Thoracic and abdominal outgrowths in early pterygotes: a clue to the common ancestor of winged insects?
Language English Country England, Great Britain Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
18-03118S
Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
18-03118S
Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
18-03118S
Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
CZ.02.2.69/0.0/0.0/19_073/0016935
Univerzita Karlova v Praze (Charles University)
PubMed
38087009
PubMed Central
PMC10716172
DOI
10.1038/s42003-023-05568-6
PII: 10.1038/s42003-023-05568-6
Knihovny.cz E-resources
- MeSH
- Biological Evolution * MeSH
- Phylogeny MeSH
- Insecta genetics MeSH
- Wings, Animal * anatomy & histology MeSH
- Larva genetics MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
One of the fundamental questions in insect evolution is the origin of their wings and primary function of ancestral wing precursors. Recent phylogenomic and comparative morphological studies broadly support a terrestrial ancestor of pterygotes, but an aquatic or semiaquatic ancestor cannot be ruled out. Here new features of the branchial system of palaeodictyopteran larvae of several different instars of Katosaxoniapteron brauneri gen. et sp. nov. (Eugereonoidea) from the late Carboniferous collected at Piesberg (Germany) are described, which consist of delicate dorsolateral and lamellate caudal abdominal gills that support an aquatic or at least semiaquatic lifestyle for these insects. Moreover, the similar form and surface microstructures on the lateral abdominal outgrowths and thoracic wing pads indicate that paired serial outgrowths on segments of both tagmata presumably functioned as ancestral type of gills resembling a protopterygote model. This is consistent with the hypothesis that the wing sheaths of later stage damselfly larvae in hypoxic conditions have a respiratory role similar to abdominal tracheal gills. Hence, the primary function and driving force for the evolution of the precursors of wing pads and their abdominal homologues could be respiration.
Department of Zoology Faculty of Science Charles University Viničná 7 128 00 Praha 2 Czech Republic
Museum Schölerberg Klaus Strick Weg 10 49082 Osnabrück Germany
See more in PubMed
Clark-Hachtel CM, Tomoyasu Y. Exploring the origin of insect wings from an evo-devo perspective. Curr. Opin. Insect Sci. 2016;13:77–85. doi: 10.1016/j.cois.2015.12.005. PubMed DOI
Ohde T, Mito T, Niimi T. A hemimetabolous wing development suggests the wing origin from lateral tergum of a wingless ancestor. Nat. Commun. 2022;13:979. doi: 10.1038/s41467-022-28624-x. PubMed DOI PMC
Hasenfuss I. The evolutionary pathway to insect flight - a tentative reconstruction. Arthropod Syst. Phyl. 2008;66:19–35. doi: 10.3897/asp.66.e31678. DOI
Marden JH, Kramer MG. Surface-skimming stoneflies: a possible intermediate stage in insect flight evolution. Science. 1994;266:427. doi: 10.1126/science.266.5184.427. PubMed DOI
Averof M, Cohen SM. Evolutionary origin of insect wings from ancestral gills. Nature. 1997;385:627–630. doi: 10.1038/385627a0. PubMed DOI
Franch-Marro X, Martín N, Averof M, Casanova J. Association of tracheal placodes with leg primordia in Drosophila and implications for the origin of insect tracheal systems. Development. 2006;133:785–790. doi: 10.1242/dev.02260. PubMed DOI
Tomoyasu Y. What crustaceans can tell us about the evolution of insect wings and other morphologically novel structures. Curr. Opin. Genet. Dev. 2021;69:48–55. doi: 10.1016/j.gde.2021.02.008. PubMed DOI
Wipfler B, et al. Evolutionary history of Polyneoptera and its implications for our understanding of early winged insects. Proc. Natl Acad. Sci. USA. 2019;116:3024–3029. doi: 10.1073/pnas.1817794116. PubMed DOI PMC
Sharma PP. Integrating morphology and phylogenomics supports a terrestrial origin of insect flight. Proc. Natl Acad. Sci. USA. 2019;116:2796–2798. doi: 10.1073/pnas.1822087116. PubMed DOI PMC
Carpenter, F. M. in Treatise on Invertebrate Paleontology, Part R, Arthropoda 4 Vols. 3 and 4 (eds Moore, R. C. & Kaesler, R. L.) 1-655 (The Geological Society of America and the University of Kansas, 1992).
Engel, M. S., Davis, S. R. & Prokop, J. in Arthropod Biology and Evolution - Molecules, Development, Morphology (eds Minelli A., Boxshall G. & Fusco G.) Ch. XII (Springer, 2013).
