Arthropod entombment in weathering-formed opal: new horizons for recording life in rocks
Language English Country Great Britain, England Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
32601331
PubMed Central
PMC7324577
DOI
10.1038/s41598-020-67412-9
PII: 10.1038/s41598-020-67412-9
Knihovny.cz E-resources
- MeSH
- Arthropods MeSH
- Geologic Sediments MeSH
- Hemiptera anatomy & histology MeSH
- Silicon Dioxide MeSH
- Weather MeSH
- Earth Sciences methods MeSH
- Earth, Planet MeSH
- Fossils anatomy & histology MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Silicon Dioxide MeSH
Animal fossils preserved in various geological materials, such as limestone, claystone, or amber, provide detailed information on extinct species that is indispensable for retracing the evolution of terrestrial life. Here, we present the first record of an animal fossil preserved in opal formed by weathering with such high-resolution details that even individual cuticle hairs are observed. The fossil consists of the exoskeleton of a nymphal insect belonging to the order Hemiptera and either the family Tettigarctidae or the Cicadidae. This identification is based on anatomical details such as the tibial and femoral morphology of the forelegs. The exoskeleton of the insect was primarily zeolitized during the alteration of the host rocks and later sealed in opal deposited by silica-rich fluids derived from the continental weathering of the volcanic host rocks. Organic matter is preserved in the form of amorphous carbon. This finding makes opal formed by rocks weathering a new, complementary source of animal fossils, offering new prospects for the search for ancient life in the early history of Earth and possibly other terrestrial planets such as Mars, where weathering-formed opal occurs.
School of Behavioral and Natural Sciences Mount St Joseph University Cincinnati OH USA
Timberbrook Capital Philadelphia PA USA
Univ Grenoble Alpes CNRS Grenoble INP SIMAP 38000 Grenoble France
See more in PubMed
Penney D, Jepson JE. Fossil Insects: An Introduction to Palaeoentomology. Castleton: Siri Scientific Press; 2014.
Smith T, Renfro N. Fossil insect in opal. Gems Gemol. 2019;55:113–114.
Rey PF. Opalisation of the Great Artesian Basin (central Australia): an Australian story with a Martian twist. Aust. J. Earth Sci. 2013;60:291–314. doi: 10.1080/08120099.2013.784219. DOI
Rondeau B, et al. Geochemical and petrological characterization of gem opals from Wegel Tena, Wollo, Ethiopia: opal formation in an Oligocene soil. Geochem. Explor. Environ. Anal. 2012;12:93–104. doi: 10.1144/1467-7873/10-MINDEP-058. DOI
Chauviré B, Rondeau B, Mazzero F, Ayalew D. The precious opal deposit at Wegel Tena, Ethiopia: formation via successive pedogenesis events. Can. Mineral. 2017;55:701–723. doi: 10.3749/canmin.1700010. DOI
Chauviré B, et al. Pedogenic origin of precious opals from Wegel Tena (Ethiopia): evidence from trace elements and oxygen isotopes. Appl. Geochem. 2019;101:127–139. doi: 10.1016/j.apgeochem.2018.12.028. DOI
Laufeld S, Jeppsson L. Silicification and bentonites in the Silurian of Gotland. Geol. Föreningen i Stock. Förh. 1976;98:31–44. doi: 10.1080/11035897609454336. DOI
Butts SH. Silicification. In: Laflamme M, Schiffbauer JD, Darroch SAF, editors. Reading and Writing of the Fossil Record: Preservational Pathways to Exceptional Fossilization. Cambridge: Paleontological Society; 2014.
Darragh PJ, Gaskin AJ. The nature and origin of opal. Aust. Gemol. 1966;8:5–9.
Sanders JV. Diffraction of light by opals. Acta Crystallogr. Sect. A. 1968;24:427–434. doi: 10.1107/S0567739468000860. DOI
Iler RK. The occurrence, dissolution, and deposition of silica. In: Sons JW, editor. The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties and Biochemistry of Silica. New York: Wiley; 1979. pp. 3–93.
