Electronic Nature Transition and Magnetism Creation in Vacancy-Defected Ti2CO2 MXene under Biaxial Strain: A DFTB + U Study

. 2022 Nov 22 ; 7 (46) : 42221-42232. [epub] 20221110

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36440157

The structural, electronic, and magnetic properties of vacancy defect in Ti2CO2 MXene and the effect of strain have been investigated using the density functional tight-binding (DFTB) approach including spin-polarization with Hubbard onsite correction (DFTB + U). The band gap of pure Ti2CO2 is ∼1.3 eV, which decreases to ∼0.4 and ∼1.1 eV in the case of C- and O-vacancies, respectively, i.e., the semiconducting behavior is retained. In contrast, Ti2CO2 undergoes semiconductor-to-metal transition by the introduction of a single Ti-vacancy. This transition is the result of introduced localized states in the vicinity of the Fermi level by the vacancy. Both Ti- and O-vacancies have zero net magnetic moments. Interestingly, the nonmagnetic (NM) ground state of semiconducting Ti2CO2 turns into a magnetic semiconductor by introducing a C-vacancy with a magnetization of ∼2 μB/cell. Furthermore, we studied the effect of strain on the electronic structure and magnetic properties of Ti-, C-, and O-vacant Ti2CO2. The nature of the band gap in the presence of single O-vacancy remains indirect in both compression and tensile strain, and the size of the band gap decreases. Compression strain on Ti-vacant Ti2CO2 changes metal into a direct semiconductor, and the metallic character remains under tensile biaxial strain. In opposition, a semiconductor-to-metal transition occurs by applying a compressive biaxial strain on C-vacant Ti2CO2. We also find that the magnetism is preserved under tensile strain and suppressed under compression strain on VC-Ti2CO2. Moreover, we show that double C-vacancies maintain magnetism. Our findings provide important characteristics for the application of the most frequent MXene material and should motivate further investigations because experimentally achieved MXenes always contain point defects.

Zobrazit více v PubMed

Bandyopadhyay A.; Ghosh D.; Pati S. K. Effects of point defects on the magnetoelectronic structures of MXenes from first principles. Phys. Chem. Chem. Phys. 2018, 20, 4012–4019. 10.1039/C7CP07165E. PubMed DOI

Hu T.; Yang J.; Wang X. Carbon vacancies in Ti2CT2 MXenes: defects or a new opportunity?. Phys. Chem. Chem. Phys. 2017, 19, 31773–31780. 10.1039/C7CP06593K. PubMed DOI

Wang T.; Li N.; Li Y.; Kai J.-J.; Fan J. M-Site Vacancy-Mediated Adsorption and Diffusion of Sodium on Ti2CO2 MXene. J. Phys. Chem. C 2021, 125, 82–90. 10.1021/acs.jpcc.0c08302. DOI

Akgenc B. Intriguing of two-dimensional Janus surface-functionalized MXenes: An ab initio calculation. Comput. Mater. Sci. 2020, 171, 10923110.1016/j.commatsci.2019.109231. DOI

Anasori B.; Lukatskaya M. R.; Gogotsi Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2017, 2, 1609810.1038/natrevmats.2016.98. DOI

Zhang Y.; Xia W.; Wu Y.; Zhang P. Prediction of MXene based 2D tunable band gap semiconductors: GW quasiparticle calculations. Nanoscale 2019, 11, 3993–4000. 10.1039/C9NR01160A. PubMed DOI

Sarikurt S.; Çakır D.; Keçeli M.; Sevik C. The influence of surface functionalization on thermal transport and thermoelectric properties of MXene monolayers. Nanoscale 2018, 10, 8859–8868. 10.1039/C7NR09144C. PubMed DOI

Guo X.; Zhang P.; Xue J. Ti2CO2 Nanotubes with Negative Strain Energies and Tunable Band Gaps Predicted from First-Principles Calculations. J. Phys. Chem. Lett. 2016, 7, 5280–5284. 10.1021/acs.jpclett.6b02556. PubMed DOI

Hu Q.; Sun D.; Wu Q.; Wang H.; Wang L.; Liu B.; Zhou A.; He J. MXene: ANew Family of Promising Hydrogen Storage Medium. J. Phys. Chem. A 2013, 117, 14253–14260. 10.1021/jp409585v. PubMed DOI

Gao G.; Ding G.; Li J.; Yao K.; Wu M.; Qian M. Monolayer MXenes: promising half-metals and spin gapless semiconductors. Nanoscale 2016, 8, 8986–8994. 10.1039/C6NR01333C. PubMed DOI

Lukatskaya M. R.; Mashtalir O.; Ren C. E.; Dall’Agnese Y.; Rozier P.; Taberna P. L.; Naguib M.; Simon P.; Barsoum M. W.; Gogotsi Y. Cation Intercalation and High Volumetric Capacitance of Two-Dimensional Titanium Carbide. Science 2013, 341, 1502–1505. 10.1126/science.1241488. PubMed DOI

Ling Z.; Ren C. E.; Zhao M.-Q.; Yang J.; Giammarco J. M.; Qiu J.; Barsoum M. W.; Gogotsi Y. Flexible and conductive MXene films and nanocomposites with high capacitance. Proc. Natl. Acad. Sci. U.S.A. 2014, 111, 16676–16681. 10.1073/pnas.1414215111. PubMed DOI PMC

Khan S. A.; Amin B.; Gan L.-Y.; Ahmad I. Strain engineering of electronic structures and photocatalytic responses of MXenes functionalized by oxygen. Phys. Chem. Chem. Phys. 2017, 19, 14738–14744. 10.1039/C7CP02513K. PubMed DOI

Zhang Y.; Zha X.-H.; Luo K.; Qiu N.; Zhou Y.; He J.; Chai Z.; Huang Z.; Huang Q.; Liang Y.; Du S. Tuning the Electrical Conductivity of Ti2CO2 MXene by Varying the Layer Thickness and Applying Strains. J. Phys. Chem. C 2019, 123, 6802–6811. 10.1021/acs.jpcc.8b10888. DOI

Naguib M.; Kurtoglu M.; Presser V.; Lu J.; Niu J.; Heon M.; Hultman L.; Gogotsi Y.; Barsoum M. W. Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2. Adv. Mater. 2011, 23, 4248–4253. 10.1002/adma.201102306. PubMed DOI

Wang H.; Wu Y.; Yuan X.; Zeng G.; Zhou J.; Wang X.; Chew J. W. Clay-Inspired MXene-Based Electrochemical Devices and Photo-Electrocatalyst: State-of-the-Art Progresses and Challenges. Adv. Mater. 2018, 30, 170456110.1002/adma.201704561. PubMed DOI

Jiang Q.; Kurra N.; Alhabeb M.; Gogotsi Y.; Alshareef H. N. All Pseudocapacitive MXene-RuO2 Asymmetric Supercapacitors. Adv. Energy Mater. 2018, 8, 170304310.1002/aenm.201703043. DOI

Yu X.-f.; Li Y.-c.; Cheng J.-b.; Liu Z.-b.; Li Q.-z.; Li W.-z.; Yang X.; Xiao B. Monolayer Ti2CO2: A Promising Candidate for NH3 Sensor or Capturer with High Sensitivity and Selectivity. ACS Appl. Mater. Interfaces 2015, 7, 13707–13713. 10.1021/acsami.5b03737. PubMed DOI

Morales-García Á.; Fernandez-Fernandez A.; Vines F.; Illas F. CO2 abatement using two-dimensional MXene carbides. J. Mater. Chem. A 2018, 6, 3381–3385. 10.1039/C7TA11379J. DOI

Persson I.; Halim J.; Lind H.; Hansen T. W.; Wagner J. B.; Naslund L.-A.; Darakchieva V.; Palisaitis J.; Rosen J.; Persson P. O. A. 2D Transition Metal Carbides (MXenes) for Carbon Capture. Adv. Mater. 2019, 31, 180547210.1002/adma.201805472. PubMed DOI

