Mesozoic evolution of cicadas and their origins of vocalization and root feeding
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
PubMed
38191461
PubMed Central
PMC10774268
DOI
10.1038/s41467-023-44446-x
PII: 10.1038/s41467-023-44446-x
Knihovny.cz E-zdroje
- MeSH
- ekosystém MeSH
- fylogeneze MeSH
- Hemiptera * MeSH
- jantar MeSH
- nymfa MeSH
- přední končetina MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- jantar MeSH
Extant cicada (Hemiptera: Cicadoidea) includes widely distributed Cicadidae and relictual Tettigarctidae, with fossils ascribed to these two groups based on several distinct, minimally varying morphological differences that define their extant counterparts. However, directly assigning Mesozoic fossils to modern taxa may overlook the role of unique and transitional features provided by fossils in tracking their early evolutionary paths. Here, based on adult and nymphal fossils from mid-Cretaceous Kachin amber of Myanmar, we explore the phylogenetic relationships and morphological disparities of fossil and extant cicadoids. Our results suggest that Cicadidae and Tettigarctidae might have diverged at or by the Middle Jurassic, with morphological evolution possibly shaped by host plant changes. The discovery of tymbal structures and anatomical analysis of adult fossils indicate that mid-Cretaceous cicadas were silent as modern Tettigarctidae or could have produced faint tymbal-related sounds. The discovery of final-instar nymphal and exuviae cicadoid fossils with fossorial forelegs and piercing-sucking mouthparts indicates that they had most likely adopted a subterranean lifestyle by the mid-Cretaceous, occupying the ecological niche of underground feeding on root. Our study traces the morphological, behavioral, and ecological evolution of Cicadoidea from the Mesozoic, emphasizing their adaptive traits and interactions with their living environments.
Australian Museum Research Institute Sydney NSW 2010 Australia
Beijing Xiachong Amber Museum Beijing 100083 China
Institute of Geology and Paleontology Charles University Prague 12843 Czech Republic
Institute of Geology and Paleontology Linyi University Linyi 276000 China
Princeton Consultants Princeton NJ 08540 USA
School of Life Sciences Capital Normal University Beijing 100048 China
Zobrazit více v PubMed
Moulds MS. An appraisal of the higher classification of cicadas (Hemiptera: Cicadoidea) with special reference to the Australian fauna. Rec. Aust. Mus. 2005;57:375–446. doi: 10.3853/j.0067-1975.57.2005.1447. DOI
Marshall DC, et al. A molecular phylogeny of the cicadas (Hemiptera: Cicadidae) with a review of tribe and subfamily classification. Zootaxa. 2018;4424:1–64. doi: 10.11646/zootaxa.4424.1.1. PubMed DOI
Zhou, Y.& Lei, C. R. The Cicadidae of China (Homoptera: Cicadoidea) (Tianze Press, Hong Kong, 1997).
Sanborn, A. F. In Catalogue of the Cicadoidea (Hemiptera: Cicadoidea), with Contributions to the Bibliography by Martin H. Villet. p. 1001 (Elsevier/Academic Press, San Diego, 2013).
Marshall DC, et al. Inflation of molecular clock rates and dates: molecular phylogenetics, biogeography, and diversification of a global cicada radiation from Australasia (Hemiptera: Cicadidae: Cicadettini) Syst. Biol. 2016;65:16–34. doi: 10.1093/sysbio/syv069. PubMed DOI
Bartlett CR, et al. The diversity of the true hoppers (Hemiptera: Auchenorrhyncha) Insect Biodivers. Sci. Soc. 2018;2:501–590. doi: 10.1002/9781118945582.ch19. DOI
Simon C, et al. Off-target capture data, endosymbiont genes and morphology reveal a relict lineage that is sister to all other singing cicadas. Biol. J. Linn. Soc. 2019;128:865–886. doi: 10.1093/biolinnean/blz120. DOI
Evans J. The morphology of Tettigarcta tomentosa White, (Homoptera, Cicadidae) Pap. Proc. R. Soc. Tasman. 1940;1940:35–49.
Moulds, M. S. Australian cicadas (University of New South Wales Press, 1990).
Shcherbakov DE. Review of the fossil and extant genera of the cicada family Tettigarctidae (Hemiptera: Cicadoidea) Russ. Entomol. J. 2009;17:343–348.
