The functions of long non-coding RNA (lncRNA)-MALAT-1 in the pathogenesis of renal cell carcinoma

. 2023 Dec 20 ; 24 (1) : 380. [epub] 20231220

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid38124072
Odkazy

PubMed 38124072
PubMed Central PMC10731893
DOI 10.1186/s12882-023-03438-1
PII: 10.1186/s12882-023-03438-1
Knihovny.cz E-zdroje

Renal cell carcinoma (RCC), a prevalent form of renal malignancy, is distinguished by its proclivity for robust tumor proliferation and metastatic dissemination. Long non-coding RNAs (lncRNAs) have emerged as pivotal modulators of gene expression, exerting substantial influence over diverse biological processes, encompassing the intricate landscape of cancer development. Metastasis-associated lung adenocarcinoma transcript 1 (MALAT-1), an exemplar among lncRNAs, has been discovered to assume functional responsibilities within the context of RCC. The conspicuous expression of MALAT-1 in RCC cells has been closely linked to the advancement of tumors and an unfavorable prognosis. Experimental evidence has demonstrated the pronounced ability of MALAT-1 to stimulate RCC cell proliferation, migration, and invasion, thereby underscoring its active participation in facilitating the metastatic cascade. Furthermore, MALAT-1 has been implicated in orchestrating angiogenesis, an indispensable process for tumor expansion and metastatic dissemination, through its regulatory influence on pro-angiogenic factor expression. MALAT-1 has also been linked to the evasion of immune surveillance in RCC, as it can regulate the expression of immune checkpoint molecules and modulate the tumor microenvironment. Hence, the potential utility of MALAT-1 as a diagnostic and prognostic biomarker in RCC emerges, warranting further investigation and validation of its clinical significance. This comprehensive review provides an overview of the diverse functional roles exhibited by MALAT-1 in RCC.

Zobrazit více v PubMed

Elballal MS, Sallam A-AM, Elesawy AE, Shahin RK, Midan HM, Elrebehy MA et al. miRNAs as potential game-changers in renal cell carcinoma: Future Clinical and Medicinal uses. Pathology-Research and Practice 2023:154439. PubMed

Boussios S, Devo P, Goodall IC, Sirlantzis K, Ghose A, Shinde SD, et al. Exosomes in the diagnosis and treatment of renal cell Cancer. Int J Mol Sci. 2023;24:14356. doi: 10.3390/ijms241814356. PubMed DOI PMC

Linehan WM, Ricketts CJ. The Cancer Genome Atlas of renal cell carcinoma: findings and clinical implications. Nat Reviews Urol. 2019;16:539–52. doi: 10.1038/s41585-019-0211-5. PubMed DOI

di Meo NA, Lasorsa F, Rutigliano M, Milella M, Ferro M, Battaglia M, et al. The dark side of lipid metabolism in prostate and renal carcinoma: novel insights into molecular diagnostic and biomarker discovery. Expert Rev Mol Diagn. 2023;23:297–313. doi: 10.1080/14737159.2023.2195553. PubMed DOI

Lucarelli G, Loizzo D, Franzin R, Battaglia S, Ferro M, Cantiello F, et al. Metabolomic insights into pathophysiological mechanisms and biomarker discovery in clear cell renal cell carcinoma. Expert Rev Mol Diagn. 2019;19:397–407. doi: 10.1080/14737159.2019.1607729. PubMed DOI

De Marco S, Torsello B, Minutiello E, Morabito I, Grasselli C, Bombelli S, et al. The cross-talk between Abl2 tyrosine kinase and TGFβ1 signalling modulates the invasion of clear cell renal cell carcinoma cells. FEBS Lett. 2023;597:1098–113. doi: 10.1002/1873-3468.14531. PubMed DOI

Bianchi C, Meregalli C, Bombelli S, Di Stefano V, Salerno F, Torsello B, et al. The glucose and lipid metabolism reprogramming is grade-dependent in clear cell renal cell carcinoma primary cultures and is targetable to modulate cell viability and proliferation. Oncotarget. 2017;8:113502–15. doi: 10.18632/oncotarget.23056. PubMed DOI PMC

