Ecomorphological diversification of the Late Palaeozoic Palaeodictyopterida reveals different larval strategies and amphibious lifestyle in adults
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
31598291
PubMed Central
PMC6774989
DOI
10.1098/rsos.190460
PII: rsos190460
Knihovny.cz E-zdroje
- Klíčová slova
- Insecta, Megasecoptera, Palaeodictyoptera, ecomorphology, nymph, tracheal respiratory system,
- Publikační typ
- časopisecké články MeSH
The Late Palaeozoic insect superorder Palaeodictyopterida exhibits a remarkable disparity of larval ecomorphotypes, enabling these animals to occupy diverse ecological niches. The widely accepted hypothesis presumed that their immature stages only occupied terrestrial habitats, although authors more than a century ago hypothesized they had specializations for amphibious or even aquatic life histories. Here, we show that different species had a disparity of semiaquatic or aquatic specializations in larvae and even the supposed retention of abdominal tracheal gills by some adults. While a majority of mature larvae in Palaeodictyoptera lack unambiguous lateral tracheal gills, some recently discovered early instars had terminal appendages with prominent lateral lamellae like in living damselflies, allowing support in locomotion along with respiratory function. These results demonstrate that some species of Palaeodictyopterida had aquatic or semiaquatic larvae during at least a brief period of their post-embryonic development. The retention of functional gills or gill sockets by adults indicates their amphibious lifestyle and habitats tightly connected with a water environment as is analogously known for some modern Ephemeroptera or Plecoptera. Our study refutes an entirely terrestrial lifestyle for all representatives of the early diverging pterygote group of Palaeodictyopterida, a greatly varied and diverse lineage which probably encompassed many different biologies and life histories.
Zobrazit více v PubMed
Wootton RJ. 1972. The evolution of insects in freshwater ecosystems. In Essays in hydrobiology (eds Clark RB, Wootton RJ), pp. 69–82. Exeter, UK: University of Exeter.
Sinitshenkova ND. 2003. Main ecological events in aquatic insect history. Acta Zool. Cracov. 46(suppl. – Fossil Insects), 381–392.
Grimaldi DA, Engel MS. 2005. Evolution of the insects. Cambridge, UK: Cambridge University Press.
Carpenter FM. 1992. Superclass Hexapoda. In Treatise on invertebrate paleontology: Arthropoda (eds Moore RC, Kaesler RL), xxii+655 pp Boulder, Colorado: The Geological Society of America and the University of Kansas.
Kukalová-Peck J. 2009. Carboniferous protodonatoid dragonfly nymphs and the synapomorphies of Odonatoptera and Ephemeroptera (Insecta: Palaeoptera). Palaeodiversity 2, 169–198.
Wootton RJ. 1988. The historical ecology of aquatic insects: an overview. Palaeogeogr. Palaeoclimatol. Palaeoecol. 62, 477–492. (10.1016/0031-0182(88)90068-5) DOI
Yan EV, Beutel RG, Lawrence JF. 2018. Whirling in the late Permian: ancestral Gyrinidae show early radiation of beetles before Permian-Triassic mass extinction. BMC Evol. Biol. 18, 33 (10.1186/s12862-018-1139-8) PubMed DOI PMC
Kukalová J. 1968. Permian mayfly nymphs. Psyche 75, 311–327. (10.1155/1968/904597) DOI
Brauckmann C, Schneider J. 1996. Ein unter-karbonisches Insekt aus dem Raum Bitterfeld/Delitz (Pterygota, Arnsbergium, Deutschland). N. Jb. Geol. Paläont., Mh. 1996, 17–30.
Wolfe JM, Daley AC, Legg DA, Edgecombe GD. 2016. Fossil calibrations for the arthropod tree of life. Earth Sci. Rev. 160, 43–110. (10.1016/j.earscirev.2016.06.008) DOI
Prokop J, Engel MS. 2019. Palaeodictyopterida. Curr. Biol. 29, R306–R309. (10.1016/j.cub.2019.02.056) PubMed DOI
Brongniart C. 1885. Insecte fossile du terrain houiller. La Nature 13, 156.
Brauer F. 1886. Ansichten über die paläozoischen Insekten und deren Deutung. Ann. der Naturhist. Mus., Wien 1, 87–126.
Handlirsch A. 1906. Die fossilen Insekten und die Phylogenie der rezenten Formen: Ein Handbuch für Paläontologen und Zoologen. Leipzig, Germany: Engelman V.W. Publ.
Lameere A. 1908. La paléontologie et les métamorphoses des insectes. Ann. Soc. Entomol. Belgique 52, 127–149.
Lameere A. 1917. Révision sommaire des insectes fossiles du Stéphanien de Commentry. Bull. Mus. Nat. Hist. Natur., Paris 23, 141–200.
Carpenter FM. 1951. Studies on Carboniferous insects from Commentry. Part 2. The Megasecoptera. J. Paleont. 25, 336–355.
