Heterodera schachtii Tyrosinase-like protein - a novel nematode effector modulating plant hormone homeostasis
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
28761178
PubMed Central
PMC5537230
DOI
10.1038/s41598-017-07269-7
PII: 10.1038/s41598-017-07269-7
Knihovny.cz E-zdroje
- MeSH
- Arabidopsis metabolismus parazitologie MeSH
- ezofágus metabolismus MeSH
- hlístice metabolismus patogenita MeSH
- interakce hostitele a parazita * MeSH
- proteiny červů genetika metabolismus MeSH
- regulátory růstu rostlin metabolismus MeSH
- tyrosinasa genetika metabolismus MeSH
- virulence MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- proteiny červů MeSH
- regulátory růstu rostlin MeSH
- tyrosinasa MeSH
The beet cyst nematode Heterodera schachtii causes major yield losses in sugar beet. Understanding the interaction between H. schachtii and its host plant is important for developing a sustainable management system. Nematode effectors play a crucial role in initializing and sustaining successful parasitism. In our study, we identified a gene (Hs-Tyr) encoding a tyrosinase functional domain (PF00264). We describe Hs-Tyr as a novel nematode effector. Hs-Tyr is localized in the nematode esophageal gland. Up-regulation of its expression coincided with the parasitic developmental stages of the nematode. Silencing Hs-Tyr by RNA interference made the treated nematodes less virulent. When RNAi-treated nematodes succeeded in infecting the plant, developing females and their associated syncytial nurse cells were significantly smaller than in control plants. Ectopically expressing the Hs-Tyr effector in Arabidopsis increased plant susceptibility to H. schachtii, but not to the root-knot nematode Meloidogyne incognita. Interestingly, Hs-Tyr in the plant promoted plant growth and changed the root architecture. Additionally, the expression of Hs-Tyr in Arabidopsis caused changes in the homeostasis of several plant hormones especially auxin and the ethylene precursor aminocyclopropane-carboxylic acid.
Institute of Experimental Botany AS CR Rozvojová 263 CZ 16502 Prague 6 Czech Republic
Washington State University Dept of Plant Pathology Pullman WA 99164 6430 335 Johnson Hall USA
Zobrazit více v PubMed
Jones JT, et al. Top 10 plant-parasitic nematodes in molecular plant pathology. Mol. Plant Pathol. 2013;14:946–961. doi: 10.1111/mpp.12057. PubMed DOI PMC
Müller J. The economic importance of Heterodera schachtii in Europe. Helminthologia. 1999;36:205–213.
Wyss U, Grundler FMW. Feeding-Behavior of Sedentary Plant Parasitic Nematodes. Netherlands J. Plant Pathol. 1992;98:165–173. doi: 10.1007/BF01974483. DOI
Wyss U, Zunke U. Observations on the behaviour of second stage juveniles of Heterodera schachtii inside host roots. Rev. Nematol. 1986;9:153–166.
Grundler FMW, Sobczak M, Golinowski W. Formation of wall openings in root cells of Arabidopsis thaliana following infection by the plant-parasitic nematode Heterodera schachtii. Eur. J. Plant Pathol. 1998;104:545–551. doi: 10.1023/A:1008692022279. DOI
Davies LJ, Lilley CJ, Paul Knox J, Urwin PE. Syncytia formed by adult female Heterodera schachtii in Arabidopsis thaliana roots have a distinct cell wall molecular architecture. New Phytol. 2012;196:238–246. doi: 10.1111/j.1469-8137.2012.04238.x. PubMed DOI
Gheysen G, Mitchum MG. How nematodes manipulate plant development pathways for infection. Curr. Opin. Plant Biol. 2011;14:415–421. doi: 10.1016/j.pbi.2011.03.012. PubMed DOI
Patel N, et al. A nematode effector protein similar to annexins in host plants. J. Exp. Bot. 2010;61:235–248. doi: 10.1093/jxb/erp293. PubMed DOI PMC