Ragone R, Sallustio F, Piccinonna S, Rutigliano M, Vanessa G, Palazzo S et al. Renal cell carcinoma: a study through NMR-Based Metabolomics combined with transcriptomics. Diseases 2016, 4. PubMed PMC

Lucarelli G, Galleggiante V, Rutigliano M, Sanguedolce F, Cagiano S, Bufo P, et al. Metabolomic profile of glycolysis and the pentose phosphate pathway identifies the central role of glucose-6-phosphate dehydrogenase in clear cell-renal cell carcinoma. Oncotarget. 2015;6:13371–86. doi: 10.18632/oncotarget.3823. PubMed DOI PMC

Lucarelli G, Rutigliano M, Sallustio F, Ribatti D, Giglio A, Lepore Signorile M, et al. Integrated multi-omics characterization reveals a distinctive metabolic signature and the role of NDUFA4L2 in promoting angiogenesis, chemoresistance, and mitochondrial dysfunction in clear cell renal cell carcinoma. Aging. 2018;10:3957–85. doi: 10.18632/aging.101685. PubMed DOI PMC

Bombelli S, Torsello B, De Marco S, Lucarelli G, Cifola I, Grasselli C, et al. 36-kDa annexin A3 isoform negatively modulates lipid storage in Clear Cell Renal Cell Carcinoma cells. Am J Pathol. 2020;190:2317–26. doi: 10.1016/j.ajpath.2020.08.008. PubMed DOI

Lucarelli G, Rutigliano M, Loizzo D, di Meo NA, Lasorsa F, Mastropasqua M et al. MUC1 tissue expression and its soluble form CA15-3 identify a clear cell renal cell carcinoma with distinct metabolic Profile and Poor Clinical Outcome. Int J Mol Sci 2022, 23. PubMed PMC

Vuong L, Kotecha RR, Voss MH, Hakimi AA. Tumor Microenvironment dynamics in Clear-Cell Renal Cell Carcinoma. Cancer Discov. 2019;9:1349–57. doi: 10.1158/2159-8290.CD-19-0499. PubMed DOI PMC

Tamma R, Rutigliano M, Lucarelli G, Annese T, Ruggieri S, Cascardi E, et al. Microvascular density, macrophages, and mast cells in human clear cell renal carcinoma with and without bevacizumab treatment. Urol Oncol. 2019;37:355e311–9. doi: 10.1016/j.urolonc.2019.01.025. PubMed DOI

Gigante M, Pontrelli P, Herr W, Gigante M, D’Avenia M, Zaza G, et al. miR-29b and miR-198 overexpression in CD8 + T cells of renal cell carcinoma patients down-modulates JAK3 and MCL-1 leading to immune dysfunction. J Transl Med. 2016;14:84. doi: 10.1186/s12967-016-0841-9. PubMed DOI PMC

Netti GS, Lucarelli G, Spadaccino F, Castellano G, Gigante M, Divella C, et al. PTX3 modulates the immunoflogosis in Tumor microenvironment and is a prognostic factor for patients with clear cell renal cell carcinoma. Aging. 2020;12:7585–602. doi: 10.18632/aging.103169. PubMed DOI PMC

Lucarelli G, Rutigliano M, Ferro M, Giglio A, Intini A, Triggiano F, et al. Activation of the kynurenine pathway predicts poor outcome in patients with clear cell renal cell carcinoma. Urol Oncol. 2017;35:461e415–27. doi: 10.1016/j.urolonc.2017.02.011. PubMed DOI

Lasorsa F, di Meo NA, Rutigliano M, Milella M, Ferro M, Pandolfo SD et al. Immune checkpoint inhibitors in renal cell carcinoma: molecular basis and rationale for their use in clinical practice. Biomedicines 2023, 11. PubMed PMC

Ghini V, Laera L, Fantechi B, Monte FD, Benelli M, McCartney A et al. Metabolomics to assess response to Immune checkpoint inhibitors in patients with non-small-cell Lung Cancer. Cancers (Basel) 2020, 12. PubMed PMC

Lucarelli G, Netti GS, Rutigliano M, Lasorsa F, Loizzo D, Milella M et al. MUC1 expression affects the immunoflogosis in renal cell Carcinoma Microenvironment through Complement System activation and Immune infiltrate modulation. Int J Mol Sci 2023, 24. PubMed PMC