Nahirney PC, Forbes JG, Morris HD, Chock SC, Wang K. What the buzz was all about: superfast song muscles rattle the tymbals of male periodical cicadas. Fed. Am. Soc. Exp. Biol. J. 2006;20:2017–2026. PubMed
Wessel, A., Mühlethaler, R., Hartung, V., Kuštor, V. & Gogala, M. ‘The tymbal: evolution of a complex vibration-producing organ in the Tymbalia (Hemiptera excl. Sternorrhyncha)’ in Studying Vibrational Communication. (eds. Cocroft, R., Gogala, M., Hill, P. Wessel, A.) 395–444 (Springer, Berlin, 2014).
Davranoglou LR, Mortimer B, Taylor GK, Malenovský I. On the morphology and evolution of cicadomorphan tymbal organs. Arthropod Struct. Dev. 2020;55:100918. doi: 10.1016/j.asd.2020.100918. PubMed DOI
Claridge MF, Morgan JC, Moulds MS. Substrate-transmitted acoustic signals of the primitive cicada, Tettigarcta crinita Distant (Hemiptera Cicadoidea, Tettigarctidae.). J. Nat. Hist. 1999;33:1831–1834. doi: 10.1080/002229399299752. DOI
Boulard M. Notes sur la biologie larvaire de las cigales (Hom. Cicadidae) Ann. Soc. Entomol. Fr. 1965;1:503–521.
Boulard M. Contributions à l’entomologie générale et appliquée. 2. Cicadaires (Homoptères, Auchenorhynques). Première partie: Cicadoidea. EPHE, Trav. Lab. Biol. Evol. Insectes Hemipteroidea. 1990;3:55–245.
Williams KS, Smith KG, Stephen FM. Emergence of 13‐Yr periodical cicadas (Cicadidae: Magicicada): phenology, mortality, and predator satiation. Ecology. 1993;74:1143–1152. doi: 10.2307/1940484. DOI
Williams KS, Simon C. The ecology, behavior, and evolution of periodical cicadas. Annu. Rev. Entomol. 1995;40:269–295. doi: 10.1146/annurev.en.40.010195.001413. DOI
Beamer RH. Studies on the biology of Kansas Cicadidae. Univ. Kans. Sci. Bull. 1928;18:155–263.
Smith JJ, Hasiotis ST. Traces and burrowing behaviors of the cicada nymph Cicadetta calliope: neoichnology and paleoecological significance of extant soil-dwelling insects. Palaios. 2008;23:503–513. doi: 10.2110/palo.2007.p07-063r. DOI
Yang LH. Periodical cicadas as resource pulses in North American forests. Science. 2004;306:1565–1567. doi: 10.1126/science.1103114. PubMed DOI
Koenig WD, Liebhold AM. Effects of periodical cicada emergences on abundance and synchrony of avian populations. Ecology. 2005;86:1873–1882. doi: 10.1890/04-1175. DOI
Menninger HL, Palmer MA, Craig LS, Richardson DC. Periodical cicada detritus impacts stream ecosystem metabolism. Ecosystems. 2008;11:1306–1317. doi: 10.1007/s10021-008-9194-4. DOI
Hunter, M. D. Root herbivory in forest ecosystems. in Root Feeders, an Ecosystem Perspective (eds. Johnson, S. N. & Murray P. J.) 68–95 (CAB Biosciences, 2008).
Moriyama M, Numata H. Ecophysiological responses to climate change in cicadas. Physiol. Entomol. 2019;44:65–76. doi: 10.1111/phen.12283. DOI
Badano D, Engel MS, Basso A, Wang B, Cerretti P. Diverse Cretaceous larvae reveal the evolutionary and behavioural history of antlions and lacewings. Nat. Commun. 2018;9:3257. doi: 10.1038/s41467-018-05484-y. PubMed DOI PMC
Prokop J, et al. Ecomorphological diversification of the Late Palaeozoic Palaeodictyopterida reveals different larval strategies and amphibious lifestyle in adults. R. Soc. Open Sci. 2019;6:190460. doi: 10.1098/rsos.190460. PubMed DOI PMC
Haug JT, Müller P, Haug C. Fossil dragonfly-type larva with lateral abdominal protrusions and implications on the early evolution of Pterygota. Iscience. 2021;24:103162. doi: 10.1016/j.isci.2021.103162. PubMed DOI PMC
Shcherbakov D. The 270 million year history of Auchenorrhyncha (Homoptera) Denisia. 2002;176:29–36.