Hewezi T, et al. Arabidopsis spermidine synthase is targeted by an effector protein of the cyst nematode Heterodera schachtii. Plant Physiol. 2010;152:968–984. doi: 10.1104/pp.109.150557. PubMed DOI PMC
Hamamouch N, et al. The interaction of the novel 30C02 cyst nematode effector protein with a plant β-1,3-endoglucanase may suppress host defence to promote parasitism. J. Exp. Bot. 2012;63:3683–3696. doi: 10.1093/jxb/ers058. PubMed DOI PMC
Lozano-Torres JL, et al. Apoplastic Venom Allergen-like Proteins of Cyst Nematodes Modulate the Activation of Basal Plant Innate Immunity by Cell Surface Receptors. PLoS Pathog. 2014;10:e1004569. doi: 10.1371/journal.ppat.1004569. PubMed DOI PMC
Siddique S, et al. A parasitic nematode releases cytokinin that controls cell division and orchestrates feeding site formation in host plants. Proc. Natl. Acad. Sci. 2015;112:12669–12674. doi: 10.1073/pnas.1503657112. PubMed DOI PMC
Wang J, et al. Identification of potential host plant mimics of CLAVATA3/ESR (CLE)-like peptides from the plant-parasitic nematode Heterodera schachtii. Mol. Plant Pathol. 2011;12:177–186. doi: 10.1111/j.1364-3703.2010.00660.x. PubMed DOI PMC
Eves-van den Akker S, et al. The transcriptome of Nacobbus aberrans reveals insights into the evolution of sedentary endoparasitism in plant-parasitic nematodes. Genome Biol. Evol. 2014;6:2181–2194. doi: 10.1093/gbe/evu171. PubMed DOI PMC
Haegeman A, Bauters L, Kyndt T, Rahman MM, Gheysen G. Identification of candidate effector genes in the transcriptome of the rice root knot nematode Meloidogyne graminicola. Mol. Plant Pathol. 2012;14:379–390. doi: 10.1111/mpp.12014. PubMed DOI PMC
Sijmons PC, Grundler FMW, Mende N, von Burrows PR, Wyss U. Arabidopsis thaliana as a new model host for plant-parasitic nematodes. Plant J. 1991;1:245–254. doi: 10.1111/j.1365-313X.1991.00245.x. DOI
Jones JT, et al. Identification and functional characterization of effectors in expressed sequence tags from various life cycle stages of the potato cyst nematode Globodera pallida. Mol. Plant Pathol. 2009;10:815–828. doi: 10.1111/j.1364-3703.2009.00585.x. PubMed DOI PMC
Wang X, et al. Signal peptide-selection of cDNA cloned directly from the esophageal gland cells of the soybean cyst nematode Heterodera glycines. Mol. Plant Microbe Interact. 2001;14:536–544. doi: 10.1094/MPMI.2001.14.4.536. PubMed DOI
Urwin PE, Lilley CJ, Atkinson HJ. Ingestion of double-stranded RNA by preparasitic juvenile cyst nematodes leads to RNA interference. Mol. Plant Microbe Interact. 2002;15:747–752. doi: 10.1094/MPMI.2002.15.8.747. PubMed DOI
Lin B, et al. A novel nematode effector suppresses plant immunity by activating host reactive oxygen species-scavenging system. New Phytol. 2016;209:1159–1173. doi: 10.1111/nph.13701. PubMed DOI PMC
Ali S, et al. Analysis of putative apoplastic effectors from the nematode, Globodera rostochiensis, and identification of an expansin-like protein that can induce and suppress host defenses. PLoS One. 2015;10:e0115042. doi: 10.1371/journal.pone.0115042. PubMed DOI PMC
Overvoorde P, Fukaki H, Beeckman T. Auxin control of root development. Cold Spring Harb. Perspect. Biol. 2010;2:a001537. doi: 10.1101/cshperspect.a001537. PubMed DOI PMC
Wubben MJ, II, Su H, Rodermel SR, Baum TJ. Susceptibility to the sugar beet cyst nematode is modulated by ethylene signal transductionin Arabidopsis thaliana. Mol. Plant Microbe Interact. 2001;14:1206–1212. doi: 10.1094/MPMI.2001.14.10.1206. PubMed DOI
Kammerhofer N, et al. Role of stress-related hormones in plant defence during early infection of the cyst nematode Heterodera schachtii in Arabidopsis. New Phytol. 2015;207:778–89. doi: 10.1111/nph.13395. PubMed DOI PMC