Martin RE. Taphonomy. Climate Change 2013—The Physical Science Basis. Cambridge: Cambridge University Press; 2013.
Leo RF, Barghoorn ES. Botanical museum leaflets volume XXV. Bot. Mus. Leafl. 1976;25:1–289.
Scurfield G, Segnit ERR. Petrifaction of wood by silica minerals. Sediment. Geol. 1984;39:149–167. doi: 10.1016/0037-0738(84)90048-4. DOI
Ballhaus C, et al. The silicification of trees in volcanic ash—an experimental study. Geochim. Cosmochim. Acta. 2012;84:62–74. doi: 10.1016/j.gca.2012.01.018. DOI
Mustoe GE. Wood petrifaction: a new view of permineralization and replacement. Geoscience. 2017;7:119. doi: 10.3390/geosciences7040119. DOI
Liesegang M, Gee CT. Silica entry and accumulation in standing trees in a hot-spring environment: cellular pathways, rapid pace and fossilization potential. Palaeontology. 2020 doi: 10.1111/pala.12480. DOI
Pewkliang B, Pring A, Brugger J. The formation of precious opal: clues from the opalization of bone. Can. Mineral. 2008;46:139–149. doi: 10.3749/canmin.46.1.139. DOI
Bell PR, et al. Revised geology, age, and vertebrate diversity of the dinosaur-bearing Griman Creek Formation (Cenomanian), Lightning Ridge, New South Wales Australia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2019;514:655–671. doi: 10.1016/j.palaeo.2018.11.020. DOI
Daley RL, Boyd DW. The role of skeletal microstructure during selective silicification of brachiopods. SEPM J. Sediment. Res. 1996;66:155–162. doi: 10.1306/D42682E3-2B26-11D7-8648000102C1865D. DOI
Cooper GA, Grant RE. Permian brachiopods of west Texas, VI. Smithson. Contrib. Paleobiol. 1977 doi: 10.5479/si.00810266.32.1. DOI
Park LE, Downing KF. Paleoecology of an exceptionally preserved arthropod fauna from lake deposits of the Miocene Barstow Formation, Southern California, U.S.A. Palaios. 2001;16:175. doi: 10.1669/0883-1351(2001)016<0175:POAEPA>2.0.CO;2. DOI
Olszewski TD, Erwin DH. Change and stability in Permian brachiopod communities from western Texas. Palaios. 2009;24:27–40. doi: 10.2110/palo.2008.p08-061r. DOI
Guido DM, Campbell KA, Foucher F, Westall F. Life is everywhere in sinters: examples from jurassic hot-spring environments of argentine patagonia. Geol. Mag. 2019;156:1631–1638. doi: 10.1017/S0016756819000815. DOI
Des Marais DJ, Walter MR. Terrestrial hot spring systems: introduction. Astrobiology. 2019;19:1419–1432. doi: 10.1089/ast.2018.1976. PubMed DOI PMC
Teece BL, et al. Biomolecules from fossilized hot spring sinters: implications for the search for life on Mars. Astrobiology. 2020;20:537–551. doi: 10.1089/ast.2018.2018. PubMed DOI
Edwards D, Kenrick P, Dolan L. History and contemporary significance of the Rhynie cherts—our earliest preserved terrestrial ecosystem. Philos. Trans. R. Soc. B Biol. Sci. 2018;373:20160489. doi: 10.1089/ast.2018.2018. PubMed DOI PMC
Djokic T, Van Kranendonk MJ, Campbell KA, Walter MR, Ward CR. Earliest signs of life on land preserved in ca. 3.5 Ga hot spring deposits. Nat. Commun. 2017;8:15263. doi: 10.1038/ncomms15263. PubMed DOI PMC
Ruff SW, Farmer JD. Silica deposits on Mars with features resembling hot spring biosignatures at El Tatio in Chile. Nat. Commun. 2016;7:13554. doi: 10.1038/ncomms13554. PubMed DOI PMC
Van Bremmelen, R. W. The Geology of Indonesia. (Governement Printing, The Hague, 1949).
Sujatmiko, H. & Santosa S. Geological map of the Leuwidamar Quadrangle, Java 1:100000.
Ansori C. Model mineralisasi pembentukan opal banten. Indones. J. Geosci. 2010;5:151–170. doi: 10.17014/ijog.v5i3.100. DOI
Oktariani H, Winantris W, Hamzah A. Dryobalanoxylon sp.: ilicified fossil wood from Lebak Regency, Banten Province. Indones. J. Geol. Sumberd. Miner. 2019;20:93. doi: 10.33332/jgsm.geologi.20.2.93-99. DOI
Einfalt HC. Some observations on the composition and origin of opals from Java. J. Gemol. 2007;30:383–398. doi: 10.15506/JoG.2007.30.7.383. DOI
Ostrooumov M, Fritsch E, Lasnier B, Lefrant S. Spectres Raman des opales: aspect diagnostique et aide à la classification. Eur. J. Mineral. 1999;11:899–908. doi: 10.1127/ejm/11/5/0899. DOI
Wang Y, Alsmeyer DC, McCreery RL. Raman spectroscopy of carbon materials: structural basis of observed spectra. Chem. Mater. 1990;2:557–563. doi: 10.1021/cm00011a018. DOI
Ferrari AC, Robertson J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B. 2000;61:14095–14107. doi: 10.1103/PhysRevB.61.14095. DOI
Deer, W. A., Howie, R. A., Wise, W. S. & Zussman, J. Rock-Forming Minerals. Volume 4B. Second Edition. Framework Silicates: Silica Minerals, Felspathoids and the Zeolites. (The Geological Society, London, 2004).
Doyle, S., Carter, S. & Hammond, N. Concise Insect Guide. (Bloomsbury Natural History, 2014).
Resh VH, Cardé RT. Encyclopedia of insects. Amsterdam: Elsevier; 2009.
Poinar G, Kritsky G. Morphological conservatism in the foreleg structure of cicada hatchlings, Burmacicada protera n. gen., n. sp. in Burmese amber, Dominicicada youngi n. gen., n. sp. in Dominican amber and the extant Magicicada septendecim (L.) (Hemipte) Hist. Biol. 2011;24:461–466. doi: 10.1080/08912963.2011.603421. DOI
Shcherbakov DE. The 270 million year history of Auchenorrhyncha (Homoptera) Denisia. 2002;176:29–36.
Grimaldi DA, Engel MS. Evolution of the insects. Choice Rev. Online. 2005;43:2563.
Maccagnan DHB, Martinelli NM. Systematics, morphology and physiology description and key to the fifth-instars of some cicadas (hemiptera: Cicadidae) associated with coffee plants in brazil. Neotrop. Entomol. 2011;40:445–451. doi: 10.1590/S1519-566X2011000400006. PubMed DOI
Moulds MS. Cicada fossils (Cicadoidea: Tettigarctidae and Cicadidae) with a review of the named fossilised Cicadidae. Zootaxa. 2018;4438:443–470. doi: 10.11646/zootaxa.4438.3.2. PubMed DOI
Wang B, Zhang H. Tettigarctidae (Insecta: Hemiptera: Cicadoidea) from the Middle Jurassic of Inner Mongolia, China. Geobios. 2009;42:243–253. doi: 10.1016/j.geobios.2008.09.003. DOI
Fu Y, Cai C, Huang D. First hairy cicadas in mid-Cretaceous amber from northern Myanmar (Hemiptera: Cicadoidea: Tettigarctidae) Cretac. Res. 2019;93:285–291. doi: 10.1016/j.cretres.2018.09.022. DOI
Zheng Y, Chen J, Wang X. A new genus and species of tettigarctidae from the mesozoic of northeastern china (Insecta, Hemiptera, Cicadoidea) Zookeys. 2016;2016:47–55. doi: 10.3897/zookeys.632.10076. PubMed DOI PMC
Shcherbakov DE. Review of the fossil and extant genera of the cicada family Tettigarctidae (Hemiptera: Cicadoidea) Russ. Entomol. J. 2008;17:343–348.
Kaulfuss U, Moulds M. A new genus and species of tettigarctid cicada from the early miocene of New Zealand: Paratettigarcta zealandica (Hemiptera, Auchenorrhyncha, Tettigarctidae) Zookeys. 2015;484:83–94. doi: 10.3897/zookeys.484.8883. PubMed DOI PMC
Hay RL, Sheppard RA. Occurrence of zeolites in sedimentary rocks: an overview. Rev. Mineral. Geochem. 2001;45:217–234. doi: 10.2138/rmg.2001.45.6. DOI
Ming DW, Boettinger JL. Zeolites in soil environments. Rev. Mineral. Geochem. 2001;45:323–345. doi: 10.2138/rmg.2001.45.11. DOI
White J, Strehl CE. Xylem feeding by periodical cicada nymphs on tree roots. Ecol. Entomol. 1978;3:323–327. doi: 10.1111/j.1365-2311.1978.tb00933.x. DOI
Smith JJ, Hasiotis ST. Traces and burrowing behaviors of the cicada nymph Cicadetta calliope: neoichnology and paleoecological significance of extant soil-dwelling insects. Palaios. 2008;23:503–513. doi: 10.2110/palo.2007.p07-063r. DOI
O’Geen AT, Busacca AJ. Faunal burrows as indicators of paleo-vegetation in eastern Washington, USA. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2001;169:23–37. doi: 10.1016/S0031-0182(01)00213-9. DOI
Llyod M, Dybas HS. The periodical cicada problem. I. Population ecology. Evolution. 1966;20:133–149. doi: 10.1111/j.1558-5646.1966.tb03350.x. PubMed DOI
Ugolini F, Dahlgren R. Soil development in volcanic ash. Glob. Environ. Res. 2002;6:69–81.
Gutiérrez-Castorena MC. Pedogenic Siliceous Features. Interpretation of Micromorphological Features of Soils and Regoliths. Amsterdam: Elsevier B.V.; 2018.
Campbell KA, et al. Geyserite in hot-spring siliceous sinter: window on Earth’s hottest terrestrial (paleo)environment and its extreme life. Earth-Sci. Rev. 2015;148:44–64. doi: 10.1016/j.earscirev.2015.05.009. DOI
Hillerton JE, Vincent JFV. Consideration of the importance of hydrophobic interactions in stabilizing insect cuticle. Int. J. Biol. Macromol. 1983;5:163–166. doi: 10.1016/0141-8130(83)90032-6. DOI
Martínez-Delclòs X, Briggs DEG, Peñalver E. Taphonomy of insects in carbonates and amber. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2004;203:19–64. doi: 10.1016/S0031-0182(03)00643-6. DOI
Labandeira, C. C. Amber. In Reading and Writing of the Fossil Record: Preservationnal Pathways to Exceptionnal Fossilization, The Paleontological Society Papers, vol. 20, (The Paleontological Society Short Course, 2014).
Milliken RE, et al. Opaline silica in young deposits on Mars. Geology. 2008;36:847. doi: 10.1130/G24967A.1. DOI
Squyres SW, et al. Detection of silica-rich deposits on Mars. Science. 2008;80(320):1063–1067. doi: 10.1126/science.1155429. PubMed DOI
Ruff SW, Campbell KA, Van Kranendonk MJ, Rice MS, Farmer JD. The case for ancient hot springs in Gusev crater, Mars. Astrobiology. 2019;19:1–25. doi: 10.1089/ast.2019.2044. PubMed DOI PMC
Pan L, Ehlmann BL. Phyllosilicate and hydrated silica detections in the knobby terrains of Acidalia Planitia, northern plains, Mars. Geophys. Res. Lett. 2014;41:1890–1898. doi: 10.1002/2014GL059423. DOI
Pineau M, et al. Toward the geological significance of hydrated silica detected by near infrared spectroscopy on Mars based on terrestrial reference samples. Icarus. 2020;347:113706. doi: 10.1016/j.icarus.2020.113706. DOI
Tarnas JD, et al. Orbital identification of hydrated silica in Jezero crater, Mars. Geophys. Res. Lett. 2019;46(22):12771–12782. doi: 10.1029/2019GL085584. DOI