Zhao L.; Dong B.; et al. Interdiffusion Reaction-Assisted Hybridization of Two-Dimensional Metal–Organic Frameworks and Ti3C2Tx sheets for Electrocatalytic Oxygen Evolution. ACS Nano 2017, 11, 5800–5807. 10.1021/acsnano.7b01409. PubMed DOI

Gouveia J. D.; Morales-Garcia A.; Vines F.; Illas F.; Gomes J. R. MXenes as promising catalysts for water dissociation. Appl. Catal., B 2020, 260, 11819110.1016/j.apcatb.2019.118191. DOI

Gouveia J. D.; Morales-Garcia A.; Vines F.; Gomes J. R. B.; Illas F. Facile Heterogeneously Catalyzed Nitrogen Fixation by MXenes. ACS Catal. 2020, 10, 5049–5056. 10.1021/acscatal.0c00935. DOI

Guo J.; Sun Y.; Liu B.; Zhang Q.; Peng Q. Two-dimensional scandium-based carbides (MXene)Band gap modulation and optical properties. J. Alloys Compd. 2017, 712, 752–759. 10.1016/j.jallcom.2017.04.149. DOI

Lai S.; Jeon J.; Jang S. K.; Xu J.; Choi Y. J.; Park J.-H.; Hwang E.; Lee S. Surface group modification and carrier transport properties of layered transition metal carbides (Ti2CTx, T: -OH, −F and −O). Nanoscale 2015, 7, 19390–19396. 10.1039/C5NR06513E. PubMed DOI

Khazaei M.; Arai M.; Sasaki T.; Chung C.-Y.; Venkataramanan N. S.; Estili M.; Sakka Y.; Kawazoe Y. Novel Electronic and Magnetic Properties of Two-Dimensional Transition Metal Carbides and Nitrides. Adv. Funct. Mater. 2013, 23, 2185–2192. 10.1002/adfm.201202502. DOI

Ketolainen T.; Karlický F. Optical gaps and excitons in semiconducting transition metal carbides (MXenes). J. Mater. Chem. C 2022, 10, 3919–3928. 10.1039/D2TC00246A. DOI

Johari P.; Shenoy V. B. Modulating Optical Properties of Graphene Oxide: Role of Prominent Functional Groups. ACS Nano 2011, 5, 7640–7647. 10.1021/nn202732t. PubMed DOI

Mashtalir O.; Naguib M.; Mochalin V. N.; Dall’Agnese Y.; Heon M.; Barsoum M. W.; Gogotsi Y. Intercalation and delamination of layered carbides and carbonitrides. Nat. Commun. 2013, 4, 171610.1038/ncomms2664. PubMed DOI

Harris K. J.; Bugnet M.; Naguib M.; Barsoum M. W.; Goward G. R. Direct Measurement of Surface Termination Groups and Their Connectivity in the 2D MXene V2CTx Using NMR Spectroscopy. J. Phys. Chem. C 2015, 119, 13713–13720. 10.1021/acs.jpcc.5b03038. DOI

Hope M. A.; Forse A. C.; Griffith K. J.; Lukatskaya M. R.; Ghidiu M.; Gogotsi Y.; Grey C. P. NMR reveals the surface functionalisation of Ti3C2 MXene. Phys. Chem. Chem. Phys. 2016, 18, 5099–5102. 10.1039/C6CP00330C. PubMed DOI

Wang H.-H.; Cui Y.-L.; Zaorsky N. G.; Lan J.; Deng L.; Zeng X.-L.; Wu Z.-Q.; Tao Z.; Guo W.-H.; Wang Q.-X.; et al. Mesenchymal stem cells generate pericytes to promote tumor recurrence via vasculogenesis after stereotactic body radiation therapy. Cancer Lett. 2016, 375, 349–359. 10.1016/j.canlet.2016.02.033. PubMed DOI

Karlsson L. H.; Birch J.; Halim J.; Barsoum M. W.; Persson P. O. A. Atomically Resolved Structural and Chemical Investigation of Single MXene Sheets. Nano Lett. 2015, 15, 4955–4960. 10.1021/acs.nanolett.5b00737. PubMed DOI

Ibragimova R.; Puska M. J.; Komsa H.-P. pH-Dependent Distribution of Functional Groups on Titanium-Based MXenes. ACS Nano 2019, 13, 9171–9181. 10.1021/acsnano.9b03511. PubMed DOI PMC

Naguib M.; Mashtalir O.; Carle J.; Presser V.; Lu J.; Hultman L.; Gogotsi Y.; Barsoum M. W. Two-Dimensional Transition Metal Carbides. ACS Nano 2012, 6, 1322–1331. 10.1021/nn204153h. PubMed DOI

Wang C.; Han H.; Guo Y. Stabilities and electronic properties of vacancy-doped Ti2CO2. Comput. Mater. Sci. 2019, 159, 127–135. 10.1016/j.commatsci.2018.12.007. DOI

Zha X.-H.; Huang Q.; He J.; He H.; Zhai J.; Francisco J. S.; Du S. The thermal and electrical properties of the promising semiconductor MXene Hf2CO2. Sci. Rep. 2016, 6, 2797110.1038/srep27971. PubMed DOI PMC

Zhu Q.; Chu Y.; Wang Z.; Chen N.; Lin L.; Liu F.; Pan Q. Robust superhydrophobic polyurethane sponge as a highly reusable oil-absorption material. J. Mater. Chem. A 2013, 1, 5386–5393. 10.1039/c3ta00125c. DOI

Ding Y.-m.; Nie X.; Dong H.; Rujisamphan N.; Li Y. Many-body effects in an MXene Ti2CO2 monolayer modified by tensile strain: GW-BSE calculations. Nanoscale Adv. 2020, 2, 2471–2477. 10.1039/C9NA00632J. PubMed DOI PMC

Xie Y.; Kent P. R. C. Hybrid density functional study of structural and electronic properties of functionalized Tin+1Xn (X=C, N) monolayers. Phys. Rev. B 2013, 87, 23544110.1103/PhysRevB.87.235441. DOI

Zhang J.-J.; Dong S. Superconductivity of monolayer Mo2C: The key role of functional groups. J. Chem. Phys. 2017, 146, 03470510.1063/1.4974085. PubMed DOI

Akgenc B. New predicted two-dimensional MXenes and their structural, electronic and lattice dynamical properties. Solid State Commun. 2019, 303–304, 11373910.1016/j.ssc.2019.113739. DOI

Champagne A.; Shi L.; Ouisse T.; Hackens B.; Charlier J.-C. Electronic and vibrational properties of V2C-based MXenes: From experiments to first-principles modeling. Phys. Rev. B 2018, 97, 11543910.1103/PhysRevB.97.115439. DOI

Zhang X.; He T.; Meng W.; Jin L.; Li Y.; Dai X.; Liu G. Mn2C Monolayer: Hydrogenation/Oxygenation-Induced Strong Ferromagnetism and Potential Applications. J. Phys. Chem. C 2019, 123, 16388–16392. 10.1021/acs.jpcc.9b04445. DOI

Urbankowski P.; Anasori B.; Makaryan T.; Er D.; Kota S.; Walsh P. L.; Zhao M.; Shenoy V. B.; Barsoum M. W.; Gogotsi Y. Synthesis of two-dimensional titanium nitride Ti4N3 (MXene). Nanoscale 2016, 8, 11385–11391. 10.1039/C6NR02253G. PubMed DOI

Sternik M.; Wdowik U. D. Probing the impact of magnetic interactions on the lattice dynamics of two-dimensional Ti2X (X = C, N) MXenes. Phys. Chem. Chem. Phys. 2018, 20, 7754–7763. 10.1039/C7CP08270C. PubMed DOI