Grimaldi, D. & Engel, M. S. Evolution of the Insects (Cambridge University Press, 2005).
Poinar G, Jr, Kritsky G. Morphological conservatism in the foreleg structure of cicada hatchlings, Burmacicada protera n. gen., n. sp. in Burmese amber, Dominicicada youngi n. gen., n. sp. in Dominican amber and the extant Magicicada septendecim (L.) (Hemiptera: Cicadidae) Hist. Biol. 2012;24:461–466. doi: 10.1080/08912963.2011.603421. DOI
Chauviré B, et al. Arthropod entombment in weathering-formed opal: new horizons for recording life in rocks. Sci. Rep. 2020;10:1–9. doi: 10.1038/s41598-020-67412-9. PubMed DOI PMC
Moulds MS. Cicada fossils (Cicadoidea: Tettigarctidae and Cicadidae) with a review of the named fossilised Cicadidae. Zootaxa. 2018;4438:443–470. doi: 10.11646/zootaxa.4438.3.2. PubMed DOI
Fu Y, Cai C, Huang D. First hairy cicadas in mid-Cretaceous amber from northern Myanmar (Hemiptera: Cicadoidea: Tettigarctidae) Cretac. Res. 2019;93:285–291. doi: 10.1016/j.cretres.2018.09.022. DOI
Jiang H, Chen J, Jarzembowski E, Wang B. An enigmatic fossil hairy cicada (Hemiptera, Tettigarctidae) from mid-Cretaceous Burmese amber. Cretac. Res. 2018;96:14–18. doi: 10.1016/j.cretres.2018.11.010. DOI
Demers-Potvin AV, Szwedo J, Paragnani CP, Larsson HC. First North American occurrence of hairy cicadas discovered in the Cenomanian (Late Cretaceous) of Labrador, Canada. Acta Palaeontol. Pol. 2020;65:85–98. doi: 10.4202/app.00669.2019. DOI
Lambkin KJ. Mesodiphthera Tillyard, 1919, from the Late Triassic of Queensland, the oldest cicada (Hemiptera: Cicadomorpha: Cicadoidea: Tettigarctidae) Zootaxa. 2019;4567:358–366. doi: 10.11646/zootaxa.4567.2.8. PubMed DOI
Qiao D, Zhang W, Zhang X, Ren D, Yao Y. New genus and species of Tettigarctidae (Hemiptera: Cicadomorpha: Cicadoidea) from the mid-Cretaceous amber of northern Myanmar. Cretac. Res. 2021;126:104900. doi: 10.1016/j.cretres.2021.104900. DOI
Moulds MS, Frese M, McCurry MR. New cicada fossils from Australia (Hemiptera: Cicadoidea: Cicadidae) with remarkably detailed wing surface nanostructure. Alcheringa. 2022;46:1–13. doi: 10.1080/03115518.2022.2112287. DOI
Moulds MS, Kaulfuss U, Gehler A. A review of the singing cicada fossils from the Pliocene Fossil-Lagerstätte Willershausen, Germany, with the description of three new species (Hemiptera: Cicadidae: Tibicinae and Cicadinae) Palaeoentomology. 2023;6:459–471. doi: 10.11646/palaeoentomology.6.5.5. DOI
Jiang H, et al. Widespread mineralization of soft-bodied insects in Cretaceous amber. Geobiology. 2022;20:363–376. doi: 10.1111/gbi.12488. PubMed DOI
Budd GE, Mann RP. The dynamics of stem and crown groups. Sci. Adv. 2020;6:eaaz1626. doi: 10.1126/sciadv.aaz1626. PubMed DOI PMC
Hughes M, Gerber S, Wills MA. Clades reach highest morphological disparity early in their evolution. PNAS. 2013;110:13875–13879. doi: 10.1073/pnas.1302642110. PubMed DOI PMC
Guillerme T, et al. Disparities in the analysis of morphological disparity. Biol. Lett. 2020;16:20200199. doi: 10.1098/rsbl.2020.0199. PubMed DOI PMC
Budd GE. Morphospace. Curr. Biol. 2021;31:R1181–R1185. doi: 10.1016/j.cub.2021.08.040. PubMed DOI
Huang B, Harper DAT, Hammer Ø. Introduction to PAST, a comprehensive statistics software package for paleontological data analysis. Acta Palaeontol. Sin. 2013;52:161–181.