Lasorsa F, Rutigliano M, Milella M, Ferro M, Pandolfo SD, Crocetto F et al. Cellular and Molecular players in the Tumor Microenvironment of Renal Cell Carcinoma. J Clin Med 2023, 12. PubMed PMC

Kim M, Joo JW, Lee SJ, Cho YA, Park CK, Cho NH. Comprehensive immunoprofiles of Renal Cell Carcinoma subtypes. Cancers (Basel) 2020, 12. PubMed PMC

Yang DC, Chen C-H. Potential new therapeutic approaches for renal cell carcinoma. Seminars in nephrology. Elsevier; 2020. pp. 86–97. PubMed

Huang JJ, Hsieh JJ. The Therapeutic Landscape of Renal Cell Carcinoma: from the Dark Age to the Golden Age. Semin Nephrol. 2020;40:28–41. doi: 10.1016/j.semnephrol.2019.12.004. PubMed DOI PMC

Zhou S, Wang J, Zhang Z. An emerging understanding of long noncoding RNAs in kidney cancer. J Cancer Res Clin Oncol. 2014;140:1989–95. doi: 10.1007/s00432-014-1699-y. PubMed DOI

Xin R, Hu B, Qu D, Chen D. Oncogenic lncRNA MALAT-1 recruits E2F1 to upregulate RAD51 expression and thus promotes cell autophagy and Tumor growth in non-small cell Lung cancer. Pulm Pharmacol Ther 2023:102199. PubMed

Luan N, Wang J, Sheng B, Zhou Q, Ye X, Zhu X, et al. tRF-20-M0NK5Y93-induced MALAT1 promotes colon Cancer Metastasis through alternative splicing of SMC1A. Am J Cancer Res. 2023;13:852. PubMed PMC

Mekky RY, Ragab MF, Manie T, Attia AA, Youness RA. MALAT-1: Immunomodulatory lncRNA hampering the innate and the adaptive immune arms in triple negative Breast cancer. Translational Oncol. 2023;31:101653. doi: 10.1016/j.tranon.2023.101653. PubMed DOI PMC

Pei C, Gong X, Zhang Y. LncRNA MALAT-1 promotes growth and Metastasis of epithelial Ovarian cancer via sponging microrna-22. Am J Translational Res. 2020;12:6977. PubMed PMC

Xiao Y, Pan J, Geng Q, Wang G. Lnc RNA MALAT 1 increases the stemness of gastric cancer cells via enhancing SOX 2 mRNA stability. FEBS Open Bio. 2019;9:1212–22. doi: 10.1002/2211-5463.12649. PubMed DOI PMC

Liang T, Xu F, Wan P, Zhang L, Huang S, Yang N, et al. Malat-1 expression in bladder carcinoma tissues and its clinical significance. Am J Translational Res. 2021;13:3555. PubMed PMC

Youness R, Gomaa A. 128P ex-vivo co-blockade of CD-155/TIGIT and PD-1/PD-L1 using CCAT-1, H19 and MALAT-1 LncRNAs in hepatocellular carcinoma. Ann Oncol. 2021;32:1433. doi: 10.1016/j.annonc.2021.10.147. DOI

Li Z, Ma Z, Xu X. Long non–coding RNA MALAT1 correlates with cell viability and mobility by targeting miR–22–3p in renal cell carcinoma via the PI3K/Akt pathway. Oncol Rep. 2019;41:1113–21. PubMed

Zhang H, Li W, Gu W, Yan Y, Yao X, Zheng J. MALAT1 accelerates the development and progression of renal cell carcinoma by decreasing the expression of miR-203 and promoting the expression of BIRC5. Cell Prolif. 2019;52:e12640. doi: 10.1111/cpr.12640. PubMed DOI PMC

Arun G, Spector DL. MALAT1 long non-coding RNA and Breast cancer. RNA Biol. 2019;16:860–3. doi: 10.1080/15476286.2019.1592072. PubMed DOI PMC