Chakraborty P.; Das T.; Nafday D.; Boeri L.; Saha-Dasgupta T. Manipulating the mechanical properties of Ti2C MXene: Effect of substitutional doping. Phys. Rev. B 2017, 95, 18410610.1103/PhysRevB.95.184106. DOI

Perdew J. P.; Burke K.; Ernzerhof M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. 10.1103/PhysRevLett.77.3865. PubMed DOI

Krukau A. V.; Vydrov O. A.; Izmaylov A. F.; Scuseria G. E. Influence of the exchange screening parameter on the performance of screened hybrid functionals. J. Chem. Phys. 2006, 125, 22410610.1063/1.2404663. PubMed DOI

Hybertsen M. S.; Louie S. G. Electron correlation in semiconductors and insulators: Band gaps and quasiparticle energies. Phys. Rev. B 1986, 34, 5390–5413. 10.1103/PhysRevB.34.5390. PubMed DOI

Yu X.-f.; Cheng J.-b.; Liu Z.-b.; Li Q.-z.; Li W.-z.; Yang X.; Xiao B. The band gap modulation of monolayer Ti2CO2 by strain. RSC Adv. 2015, 5, 30438–30444. 10.1039/C5RA01586C. DOI

Gandi A. N.; Alshareef H. N.; Schwingenschlögl U. Thermoelectric Performance of the MXenes M2CO2 (M = Ti, Zr, or Hf). Chem. Mater. 2016, 28, 1647–1652. 10.1021/acs.chemmater.5b04257. DOI

Zhang X.; Lei J.; Wu D.; Zhao X.; Jing Y.; Zhou Z. A Ti-anchored Ti2CO2 monolayer (MXene) as a single-atom catalyst for CO oxidation. J. Mater. Chem. A 2016, 4, 4871–4876. 10.1039/C6TA00554C. DOI

Zhang X.; Zhang Z.; Li J.; Zhao X.; Wu D.; Zhou Z. Ti2CO2 MXene: a highly active and selective photocatalyst for CO2 reduction. J. Mater. Chem. A 2017, 5, 12899–12903. 10.1039/C7TA03557H. DOI

Zhao Y.; Zhao J. Functional group-dependent anchoring effect of titanium carbide-based MXenes for lithium-sulfur batteries: A computational study. Appl. Surf. Sci. 2017, 412, 591–598. 10.1016/j.apsusc.2017.04.013. DOI

Sim E. S.; Yi G. S.; Je M.; Lee Y.; Chung Y.-C. Understanding the anchoring behavior of titanium carbide-based MXenes depending on the functional group in LiS batteries: A density functional theory study. J. Power Sources 2017, 342, 64–69. 10.1016/j.jpowsour.2016.12.042. DOI

Tran T. T.; Bray K.; Ford M. J.; Toth M.; Aharonovich I. Quantum emission from hexagonal boron nitride monolayers. Nat. Nanotechnol. 2016, 11, 37–41. 10.1038/nnano.2015.242. PubMed DOI

Nair R. R.; Sepioni M.; Tsai I.-L.; Lehtinen O.; Keinonen J.; Krasheninnikov A. V.; Thomson T.; Geim A. K.; Grigorieva I. V. Spin-half paramagnetism in graphene induced by point defects. Nat. Phys. 2012, 8, 199–202. 10.1038/nphys2183. DOI

Qiu H.; Xu T.; Wang Z.; Ren W.; Nan H.; Ni Z.; Chen Q.; Yuan S.; Miao F.; Song F.; et al. Hopping transport through defect-induced localized states in molybdenum disulphide. Nat. Commun. 2013, 4, 264210.1038/ncomms3642. PubMed DOI

Ugeda M. M.; Brihuega I.; Guinea F.; Gomez-Rodriguez J. M. Missing Atom as a Source of Carbon Magnetism. Phys. Rev. Lett. 2010, 104, 09680410.1103/PhysRevLett.104.096804. PubMed DOI