Shi Y. Introduction of morphometrics and a case study on fusulinid foraminifera. Acta Micropalaeontol. Sin. 2017;34:179–191.
MacLeod N. Morphometrics: history, development methods and prospects. Zool. Syst. 2017;42:4–33.
MacLeod, N. & Forey, P. L. Morphology, Shape and Phylogeny. (CRC Press, 2002).
Hou, Z., Li, Q. & Wei, C. Morphology and identification of the final instar nymphs of three cicadas (Hemiptera, Cicadidae) in Guanzhong Plain, China based on comparative morphometrics. ZooKeys33 (2014). PubMed PMC
Maccagnan D, Martinelli NM. Descrição das ninfas de Quesada gigas (Olivier) (Hemiptera: Cicadidae) associadas ao cafeeiro. Neotrop. Entomol. 2004;33:439–446. doi: 10.1590/S1519-566X2004000400007. DOI
Li S, Wang Y, Ren D, Pang H. Revision of the genus Sunotettigarcta Hong, 1983 (Hemiptera, Tettigarctidae), with a new species from Daohugou, Inner Mongolia, China. Alcheringa. 2012;36:501–507. doi: 10.1080/03115518.2012.680722. DOI
Wang B, Zhang H. Tettigarctidae (Insecta: Hemiptera: Cicadoidea) from the Middle Jurassic of Inner Mongolia, China. Geobios. 2009;42:243–253. doi: 10.1016/j.geobios.2008.09.003. DOI
Chen J, Wang B. A giant tettigarctid cicada from the Mesozoic of northeastern China. Spixiana. 2016;39:119–124.
Chen J, Wang B, Zhang H, Wang X. A remarkable new genus of Tettigarctidae (Insecta, Hemiptera, Cicadoidea) from the Middle Jurassic of northeastern China. Zootaxa. 2014;3764:581–586. doi: 10.11646/zootaxa.3764.5.6. PubMed DOI
Wootton RJ. The mechanical design of insect wings. Sci. Am. 1990;263:114–121. doi: 10.1038/scientificamerican1190-114. DOI
Wootton RJ. Reconstructing insect flight performance from fossil evidence. Acta Zool. Cracov. 2003;46:89–99.
Bennet-Clark H. Tymbal mechanics and the control of song frequency in the cicada Cyclochila australasiae. J. Exp. Biol. 1997;200:1681–1694. doi: 10.1242/jeb.200.11.1681. PubMed DOI
Kalm P. Description of the periodical cicada, Magicicada septendecim E. L. Larsen, translator. Ohio J. Sci. 1953;53:138–142.
Brown VK, Gange AC. Insect herbivory insect below ground. Adv. Ecol. Res. 1990;20:1–58. doi: 10.1016/S0065-2504(08)60052-5. DOI
Krause JM, Bown TM, Bellosi ES, Genise JF. Trace fossils of cicadas in the Cenozoic of Central Patagonia, Argentina. Palaeontology. 2008;51:405–418. doi: 10.1111/j.1475-4983.2008.00753.x. DOI
Wang B, Zhang H, Jarzembowski EA, Fang Y, Zheng D. Taphonomic variability of fossil insects: a biostratinomic study of Palaeontinidae and Tettigarctidae (Insecta: Hemiptera) from the Jurassic Daohugou Lagerstätte. Palaios. 2013;28:233–242. doi: 10.2110/palo.2012.p12-045r. DOI
Simon C, Cooley JR, Karban R, Sota T. Advances in the evolution and ecology of 13-and 17-year periodical cicadas. Annu. Rev. Entomol. 2022;67:457–482. doi: 10.1146/annurev-ento-072121-061108. PubMed DOI
Labandeira CC. Deep-time patterns of tissue consumption by terrestrial arthropod herbivores. Naturwissenschaften. 2013;100:355–364. doi: 10.1007/s00114-013-1035-4. PubMed DOI
Labandeira CC, Phillips TL, Norton RL. Oribatid mites and decomposition of plant tissues in Paleozoic coal-swamp forests. Palaios. 1997;12:317–351. doi: 10.2307/3515334. DOI
Miles PW. The saliva of Hemiptera. Adv. Insect. Phys. 1972;9:183–255. doi: 10.1016/S0065-2806(08)60277-5. DOI
White J, Strehl CE. Xylem feeding by periodical cicada nymphs on tree roots. Ecol. Entomol. 1978;3:323–327. doi: 10.1111/j.1365-2311.1978.tb00933.x. DOI
Lloyd M, White J. Xylem feeding by periodical cicada nymphs on pine and grass roots, with novel suggestions for pest control in conifer plantations and orchards. Ohio J. Sci. 1987;87:50–54.
Hao Y, Dietrich CH, Dai W. Development of mouthparts in the cicada Meimuna mongolica (Distant): successive morphological patterning and sensilla differentiation from nymph to adult. Sci. Rep. 2016;6:38151. doi: 10.1038/srep38151. PubMed DOI PMC
Backus, E. A. Anatomical and sensory mechanisms of leafhopper and planthopper feeding behavior. in The Leafhoppers and Planthoppers (L. R. Nault, J. G. Rodriguez, Eds.) 163–184 (John Wiley & Sons, New York, 1985).
Novotny V, Wilson MR. Why are there no small species among xylem-sucking insects? Evol. Ecol. 1997;11:419–437. doi: 10.1023/A:1018432807165. DOI
Sorensen JT, Campbell BC, Gill RJ, Steffen-Campbell JD. Non-monophyly of Auchenorrhyncha (‘ Homoptera’), based upon 18S rDNA phylogeny: eco-evolutionary and cladistic implications within pre-Heteropterodea Hemiptera (sl) and a proposal for new monophyletic suborders. Pan-Pac. Entomol. 1995;71:31–60.
Redak RA, et al. The biology of xylem fluid–feeding insect vectors of Xylella fastidiosa and their relation to disease epidemiology. Annu. Rev. Entomol. 2004;49:243–270. doi: 10.1146/annurev.ento.49.061802.123403. PubMed DOI
Wang B, Szwedo J, Zhang H. New Jurassic Cercopoidea from China and their evolutionary significance (Insecta: Hemiptera) Palaeontology. 2012;55:1223–1243. doi: 10.1111/j.1475-4983.2012.01185.x. DOI
Szwedo J. The unity, diversity and conformity of bugs (Hemiptera) through time. Earth Environ. Sci. Trans. R. Soc. Edinb. 2016;107:109–128.
Chen J, et al. A new bizarre cicadomorph family in mid-Cretaceous Burmese amber (Hemiptera, Clypeata) Cretac. Res. 2019;97:1–15. doi: 10.1016/j.cretres.2019.01.010. DOI
Wang X, He Z, Wei C. A new cicada species of Psalmocharias Kirkaldy feeding on an Ephedra plant from China (Hemiptera: Cicadidae) Zootaxa. 2017;4290:367–372. doi: 10.11646/zootaxa.4290.2.6. DOI
Liu Y, Qi M, Dietrich CH, He Z, Wei C. Comparative sialotranscriptome analysis of the rare Chinese cicada Subpsaltria yangi, with identification of candidate genes related to host-plant adaptation. Int. J. Biol. Macromol. 2019;130:323–332. doi: 10.1016/j.ijbiomac.2019.02.132. PubMed DOI
Pott C, Jiang B. Plant remains from the Middle-Late Jurassic Daohugou site of the Yanliao Biota in Inner Mongolia, China. Acta Palaeobot. 2017;57:185–222. doi: 10.1515/acpa-2017-0012. DOI
Wang H, et al. Rosid radiation and the rapid rise of angiosperm-dominated forests. Proc. Natl Acad. Sci. USA. 2009;106:3853–3858. doi: 10.1073/pnas.0813376106. PubMed DOI PMC
Benton MJ, Wilf P, Sauquet H. The Angiosperm Terrestrial Revolution and the origins of modern biodiversity. N. Phytol. 2022;233:2017–2035. doi: 10.1111/nph.17822. PubMed DOI
Poinar, G. Jr Burmese Amber Flowers. In Flowers in Amber. 1–67 (Cham: Springer, 2022).
