Prevention of activated brown adipose tissue on 18F-FDG-PET scans of young lymphoma patients: results of an ancillary study within the EuroNet-PHL-C2 trial
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu klinické zkoušky, časopisecké články
PubMed
38081864
PubMed Central
PMC10713612
DOI
10.1038/s41598-023-48871-2
PII: 10.1038/s41598-023-48871-2
Knihovny.cz E-zdroje
- MeSH
- beta blokátory farmakologie MeSH
- fluorodeoxyglukosa F18 * farmakologie MeSH
- hnědá tuková tkáň diagnostické zobrazování MeSH
- lidé MeSH
- lymfom * MeSH
- pozitronová emisní tomografie metody MeSH
- propranolol farmakologie MeSH
- radiofarmaka farmakologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- klinické zkoušky MeSH
- Názvy látek
- beta blokátory MeSH
- fluorodeoxyglukosa F18 * MeSH
- propranolol MeSH
- radiofarmaka MeSH
Activated brown fat (aBAT) is known to affect the evaluation of 18F-FDG PET scans, especially in young patients. The aim of this study was to determine factors influencing the occurrence of aBAT, and to investigate the effectiveness of the two preventive measures, warming and beta-blocker (propranolol) administration. Five-hundred-twenty-eight 18F-FDG-PET scans of 241 EuroNet-PHL-C2 trial patients from 41 nuclear medicine departments in Germany and Czech Republic were screened for aBAT. The occurrence of aBAT was analyzed with patient characteristics (age, sex, body mass index, predisposition to aBAT), weather data at the day of 18F-FDG PET scanning as well as the preventive measures taken. Potentially important factors from univariate analyses were included into a logistic regression model. Warming as a preventive measure was used in 243 18F-FDG-PET scans, propranolol was administered in 36, warming and propranolol were combined in 84, and no preventive measures were taken in 165 scans. Whereas age, sex and body mass index had no clear impact, there was an individual predisposition to aBAT. Logistic regression model revealed that the frequency of aBAT mainly depends on the outside temperature (p = 0.005) and can be effectively reduced by warming (p = 0.004), the administration of unselective beta-blocker or the combination of both. Warming is a simple, cheap and non-invasive method to reduce the frequency of aBAT. However, the effect of warming decreases with increasing outside temperatures. Administration of propranolol seems to be equally effective and provides advantages whenever the positive effect of warming is compromised. The combination of both preventive measures could have an additive effect.
Department of Pediatric Hematology and Oncology Justus Liebig University Giessen Giessen Germany
Department of Radiology Medical Faculty of the Martin Luther University Halle Germany
Institute for Medical Informatics Statistics and Epidemiology University of Leipzig Leipzig Germany
Zobrazit více v PubMed
Vali R, Alessio A, Balza R, Borgwardt L, Bar-Sever Z, Czachowski M, Jehanno N, Kurch L, Pandit-Taskar N, Parisi M, Piccardo A, Seghers V, Skulkin BL, Zuchetta P, Lim R. SNMMI Procedure Standard/EANM Practice Guideline on Pediatric 18F-FDG PET/CT for Oncology 1.0. JNM. 2021;62(1):99–110. doi: 10.2967/jnumed.120.254110. PubMed DOI PMC
Drubach, L.A., Palmer, E.L., Connolly, L.P., Baker, A., Zurakowski, D., Cypress, A.M. Pediatric brown adipose tissue: Detection, epidemiology, and differences from adults. J. Pediatr. 939–944 (2011). PubMed
Merkel M, Schmid SM, Iwen KA. Physiologie und klinische Bedeutung von weißem, beigem und braunem Fettgewebe. Der Internist. 2019;60:115–121. doi: 10.1007/s00108-018-0540-0. PubMed DOI
Sacks H, Symonds ME. Anatomical locations of human brown adipose tissue—Functional relevance and implications in obesity and type 2 diabetes. Diabetes. 2013;62:1783–1790. doi: 10.2337/db12-1430. PubMed DOI PMC
Hao R, Yuan L, Zhang N, Li C, Yang J. Brown adipose tissue: Distribution and influencing factors on FDG PET/CT scan. J. Pediatr. Endocr. Met. 2012;25:233–237. PubMed
Steinberg JD, Vogel W, Vegt E. Factors influencing brown fat activation in FDG PET/CT: A retrospective analysis of 15,000+ cases. BJR. 2017 doi: 10.1259/bjr.201700093. PubMed DOI PMC
Izzi-Engbeaya C, Salem V, Atkar RS, Dhillo WS. Insight into brown adipose tissue physiology as revealed by imaging studies. Adipocyte. 2015 doi: 10.4161/21623945.2014.965609. PubMed DOI PMC
Kluge R, Kurch L, Georgi T, Metzger M. Current role of FDG-PET in Pediatric Hodgkin’s Lymphoma. Semin. Nucl. Med. 2017;47(3):242–257. doi: 10.1053/j.semnuclmed.2017.01.001. PubMed DOI
Mauz-Körholz C, Landman-Parker J, Balwierz W, Ammann RA, Anderson RA, Attarbaschi A, Bartelt JM, Beishuizen A, Boudjemaa S, Cepelova M, Claviez A, Daw S, Dieckmann K, Fernádez-Teijeiro A, Fossa A, Gattenlöhner S, Georgi T, Hjalgrim LL, Hraskova A, Karlén J, Kluge R, Kurch L, Leblanc T, Mann G, Montravers F, Pears J, Pelz T, Rajic V, Ramsay AD, Stoevesandt D, Uyttebroeck A, Vordermark D, Körholz D, Hasenclever D, Wallace WH. Response-adapated omission of radiotherapy and comparison of consolidation chemotherapy in children and adolescents with intermediate-stage and advanced-stage classical Hodgkin lymphoma (EuroNet-PHL-C1): A titration study with an open-label-embedded, multinational, non-inferiority, randomized controlled trial. Lancet Oncol. 2022;23:125–137. doi: 10.1016/S1470-2045(21)00470-8. PubMed DOI PMC
Mauz-Körholz C, Landman-Parker J, Fernández-Teijeriro A, Attarbaschi A, Balwierz W, Bartelt JM, Beishuizen A, Boudjemaa S, Cepelova M, Ceppi F, Claviez A, Daw S, Dieckmann K, Fossa A, Gattenlöhner S, Georgi T, Hjalgrim LL, Hraskova A, Karlén J, Kurch L, Leblanc T, Mann G, Montravers F, Pears J, Pelz T, Rajic V, Ramsay AD, Stoevesandt D, Uyttebroeck A, Vordermark D, Körholz D, Hasenclever D, Wallace WH. Response-adapated omission of radiotherapy in children and adolescents with early-stage classical Hodgkin lymphoma and an adequate response to vincristine, etoposide, prednisone, and doxorubicin (EuroNet-PHL-C1): A titration study. Lancet Oncol. 2023;24:252–261. doi: 10.1016/S1470-2045(23)00019-0. PubMed DOI
Bhatia S, Yasui Y, Robison LL, Birch JM, Bogue MK, Diller L, DeLaat C, Fossati-Bellani F, Morgan E, Oberlin O, Reaman G, Ruymann FB, Tersak J, Meadows AT, on behalf of the Late Effects Study Group High risk of subsequent neoplasms continues with extended follow-up of childhood Hodgkin’s disease: Report from the Late Effects Study Group. JCO. 2003;21:4386–4394. doi: 10.1200/JCO.2003.11.059. PubMed DOI
Dörffel W, Riepenhausen M, Lüders H, Brämswig J, Schellong J. Secondary malignancies following treatment for Hodgkin’s lymphoma in childhood and adolescence—A cohort study with more than 30 years follow-up. Deutsches Ärzteblatt Int. 2015;112:320–327. PubMed PMC
Schellong G, Riepenhausen M, Bruch C, Kotthoff S, Vogt J, Bölling T, Dieckmann K, Pötter R, Heinecke A, Brämswig J, Dörffel W. Late valvular and other cardiac diseases after different doses of mediastinal radiotherapy for Hodgkin disease in children and adolescents: Report from the longitudinal GPOH follow-up project of the German-Austrian DAL-HD studies. Pediatr. Blood Cancer. 2010;55:1145–1152. doi: 10.1002/pbc.22664. PubMed DOI
Morris B, Partap S, Yeom K, Gibbs IC, Fisher PG, King AA. Cerebrovascular disease in childhood cancer survivors: A Children’s Oncology Group Report. Neurology. 2009;73:1906–1913. doi: 10.1212/WNL.0b013e3181c17ea8. PubMed DOI PMC
https://www.skion.nl/workspace/uploads/EuroNet-PHL-C2_trial_protocol_final2-0-2015-07-27.pdf (27.04.2023)