Huang G, et al. A root-knot nematode secretory peptide functions as a ligand for a plant transcription factor. Mol. Plant Microbe Interact. 2006;19:463–470. doi: 10.1094/MPMI-19-0463. PubMed DOI
Wang X, et al. A parasitism gene from a plant-parasitic nematode with function similar to CLAVATA3/ESR (CLE) of Arabidopsis thaliana. Mol. Plant Pathol. 2005;6:187–191. doi: 10.1111/j.1364-3703.2005.00270.x. PubMed DOI
Postma WJ, et al. The effector SPRYSEC-19 of Globodera rostochiensis suppresses CC-NB-LRR-mediated disease resistance in Plants. Plant Physiol. 2012;160:944–954. doi: 10.1104/pp.112.200188. PubMed DOI PMC
Siddique S, et al. Parasitic worms stimulate host NADPH oxidases to produce reactive oxygen species that limit plant cell death and promote infection. Science Signal. 2014;7:ra33. doi: 10.1126/scisignal.2004777. PubMed DOI
Finn RD, Clements J, Eddy SR. HMMER web server: interactive sequence similarity searching. Nucleic Acids. Res. 2011;39:W29–37. doi: 10.1093/nar/gkr367. PubMed DOI PMC
Petersen TN, Brunak S, von Heijne G, Nielsen H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat. Methods. 2011;8:785–786. doi: 10.1038/nmeth.1701. PubMed DOI
Krogh A, Larsson B, Heijne Gvon, Sonnhammer EL. Predicting transmembrane protein topology with a hidden markov model: application to complete genomes. J. Mol. Bio.l. 2001;305:567–580. doi: 10.1006/jmbi.2000.4315. PubMed DOI
Abad P, et al. Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita. Nat. Biotechnol. 2008;26:909–915. doi: 10.1038/nbt.1482. PubMed DOI
Opperman CH, et al. Sequence and genetic map of Meloidogyne hapla: A compact nematode genome for plant parasitism. Proc Natl Acad Sci. 2008;105:14802–14807. doi: 10.1073/pnas.0805946105. PubMed DOI PMC
Kumar M, et al. De novo transcriptome sequencing and analysis of the cereal cyst nematode, Heterodera avenae. PLoS One. 2014;9:e96311. doi: 10.1371/journal.pone.0096311. PubMed DOI PMC
Cotton JA, et al. The genome and life-stage specific transcriptomes of Globodera pallida elucidate key aspects of plant parasitism by a cyst nematode. Genome Biol. 2014;15:R43. doi: 10.1186/gb-2014-15-3-r43. PubMed DOI PMC
de Boer JM, Yan Y, Smant G, Davis EL, Baum TJ. In-situ Hybridization to Messenger RNA in Heterodera glycines. J. Nematol. 1998;30:309–312. PubMed PMC
Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29:e45. doi: 10.1093/nar/29.9.e45. PubMed DOI PMC
Curtis MD, Grossniklaus U. A gateway cloning vector set for high-throughput functional analysis of genes in planta. Plant Physio. 2003;133:462–469. doi: 10.1104/pp.103.027979. PubMed DOI PMC
Sparkes IA, Runions J, Kearns A, Hawes C. Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants. Nat. Protoc. 2006;1:2019–2025. doi: 10.1038/nprot.2006.286. PubMed DOI
Voinnet O, Rivas S, Mestre P, Baulcombe D. An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus. Plant J. 2003;33:949–956. doi: 10.1046/j.1365-313X.2003.01676.x. PubMed DOI
Karimi M, Inzé D, Depicker A. GATEWAYTM vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci. 2002;7:193–195. doi: 10.1016/S1360-1385(02)02251-3. PubMed DOI
Clough SJ, Bent AF. Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 1998;16:735–743. doi: 10.1046/j.1365-313x.1998.00343.x. PubMed DOI
Dobrev PI, Kaminek M. Fast and efficient separation of cytokinins from auxin and abscisic acid and their purification using mixed-mode solid-phase extraction. J. Chrom A. 2002;950:21–29. doi: 10.1016/S0021-9673(02)00024-9. PubMed DOI
Dobrev PI, Vanková R. Quantification of abscisic acid, cytokinin, and auxin content in salt-stressed plant tissues. Methods Mol. Biol. 2012;913:251–261. PubMed