Kukalová-Peck J. 1972. Unusual structures in the Paleozoic insect orders Megasecoptera and Palaeodictyoptera with description of a new family. Psyche 79, 243–268. (10.1155/1972/98019) DOI
Carpenter FM, Richardson ES. 1971. Additional insects in Pennsylvanian concretions from Illinois. Psyche 78, 267–295. (10.1155/1971/80989) DOI
Kukalová-Peck J. 1978. Origin and evolution of insect wings and their relation to metamorphosis, as documented by the fossil record. J. Morph. 156, 53–126. (10.1002/jmor.1051560104) PubMed DOI
Shear WA, Kukalová-Peck J. 1990. The ecology of Paleozoic terrestrial arthropods: the fossil evidence. Can. J. Zool. 68, 1807–1834. (10.1139/z90-262) DOI
Wootton RJ. 1972. Nymphs of Palaeodictyoptera (Insecta) from the Westphalian of England. Palaeontology 15, 662–675.
Labandeira CC, Sepkoski JJ Jr. 1993. Insect diversity in the fossil record. Science 261, 310–315. (10.1126/science.11536548) PubMed DOI
Simon S, Blanke A, Meusemann K. 2018. Reanalyzing the Palaeoptera problem – the origin of insect flight remains obscure. Arthropod Struct. Dev. 47, 328–338. (10.1016/j.asd.2018.05.002) PubMed DOI
Martynov AV. 1924. L’évolution de deux formes d'ailes différentes chez les insectes. Rev. Zool. Russe 4, 155–185.
Sroka P, Staniczek AH, Bechly G. 2015. Revision of the giant pterygote insect Bojophlebia prokopi Kukalová-Peck, 1985 (Hydropalaeoptera: Bojophlebiidae) from the Carboniferous of the Czech Republic, with the first cladistic analysis of fossil palaeopterous insects. J. Syst. Palaeont. 13, 963–982. (10.1080/14772019.2014.987958) DOI
Prokop J, Pecharová M, Nel A, Hörnschemeyer T. 2018. The wing base of the palaeodictyopteran genus Dunbaria Tillyard: where are we now? Arthropod Struct. Dev. 47, 339–351. (10.1016/j.asd.2018.04.002) PubMed DOI
Prokop J, Pecharová M, Nel A, Hörnschemeyer T, Krzemińska E, Krzemiński W, Engel MS. 2017. Paleozoic nymphal wing pads support dual model of insect wing origins. Curr. Biol. 27, 263–269. (10.1016/j.cub.2016.11.021) PubMed DOI
Prokop J, Pecharová M, Jarzembowski EA, Ross AJ. 2018. New palaeodictyopterans from the Late Carboniferous of the UK (Insecta: Palaeodictyopterida). Earth Environ. Sci. Trans. R. Soc. Edinburgh 107, 99–107. (10.1017/S1755691017000408) DOI
Tillyard RJ. 1917. On the morphology of the caudal gills of the larvae of zygopterid dragonflies. Proc. Linn. Soc. N. S. W. 42, 606–632.
Kalkman VJ, Choong CY, Orr AG, Schütte K. 2010. Remarks on the taxonomy of Megapodagrionidae with emphasis on the larval gills (Odonata). Int. J. Odonatol. 13, 119–135. (10.1080/13887890.2010.9748366) DOI
Schachat SR, Labandeira CC, Saltzman MR, Cramer BD, Payne JL, Boyce CK. 2018. Phanerozoic pO2 and the early evolution of terrestrial animals. Proc. R. Soc. B 285, 20172631 (10.1098/rspb.2017.2631) PubMed DOI PMC
Hinton HE, Matthews LH. 1955. On the respiratory adaptations, biology, aid taxonomy of the Psephenidae, with notes on some related families (Coleoptera). Proc. Zool. Soc. Lond. 125, 543–568. (10.1111/j.1096-3642.1955.tb00617.x) DOI
Beutel RG, Leschen RAB.2005. Coleoptera, beetles. Volume 1: morphology and systematics (Archostemata, Adephaga, Myxophaga, Polyphaga partim). In Handbuch der zoologie/Handbook of zoology, Band/Volume IV Arthropoda: Insecta, Teilband/Part 38, pp. 1–567. Berlin, Germany: Walter de Gruyter.
Bocák L, Bocáková M. 2010. Lycidae Laporte, 1836. In Handbook of zoology, arthropoda: insecta. Coleoptera, beetles; vol. 2: morphology and systematics (Elateroidea, bostrichiformia, cucujiformia partim) (eds Leschen RAB, Beutel RG, Lawrence JF), pp. 114–123. Berlin, Germany: Walter de Gruyter GmbH & Co. KG.
Corbet PS. 1962. A biology of dragonflies, pp. 1–136. Aspects of zoology series London, UK: H.F. & G. Witherby Ltd.