Kurch L, Mauz-Körholz C, Bertling S, Wallinder M, Kaminska M, Marwede D, Tchavdarova L, Georgi TW, Elsner A, Barthel A, Stoevesandt D, Hasenclever D, Sattler B, Sabri O, Körholz D, Kluge R. The EuroNet paediatric Hodgkin network—Modern imaging data management for real time central review in multicentre trials. Klin. Padiatr. 2013;225:357–361. doi: 10.1055/s-0033-1354416. PubMed DOI
Kromeyer-Hauschild K, Wabitsch M, Kunze D, Geller F, Geiß HC, Hesse V, von Hippel A, Jaeger U, Johnsen D, Korte W, Menner K, Müller G, Müller JM, Niemann-Pilatus A, Remer R, Schaefer F, Wittchen H-U, Zabransky S, Zellner K, Ziegler A, Hebebrand J. Prezentile für den Body-mass-Index für das Kinder- und Jugendalter unter Heranziehung verschiedener deutscher Stichproben. Monatsschrift Kinderheilkunde. 2001;149:807–818. doi: 10.1007/s001120170107. DOI
Brady SL, Wong KK, Doubrovin M, Han Y, Li Y, Wu S, Hossain AKMM, Chism CB, Naik MH, Rossi M, Shulkin BL. Effect of propranolol on 18F-fluorodeoxyglucose uptake in brown adipose tissue in children and young adults with neoplastic diseases. Mol. Imaging Biol. 2021;23:260–269. doi: 10.1007/s11307-020-01547-z. PubMed DOI PMC
Gilsanz V, Smith ML, Goodarzian F, Kim M, Wren TAL, Hu HH. Changes in brown adipose tissue in boys and girls during childhood and puberty. J. Pediatr. 2012;160:604–609. doi: 10.1016/j.jpeds.2011.09.035. PubMed DOI PMC
Gilsanz V, Chung SA, Jackson H, Dorey FJ, Hu HH. Functional brown adipose tissue is related to muscle volume in children and adolescents. J. Pediatr. 2011;158:722–726. doi: 10.1016/j.jpeds.2010.11.020. PubMed DOI PMC
Kaikaew K, Grefhorst A, Visser JA. Sex differences in brown adipose tissue function: Sex hormones, glucocorticoids, and their crosstalk. Front. Endocrinol. 2021 doi: 10.3389/fendo.2021.652444. PubMed DOI PMC
Cohade C, Mourtzikos KA, Wahl RL. “USA-Fat”: Prevalence is related to ambient outdoor temperature—Evaluation with 18F-FDG PET/CT. JNM. 2003;44:1267–1270. PubMed
Kim SH, Krynyckyi BR, Machac J, Kim CK. Temporal relation between temperature chance and FDG uptake in brown adipose tissue. Eur. J. Nucl. Med. Mol. Imaging. 2008;35:984–989. doi: 10.1007/s00259-007-0670-4. PubMed DOI
Zukotynski KA, Fahey FH, Laffin S, Davis R, Treves ST, Grant FD, Drubach LA. Constant ambient temperature of 24 °C significantly reduces FDG uptake by brown adipose tissue in children scanned during the winter. Eur. J. Nucl. Med. Mol. Imaging. 2009;36:602–606. doi: 10.1007/s00259-008-0983-y. PubMed DOI
https://www.usclimatedata.com/climate/cincinnati/ohio/united-states/usoh0188 (19.04.2023)
https://www.usclimatedata.com/climate/ann-arbor/michigan/united-states/usmi0028 (19.04.2023)
https://www.usclimatedata.com/climate/memphis/tennesse/united-states/ustn0325 (19.04.2023)
Söderlund V, Larsson SA, Jacobsson H. Reduction of FDG uptake in brown adipose tissue in clinical patients by a single dose of propranolol. Eur. J. Nucl. Med. Mol. Imaging. 2007;34:1018–1022. doi: 10.1007/s00259-006-0318-9. PubMed DOI
Agrawal A, Nair N, Baghel NS. A novel approach for reduction of brown fat uptake on FDG PET. Br. J. Radiol. 2009;82:626–631. doi: 10.1259/bjr/24661539. PubMed DOI
Parysow O, Mollerach AM, Jager V, Racioppi S, Roman JS, Gerbaudo VH. Low-dose oral propranolol could reduce brown adipose tissue F-18 FDG uptake in patients undergoing PET scans. Clin. Nucl. Med. 2007;32:351–357. doi: 10.1097/01.rlu.0000259570.69163.04. PubMed DOI
George A, Sinha P, Conrad G, Memon AA, Dressler EV, Wagner LM. Pilot study of propranolol premedication to reduce FDG uptake in brown adipose tissue on PET scans of adolescent and young adult oncology patients. Pediatr. Hematol. Oncol. 2017;34:149–156. doi: 10.1080/08880018.2017.1338806. PubMed DOI PMC