Eckmann A.; Felten A.; Mishchenko A.; Britnell L.; Krupke R.; Novoselov K. S.; Casiraghi C. Probing the Nature of Defects in Graphene by Raman Spectroscopy. Nano Lett. 2012, 12, 3925–3930. 10.1021/nl300901a. PubMed DOI

Komsa H.-P.; Krasheninnikov A. V. Native defects in bulk and monolayer MoS2from first principles. Phys. Rev. B 2015, 91, 12530410.1103/PhysRevB.91.125304. DOI

Sang X.; Xie Y.; Lin M.-W.; Alhabeb M.; Van Aken K. L.; Gogotsi Y.; Kent P. R. C.; Xiao K.; Unocic R. R. Atomic Defects in Monolayer Titanium Carbide (Ti3C2Tx) MXene. ACS Nano 2016, 10, 9193–9200. 10.1021/acsnano.6b05240. PubMed DOI

Xiao-Hong L.; Xiang-Ying S.; Rui-Zhou Z. Effect of vacancies on the structural and electronic properties of Ti2CO2. RSC Adv. 2019, 9, 27646–27651. 10.1039/C9RA04393D. PubMed DOI PMC

Bafekry A.; Nguyen C. V.; Stampfl C.; Akgenc B.; Ghergherehchi M. Oxygen Vacancies in the Single Layer of Ti2CO2 MXene: Effects of Gating Voltage, Mechanical Strain, and Atomic Impurities. Phys. Status Solidi B 2020, 257, 200034310.1002/pssb.202000343. DOI

Noh J.-Y.; Kim H.; Kim Y.-S. Stability and electronic structures of native defects in single-layer MoS2. Phys. Rev. B 2014, 89, 20541710.1103/PhysRevB.89.205417. DOI

Salehi S.; Saffarzadeh A. Atomic defect states in monolayers of MoS2 and WS2. Surf. Sci. 2016, 651, 215–221. 10.1016/j.susc.2016.05.003. DOI

Li J.; Du Y.; Huo C.; Wang S.; Cui C. Thermal stability of two-dimensional Ti2C nanosheets. Ceram. Int. 2015, 41, 2631–2635. 10.1016/j.ceramint.2014.10.070. DOI

Li J.; Shan Z.; Ma E. Elastic strain engineering for unprecedented materials properties. MRS Bull. 2014, 39, 108–114. 10.1557/mrs.2014.3. DOI

Li Z.; Liu X.; Wang X.; Yang Y.; Liu S.-C.; Shi W.; Li Y.; Xing X.; Xue D.-J.; Hu J.-S. Strain-engineering the in-plane electrical anisotropy of GeSe monolayers. Phys. Chem. Chem. Phys. 2020, 22, 914–918. 10.1039/C9CP05058B. PubMed DOI

Zhang H.; Yang G.; Zuo X.; Tang H.; Yang Q.; Li G. Computational studies on the structural, electronic and optical properties of graphene-like MXenes (M2CT2, M = Ti, Zr, Hf; T = O, F, OH) and their potential applications as visible-light driven photocatalysts. J. Mater. Chem. A 2016, 4, 12913–12920. 10.1039/C6TA04628B. DOI

Siriwardane E. M. D.; Çakir D. Strain engineering of electronic and magnetic properties of double-transition metal ferromagnetic semiconductor MXenes. J. Appl. Phys. 2019, 125, 08252710.1063/1.5054131. DOI

Zhou W.; Liu Y.; Yang Y.; Wu P. Band Gap Engineering of SnO2 by Epitaxial Strain: Experimental and Theoretical Investigations. J. Phys. Chem. C 2014, 118, 6448–6453. 10.1021/jp500546r. DOI

Horzum S.; Sahin H.; Cahangirov S.; Cudazzo P.; Rubio A.; Serin T.; Peeters F. M. Phonon softening and direct to indirect band gap crossover in strained single-layer MoSe2. Phys. Rev. B 2013, 87, 12541510.1103/PhysRevB.87.125415. DOI

Fei R.; Yang L. Strain-Engineering the Anisotropic Electrical Conductance of Few-Layer Black Phosphorus. Nano Lett. 2014, 14, 2884–2889. 10.1021/nl500935z. PubMed DOI

Aradi B.; Hourahine B.; Frauenheim T. DFTB+, a Sparse Matrix-Based Implementation of the DFTB Method. J. Phys. Chem. A 2007, 111, 5678–5684. 10.1021/jp070186p. PubMed DOI

Hourahine B.; Aradi B.; Blum V.; et al. DFTB+, a software package for efficient approximate density functional theory based atomistic simulations. J. Chem. Phys. 2020, 152, 12410110.1063/1.5143190. PubMed DOI

Elstner M.; Porezag D.; Jungnickel G.; Elsner J.; Haugk M.; Frauenheim T.; Suhai S.; Seifert G. Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties. Phys. Rev. B 1998, 58, 7260–7268. 10.1103/PhysRevB.58.7260. DOI

Zheng G.; Witek H. A.; Bobadova-Parvanova P.; Irle S.; Musaev D. G.; Prabhakar R.; Morokuma K.; Lundberg M.; Elstner M.; Köhler C.; Frauenheim T. Parameter Calibration of Transition-Metal Elements for the Spin-Polarized Self-Consistent-Charge Density-Functional Tight-Binding (DFTB) Method: Sc, Ti, Fe, Co, and Ni. J. Chem. Theory Comput. 2007, 3, 1349–1367. 10.1021/ct600312f. PubMed DOI

Enyashin A.; Ivanovskii A. Atomic structure, comparative stability and electronic properties of hydroxylated Ti2C and Ti3C2 nanotubes. Comput. Theor. Chem. 2012, 989, 27–32. 10.1016/j.comptc.2012.02.034. DOI

Enyashin A. N.; Ivanovskii A. L. Structural and Electronic Properties and Stability of MXenes Ti2C and Ti3C2 Functionalized by Methoxy Groups. J. Phys. Chem. C 2013, 117, 13637–13643. 10.1021/jp401820b. DOI

Enyashin A.; Ivanovskii A. Two-dimensional titanium carbonitrides and their hydroxylated derivatives: Structural, electronic properties and stability of MXenes Ti3C2-xNx(OH)2 from DFTB calculations. J. Solid State Chem. 2013, 207, 42–48. 10.1016/j.jssc.2013.09.010. DOI

Sakhraoui T.; Karlický F. DFTB investigations of the electronic and magnetic properties of fluorographene with vacancies and with adsorbed chemical groups. Phys. Chem. Chem. Phys. 2022, 24, 3312–3321. 10.1039/D1CP00995H. PubMed DOI

Guo X.; Zhang X.; Zhao S.; Huang Q.; Xue J. High adsorption capacity of heavy metals on two-dimensional MXenes: an ab initio study with molecular dynamics simulation. Phys. Chem. Chem. Phys. 2016, 18, 228–233. 10.1039/C5CP06078H. PubMed DOI

Aryasetiawan F.; Karlsson K.; Jepsen O.; Schönberger U. Calculations of Hubbard U from first-principles. Phys. Rev. B 2006, 74, 12510610.1103/PhysRevB.74.125106. DOI

Eyert V. A Comparative Study on Methods for Convergence Acceleration of Iterative Vector Sequences. J. Comput. Phys. 1996, 124, 271–285. 10.1006/jcph.1996.0059. DOI

Momma K.; Izumi F. VESTA3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44, 1272–1276. 10.1107/S0021889811038970. DOI

Hong L.; Klie R. F.; Öğüt S. First-principles study of size- and edge-dependent properties of MXene nanoribbons. Phys. Rev. B 2016, 93, 11541210.1103/PhysRevB.93.115412. DOI

Li L. Lattice dynamics and electronic structures of Ti3C2O2 and Mo2TiC2O2 (MXenes): The effect of Mo substitution. Comput. Mater. Sci. 2016, 124, 8–14. 10.1016/j.commatsci.2016.07.008. DOI