Prokop J, Nel A, Engel MS. Diversity, form, and postembryonic development of Paleozoic insects. Annu. Rev. Entomol. 2023;68:401–429. doi: 10.1146/annurev-ento-120220-022637. PubMed DOI
Sroka P, Staniczek AH, Bechly G. Revision of the giant pterygote insect Bojophlebia prokopi Kukalová-Peck, 1985 (Hydropalaeoptera: Bojophlebiidae) from the Carboniferous of the Czech Republic, with the first cladistic analysis of fossil palaeopterous insects. J. Syst. Palaeont. 2015;13:963–982. doi: 10.1080/14772019.2014.987958. DOI
Prokop J, Engel MS. Palaeodictyopterida. Curr. Biol. 2019;29:R306–R309. doi: 10.1016/j.cub.2019.02.056. PubMed DOI
Lancaster, J. & Downes, B. J. Aquatic Entomology (Oxford University Press, 2013).
Kukalová-Peck J. Carboniferous protodonatoid dragonfly nymphs and the synapomorphies of Odonatoptera and Ephemeroptera (Insecta: Palaeoptera) Palaeodiversity. 2009;2:169–198.
Sroka P, Godunko RJ, Sinitshenkova ND, Prokop J. Life history, systematics and flight ability of the Early Permian stem-mayflies in the genus Misthodotes Sellards, 1909 (Insecta, Ephemerida, Permoplectoptera) BMC Ecol. Evol. 2021;21:97. doi: 10.1186/s12862-021-01820-x. PubMed DOI PMC
Hennig, W. Insect Phylogeny (Wiley, 1981).
Sinitshenkova, N. D. in History of Insects (eds Rasnitsyn, A. P. & Quicke, D. L. J.) Ch. 2.2.2.2.2 (Kluwer Academic Publishers, 2002).
Brauckmann C, Schneider J. Ein unter-karbonisches Insekt aus dem Raum Bitterfeld/Delitz (Pterygota, Arnsbergium, Deutschland) N. Jb. Geol. Paläont. Mh. 1996;1996:17–30.
Brongniart C. Recherches pour servir à l’histoire des insectes fossiles des temps primaires précédées d’une étude sur la nervation des ailes des insectes. Bull. Soc. Ind. Minéral. St.-Etienne. 1893;3:1–491.
Handlirsch, A. Die Fossilen Insekten und die Phylogenie der rezenten Formen. Ein Handbuch für Paläontologen und Zoologen (Engelman V.W. Publ., 1906).
Lameere A. Révision sommaire des insectes fossiles du Stéphanien de Commentry. Bull. Mus. Nat. Hist. Natur. 1917;23:141–200.
Kukalová -Peck J. Origin and evolution of insect wings and their relation to metamorphosis, as documented by the fossil record. J. Morphol. 1978;156:53–126. doi: 10.1002/jmor.1051560104. PubMed DOI
Prokop J, et al. Ecomorphological diversification of the Late Palaeozoic Palaeodictyopterida reveals different larval strategies and amphibious lifestyle in adults. R. Soc. Open Sci. 2019;6:190460. doi: 10.1098/rsos.190460. PubMed DOI PMC
Prokop J, Pecharová M, Jarzembowski EA, Ross AJ. New palaeodictyopterans from the Late Carboniferous of the UK (Insecta: Palaeodictyopterida) Earth Environ. Sci. Trans. R. Soc. Edinb. 2018;107:99–107.
Wootton RJ. Nymphs of Palaeodictyoptera (Insecta) from the Westphalian of England. Palaeontology. 1972;15:662–675.
Prokop J, Nel A, Engel MS, Pecharová M, Hörnschemeyer T. New Carboniferous fossils of Spilapteridae enlighten postembryonic wing development in Palaeodictyoptera. Syst. Entomol. 2016;41:178–190. doi: 10.1111/syen.12148. DOI
Kiesmüller C, Hörnig MK, Leipner A, Haug C, Haug JT. Palaeozoic palaeodictyopteran insect nymphs with prominent ovipositors from a new locality. Bull. Geosci. 2019;94:23–40. doi: 10.3140/bull.geosci.1717. DOI
Hamilton KGA. The insect wing, Part 1. Origin and development of wings from notal lobes. J. Kans. Entomol. Soc. 1971;44:421–433.