Wesenberg-Lund C. 1913. Odonaten-Studien. Int. Rev. Hydrobiol. 6, 155–228, 373–422. (10.1002/iroh.19130060204) DOI
Norling U. 1982. Structure and ontogeny of the lateral abdominal gills and the caudal gills in Euphaeidae larvae. Zool. Jb. Anat. 107, 343–389.
Rowe NP. 1992. Larval development in Diplacodes bipunctata (Brauer) (Odonata: Libellulidae). J. Aust. Ent. Soc. 31, 351–355. (10.1111/j.1440-6055.1992.tb00525.x) DOI
Stehr F. 1987. Immature insects: vol. 1, pp. 1–754, Michigan: Kendall/Hunt, Dubuque, IA.
Anqvist G, Johansson F. 1998. Ontogenetic reaction norms of predator-induced defensive morphology in dragonfly larvae. Ecology 79, 1847–1858. (10.1890/0012-9658(1998)079[1847:ORNOPI]2.0.CO;2) DOI
Carpenter FM, Richardson ES. 1968. Megasecopterous nymphs in Pennsylvanian concretions from Illinois. Psyche 75, 295–309. (10.1155/1968/903124) DOI
Prokop J, Pecharová M, Nel A, Grey M, Hörnschemeyer T. 2017. A remarkable insect from the Pennsylvanian of the Joggins Formation in Nova Scotia, Canada: insights into unusual venation of Brodiidae and nymphs of Megasecoptera. J. Syst. Palaeont. 15, 1051–1065. (10.1080/14772019.2017.1283364) DOI
Marden JH, Thomas MA. 2003. Rowing locomotion by a stonefly that possesses the ancestral pterygote condition of co-occurring wings and abdominal gills. Biol. J. Linn. Soc. 79, 341–349. (10.1046/j.1095-8312.2003.00192.x) DOI
Omad GH, Pessacq P, Epele LB. 2015. Spatial distribution, feeding and length–mass relationships of Diamphipnopsis samali (Plecoptera, Diamphipnoidae) in a North Patagonia Andean stream, Argentina. Rev. Soc. Entomol. Argentina 74, 27–35.
Štys P, Soldán T. 1980. Retention of tracheal gills in adult Ephemeroptera and other insects. Acta Univ. Carol., Biol. 1978, 409–435.
Tshernova OA. 1965. Some fossil mayflies (Ephemeroptera, Misthodontidae) from Permian beds of the Ural. Entomol. Rev. 44, 202–207.
Ditsche-Kuru P, Koop JHE, Gorb SN. 2010. Underwater attachment in current: the role of setose attachment structures on the gills of the mayfly larvae Epeorus assimilis (Ephemeroptera, Heptageniidae). J. Exp. Biol. 213, 1950–1959. (10.1242/jeb.037218) PubMed DOI
Lestage JA. 1935. Contribution à l'étude des Ephéméroptères IX. - Le groupe Siphlonuridien. Bull. Ann. Soc. R. Entomol. Belgique 75, 77–139.
Riek EF. 1955. Revision of the Australian mayflies (Ephemeroptera) I. Subfamily Siphlonuridae. Austr. J. Zool. 3, 266–280. (10.1071/ZO9550266) DOI
Prokop J, Tippeltová Z, Roques P, Nel A. 2013. A new genus and species of Breyeriidae and wings of immature stages from the Upper Carboniferous, Nord-Pas-de-Calais, France (Insecta: Palaeodictyoptera). Insect Syst. Evol. 44, 117–128. (10.1163/1876312X-44032098) DOI
Demoulin G. 1970. Remarques critiques sur des larves ‘éphéméromorphes’ du Permien. Bull. Inst. R. Sci. Nat. Belgique 46, 1–10.
Prokop J, Krzemiński W, Krzemińska E, Wojtechowski D. 2012. Paoliida, a putative stem-group of winged insects: morphology of new taxa from the Upper Carboniferous of Poland. Acta Palaeont. Polonica 57, 161–173. (10.4202/app.2010.0064) DOI
Kiesmüller C, Hörnig MK, Leipner A, Haug C, Haug JT. 2019. Palaeozoic palaeodictyopteran insect nymphs with prominent ovipositors from a new locality. Bull. Geosci. 94, 23–40. (10.3140/bull.geosci.1717) DOI
Tillyard RJ. 1909. Studies in the life-histories of Australian Odonata. No. 4. Further notes on the life-history of Petalura gigantea Leach. Proc. Linn. Soc. N. S. W. 36, 86–96. (10.5962/bhl.part.21894) DOI
Green LFB. 1977. Aspects of the respiratory and excretory physiology of the nymph of Uropetala carovei (Odonata: Petaluridae). N. Z. J. Zool. 4, 39–43. (10.1080/03014223.1977.9517934) DOI
Mesozoic evolution of cicadas and their origins of vocalization and root feeding