Wan Q.; Li S.; Liu J.-B. First-Principle Study of Li-Ion Storage of Functionalized Ti2C Monolayer with Vacancies. ACS Appl. Mater. Interfaces 2018, 10, 6369–6377. 10.1021/acsami.7b18369. PubMed DOI

Guo Z.; Miao N.; Zhou J.; Pan Y.; Sun Z. Coincident modulation of lattice and electron thermal transport performance in MXenes via surface functionalization. Phys. Chem. Chem. Phys. 2018, 20, 19689–19697. 10.1039/C8CP02564A. PubMed DOI

Yang E.; Ji H.; Kim J.; Kim H.; Jung Y. Exploring the possibilities of two-dimensional transition metal carbides as anode materials for sodium batteries. Phys. Chem. Chem. Phys. 2015, 17, 5000–5005. 10.1039/C4CP05140H. PubMed DOI

Karlický F.; Turoň J. Fluorographane C2FH: Stable and wide band gap insulator with huge excitonic effect. Carbon 2018, 135, 134–144. 10.1016/j.carbon.2018.04.006. DOI

Jiang X.; Kuklin A. V.; Baev A.; Ge Y.; Ågren H.; Zhang H.; Prasad P. N. Two-dimensional MXenes: From morphological to optical, electric, and magnetic properties and applications. Phys. Rep. 2020, 848, 1–58. 10.1016/j.physrep.2019.12.006. DOI

Dubecký M.; Karlický F.; Minárik S.; Mitas L. Fundamental gap of fluorographene by many-body GW and fixed-node diffusion Monte Carlo methods. J. Chem. Phys. 2020, 153, 18470610.1063/5.0030952. PubMed DOI

Zhang H.; Hu T.; Wang X.; Li Z.; Hu M.; Wu E.; Zhou Y. Discovery of carbon-vacancy ordering in Nb4AlC3–x under the guidance of first-principles calculations. Sci. Rep. 2015, 5, 1419210.1038/srep14192. PubMed DOI PMC

Hu R.; Li Y. H.; Zhang Z. H.; Fan Z. Q.; Sun L. O-Vacancy-line defective Ti2CO2 nanoribbons: novel magnetism, tunable carrier mobility, and magnetic device behaviors. J. Mater. Chem. C 2019, 7, 7745–7759. 10.1039/C9TC01807G. DOI

Gibson J. M. Reading and Writing with Electron Beams. Phys. Today 1997, 50, 56–61. 10.1063/1.881964. DOI

Komsa H.-P.; Kotakoski J.; Kurasch S.; Lehtinen O.; Kaiser U.; Krasheninnikov A. V. Two-Dimensional Transition Metal Dichalcogenides under Electron Irradiation: Defect Production and Doping. Phys. Rev. Lett. 2012, 109, 03550310.1103/PhysRevLett.109.035503. PubMed DOI

Su X.; Guo R.-G.; Xu S.; Wang S.-J.; Li X.-H.; Cui H.-L. Influence of O-vacancy concentration on the structural, electronic properties and quantum capacitance of monolayer Ti2CO2: A first-principles study. Vacuum 2022, 196, 11074010.1016/j.vacuum.2021.110740. DOI

Lee Y.; Cho S. B.; Chung Y.-C. Tunable Indirect to Direct Band Gap Transition of Monolayer Sc2CO2 by the Strain Effect. ACS Appl. Mater. Interfaces 2014, 6, 14724–14728. 10.1021/am504233d. PubMed DOI

Lin Z.; Carvalho B. R.; Kahn E.; Lv R.; Rao R.; Terrones H.; Pimenta M. A.; Terrones M. Defect engineering of two-dimensional transition metal dichalcogenides. 2D Mater. 2016, 3, 02200210.1088/2053-1583/3/2/022002. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Modeling size and edge functionalization of MXene-based quantum dots and their effect on electronic and magnetic properties

. 2023 Dec 05 ; 5 (24) : 7067-7076. [epub] 20231109

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...