Xiao L, Labandeira CC, Dilcher DL, Ren D. Arthropod and fungal herbivory at the dawn of angiosperm diversification: the Rose Creek plant assemblage of Nebraska, USA. Cretac. Res. 2022;131:105088. doi: 10.1016/j.cretres.2021.105088. PubMed DOI PMC
Martinez, A. J. et al. Angiosperm to gymnosperm host-plant switch entails shifts in microbiota of the Welwitschia bug, Probergrothius angolensis (Distant, 1902). Mol. Ecol.28, 5172–5187. PubMed
Moran NA, Tran P, Gerardo NM. Symbiosis and insect diversification: an ancient symbiont of sap-feeding insects from the bacterial phylum Bacteroidetes. AEM. 2005;71:8802–8810. doi: 10.1128/AEM.71.12.8802-8810.2005. PubMed DOI PMC
Perreau J, Moran NA. Genetic innovations in animal-microbe symbioses. Nat. Rev. Genet. 2022;23:23–39. doi: 10.1038/s41576-021-00395-z. PubMed DOI PMC
Shi G, et al. Age constraint on Burmese amber based on U–Pb dating of zircons. Cretac. Res. 2012;37:155–163. doi: 10.1016/j.cretres.2012.03.014. DOI
Duffels, J. P. & Ewart, A. The Cicadas of the Fiji, Samoa and Tonga Islands: Their Taxonomy and Biogeography (Homoptera, Cicadoidea) (E.J. Brill, 1988).
Chen J, et al. Taxonomic review and phylogenetic inference elucidate the evolutionary history of Mesozoic Procercopidae, with new data from the Cretaceous Jehol Biota of NE China (Hemiptera, Cicadomorpha) J. Zool. Syst. Evol. Res. 2020;58:174–193. doi: 10.1111/jzs.12349. DOI
Chen J, et al. Geometric morphometric analysis for the systematic elucidation of new Hylicellidae from the Jurassic of China (Hemiptera: Cicadomorpha) J. Paleontol. 2022;96:1119–1131. doi: 10.1017/jpa.2022.20. DOI
Fu Y, Cai C, Huang D. First Mesozoic procercopids in mid-Cretaceous amber from northern Myanmar (Hemiptera: Cercopoidea) Geol. Mag. 2020;157:506–512. doi: 10.1017/S0016756819001018. DOI
Chen J, Wang B, Zhang H, Wang X, Zheng X. New fossil Procercopidae (Hemiptera: Cicadomorpha) from the Middle Jurassic of Daohugou, Inner Mongolia, China. Eur. J. Entomol. 2015;112:373–380. doi: 10.14411/eje.2015.044. DOI
Wang B, Zhang H. A remarkable new genus of Procercopidae (Hemiptera: Cercopoidea) from the Middle Jurassic of China. C. R. Palevol. 2009;8:389–394. doi: 10.1016/j.crpv.2009.01.003. DOI
Goloboff PA, Catalano SA. TNT version 1.5, including a full implementation of phylogenetic morphometrics. Cladistics. 2016;32:221–238. doi: 10.1111/cla.12160. PubMed DOI
Goloboff PA, Torres A, Arias JS. Weighted parsimony outperforms other methods of phylogenetic inference under models appropriate for morphology. Cladistics. 2018;34:407–437. doi: 10.1111/cla.12205. PubMed DOI
Nixon, K. C. WinClada version 1.00. 08. Published by the author, Ithaca, NY. J. Res. Lepid (2002).
Agnarsson I, Miller JA. Is ACCTRAN better than DELTRAN? Cladistics. 2008;24:1032–1038. doi: 10.1111/j.1096-0031.2008.00229.x. PubMed DOI
Ronquist F, et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012;61:539–542. doi: 10.1093/sysbio/sys029. PubMed DOI PMC
Hammer Ø, Harper DAT, Ryan PD. Past: paleontological statistics software package for education and data analysis. Palaeontol. Electron. 2001;4:1–9.
Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods. 2012;9:671–675. doi: 10.1038/nmeth.2089. PubMed DOI PMC
Jiang et al. Mesozoic evolution of cicadas and their origins of vocalization and root feeding [Micro-CT Images Dataset]. Figshare. 10.6084/m9.figshare.24715743 (2023).