Prokop J, et al. Paleozoic nymphal wing pads support dual model of insect wing origins. Curr. Biol. 2017;27:263–269. doi: 10.1016/j.cub.2016.11.021. PubMed DOI
Rosová K, Sinitshenkova ND, Prokop J. Evidence for wing development in the Late Palaeozoic Palaeodictyoptera revisited. Arthropod Struct. Dev. 2021;63:101061. doi: 10.1016/j.asd.2021.101061. PubMed DOI
Prokop J, Ren D. New significant fossil insects from the Upper Carboniferous of Ningxia in northern China (Palaeodictyoptera, Archaeorthoptera) Eur. J. Entomol. 2007;104:267–275. doi: 10.14411/eje.2007.041. DOI
Brauckmann C, Herd KJ, Leipner A. Insekten-Funde aus dem Westfalium D (Ober-Karbon) des Piesberges bei Osnabrück (Deutschland). Nachtrag 1: Palaeodictyopteroida. Osnabrücker Naturwiss. Mitteil. 2009;35:1–30.
Brauckmann, C. Herd, K. J. & Leipner, A. First Eugereonidae (Insecta: Palaeodictyoptera) from the Pennsylvanian (Late Carboniferous) of the Piesberg site near Osnabrück, Germany. PalZ10.1007/s12542-021-00578-3 (2021).
Rosová K, Pecharová M, Leipner A, Prokop J. New palaeodictyopterid insects from the Pennsylvanian of Piesberg uncover spectacular disparity of wing venation patterns (Megasecoptera, Palaeodictyoptera) Hist. Biol. 2023;35:152–162. doi: 10.1080/08912963.2021.2025229. DOI
Rolfe WDI. Rochdalia, a Carboniferous insect nymph (Palaeodictyoptera) Palaeontology. 1967;10:307–313.
Wootton RJ. The historical ecology of aquatic insects: an overview. Palaeogr. Palaeoclimol. Palaeoecol. 1988;62:477–492. doi: 10.1016/0031-0182(88)90068-5. DOI
Hutchinson EG. Thoughts on aquatic insects. Bioscience. 1981;31:495–500. doi: 10.2307/1308491. DOI
Kukalová-Peck J. Origin of the insect wing and wing articulation from the arthropodan leg. Can. J. Zool. 1983;61:1618–1669. doi: 10.1139/z83-217. DOI
Prokop J, et al. Abdominal serial homologues of wings in Paleozoic insects. Curr. Biol. 2022;32:3414–3422. doi: 10.1016/j.cub.2022.06.024. PubMed DOI
Merritt, R. W. & Cummins, K. W. An Introduction to the Aquatic Insects of North America (Kendall/Hunt Publishing Co., 1978).
Wigglesworth VB, Rainey RC. Chapter 13. The evolution of insect flight. Insect Flight Symp. R. Entomol. Soc. 1976;7:255–269.
Kluge, N. Y. The Phylogenetic System of Ephemeroptera (Kluwer Publishers, 2004).
Almudi I, et al. Genomic adaptations to aquatic and aerial life in mayflies and the origin of insect wings. Nat. Commun. 2020;11:2631. doi: 10.1038/s41467-020-16284-8. PubMed DOI PMC
Norling U. Structure and ontogeny of the lateral abdominal gills and the caudal gills in Euphaeidae (Odonata: Zygoptera) larvae. Zool. Jahrb. Abt. Anat. Ontog. Tierre. 1982;107:343–389.
Rowe RJ. Ontogeny of agonistic behaviour in the territorial damselfly larvae, Xanthocnemis zealandica (Zygoptera: Coenagrionidae) J. Zool. 1992;226:81–93. doi: 10.1111/j.1469-7998.1992.tb06128.x. DOI
Tillyard RJ. On the morphology of the caudal gills of the larvae of zygopterid dragonflies. Proc. Linn. Soc. N. S. W. 1917;42:606–632.
Tillyard, R. J. The Biology of Dragonflies (Odonata or Paraneuroptera) (Cambridge University Press, 1917).
Corbet, P. S. Dragonflies: Behavior and Ecology of Odonata (Comstock Publishing Associates, Cornell University Press, 1999).
Sinitshenkova ND. A new family of the Palaeodictyoptera from the Carboniferous of Siberia. Paleont. J. 1979;13:192–205.