Zhang X, Hamblin MH, Yin KJ. The long noncoding RNA Malat1: its physiological and pathophysiological functions. RNA Biol. 2017;14:1705–14. doi: 10.1080/15476286.2017.1358347. PubMed DOI PMC

Li ZX, Zhu QN, Zhang HB, Hu Y, Wang G, Zhu YS. MALAT1: a potential biomarker in cancer. Cancer Manag Res. 2018;10:6757–68. doi: 10.2147/CMAR.S169406. PubMed DOI PMC

Monroy-Eklund A, Taylor C, Weidmann CA, Burch C, Laederach A. Structural analysis of MALAT1 long noncoding RNA in cells and in evolution. RNA. 2023;29:691–704. doi: 10.1261/rna.079388.122. PubMed DOI PMC

Wilusz JE. Long noncoding RNAs: re-writing dogmas of RNA processing and stability. Biochim et Biophys Acta (BBA)-Gene Regul Mech. 2016;1859:128–38. doi: 10.1016/j.bbagrm.2015.06.003. PubMed DOI PMC

Das T, Das TK, Khodarkovskaya A, Dash S. Non-coding RNAs and their bioengineering applications for neurological Diseases. Bioengineered. 2021;12:11675–98. doi: 10.1080/21655979.2021.2003667. PubMed DOI PMC

Song Z, Lin J, Li Z, Huang C. The nuclear functions of long noncoding RNAs come into focus. Non-coding RNA Research. 2021;6:70–9. doi: 10.1016/j.ncrna.2021.03.002. PubMed DOI PMC

Wu Y, Huang C, Meng X, Li J. Long noncoding RNA MALAT1: insights into its biogenesis and implications in human Disease. Curr Pharm Design. 2015;21:5017–28. doi: 10.2174/1381612821666150724115625. PubMed DOI

Zong X, Nakagawa S, Freier SM, Fei J, Ha T, Prasanth SG, et al. Natural antisense RNA promotes 3′ end processing and maturation of MALAT1 lncRNA. Nucleic Acids Res. 2016;44:2898–908. doi: 10.1093/nar/gkw047. PubMed DOI PMC

Arun G, Aggarwal D, Spector DL. MALAT1 long non-coding RNA: functional implications. Noncoding RNA 2020, 6. PubMed PMC

Macias S, Plass M, Stajuda A, Michlewski G, Eyras E, Cáceres JF. DGCR8 HITS-CLIP reveals novel functions for the Microprocessor. Nat Struct Mol Biol. 2012;19:760–6. doi: 10.1038/nsmb.2344. PubMed DOI PMC

Michalik KM, You X, Manavski Y, Doddaballapur A, Zörnig M, Braun T, et al. Long noncoding RNA MALAT1 regulates endothelial cell function and vessel growth. Circul Res. 2014;114:1389–97. doi: 10.1161/CIRCRESAHA.114.303265. PubMed DOI

Eißmann M, Gutschner T, Hämmerle M, Günther S, Caudron-Herger M, Groß M, et al. Loss of the abundant nuclear non-coding RNA MALAT1 is compatible with life and development. RNA Biol. 2012;9:1076–87. doi: 10.4161/rna.21089. PubMed DOI PMC

Liu J, Peng W-X, Mo Y-Y, Luo D. MALAT1-mediated tumorigenesis. Front Biosci (Landmark Ed) 2017;22:66–80. doi: 10.2741/4472. PubMed DOI

Tufail M. The MALAT1-breast cancer interplay: insights and implications. Expert Rev Mol Diagn. 2023;23:665–78. doi: 10.1080/14737159.2023.2233902. PubMed DOI

Malakar P, Stein I, Saragovi A, Winkler R, Stern-Ginossar N, Berger M, et al. Long noncoding RNA MALAT1 regulates Cancer glucose metabolism by enhancing mTOR-Mediated translation of TCF7L2. Cancer Res. 2019;79:2480–93. doi: 10.1158/0008-5472.CAN-18-1432. PubMed DOI

Zhao Y, Zhou L, Li H, Sun T, Wen X, Li X, et al. Nuclear-encoded lncRNA MALAT1 epigenetically controls metabolic reprogramming in HCC cells through the Mitophagy Pathway. