A.; Terrones M. Defect engineering of two-dimensional transition metal dichalcogenides. 2D Mater. 2016, 3, 02200210.1088/2053-1583/3/2/022002. DOI