Kukalová J. Revisional study of the order Palaeodictyoptera in the Upper Carboniferous shales of Commentry, France. Part 2. Psyche. 1969;76:439–486. doi: 10.1155/1969/20732. DOI
Zahner R. Über die Bindung der mitteleuropäischen Calopteryx-Arten (Odonata, Zygoptera) an den Lebensraum des strömenden Wassers. Intern. Rev. Gesam. Hydrobiol. Hydrogr. 1959;45:101–123. doi: 10.1002/iroh.19600450106. DOI
Brauer F. Ansichten über die paläozoischen Insekten und deren Deutung. Ann. Naturhist. Mus. Wien. 1886;1:87–126.
Shear WA, Kukalová-Peck J. The ecology of Paleozoic terrestrial arthropods: the fossil evidence. Can. J. Zool. 1989;68:1807–1834. doi: 10.1139/z90-262. DOI
Kingsolver JG, Koehl MAR. Selective factors in the evolution of insect wings. Annu. Rev. Entomol. 1994;39:425–451. doi: 10.1146/annurev.en.39.010194.002233. DOI
Simon S, Blanke A, Meusemann K. Reanalyzing the Palaeoptera problem – the origin of insect flight remains obscure. Arthropod Struct. Dev. 2018;47:328e338. doi: 10.1016/j.asd.2018.05.002. PubMed DOI
Rasnitsyn, A. P. in History of Insects (eds Rasnitsyn, A. P. & Quicke, D. L. J.) Ch. 2.1 (Kluwer Academic, 2002).
Kukalová-Peck J. Ephemeroid wing venation based upon new gigantic Carboniferous mayflies and basis morphological phylogeny and metamorphosis of pterygopte insects (Insecta, Ephemerida) Can. J. Zool. 1985;63:933–955. doi: 10.1139/z85-139. DOI
Staniczek AH, Sroka P, Bechly G. Neither silverfish nor fowl: the enigmatic Carboniferous Carbotriplura kukalovae Kluge, 1996 (Insecta: Carbotriplurida) is the putative fossil sister group of winged insects (Insecta: Pterygota) Syst. Entomol. 2015;39:619–632. doi: 10.1111/syen.12076. DOI
Štys P, Soldán T. Retention of tracheal gills in adult Ephemeroptera and other insects. Acta Univ. Carol. Biol. 1980;1978:409–435.
Sroka P, Staniczek AH. Retention of cervical and abdominal gills in the adult of a new fossil stonefly (Insecta, Plecoptera, Petroperlidae) from mid-Cretacous Burmese amber. Cret. Res. 2020;107:104277. doi: 10.1016/j.cretres.2019.104277. DOI
Wootton, R. J. & Ellington, C. P. in Biomechanics and Evolution (eds Rayner, J. M. V. & Wootton, R. J.) 99–112 (Cambridge Univ. Press, 1991).
Ross A. Evolution: the origin of insect wings revisited. Curr. Biol. 2022;32:R851–R852. doi: 10.1016/j.cub.2022.06.087. PubMed DOI
Marden JH, Kramer MG. Locomotor performance of insects with rudimentary wings. Nature. 1995;377:332–334. doi: 10.1038/377332a0. DOI
Marden JH, Thomas MA. Rowing locomotion by a stonefly that possesses the ancestral pterygote condition of co-occurring wings and abdominal gills. Biol. J. Linn. Soc. 2003;79:341–349. doi: 10.1046/j.1095-8312.2003.00192.x. DOI
Guillermo-Ferreira R, Appel E, Urban P, Bispo PC, Gorb SN. The unusual tracheal system within the wing membrane of a dragonfly. Biol. Lett. 2017;13:20160960. doi: 10.1098/rsbl.2016.0960. PubMed DOI PMC
Kukalová J. Permian mayfly nymphs. Psyche. 1968;75:311–327.
Demoulin G. Remarques critiques sur des larves “éphéméromorphes” du Permien. Bull. Mus. R. Hist. Nat. Belg. 1970;46:1–10.
Leipner A, Fischer T, Chellouche P. The Piesberg: a NW-German site of international importance for the Pennsylvanian (Late Carboniferous) Geoconserv. Res. 2021;4:218–234.
Brauckmann C, Herd KJ. Insekten-Funde aus dem Westfalium D (Ober-Karbon) des Piesberges bei Osnabrück (Deutschland). Teil 1: Palaeoptera. Osnabrücker Naturwiss. Mitteil. 2002;28:27–69.
Brauckmann C, Herd KJ. Insekten-Funde aus dem Westfalium D (Ober-Karbon) des Piesberges bei Osnabrück (Deutschland). Teil 2: Neoptera. Osnabrücker Naturwiss. Mitteil. 2005;30:19–65.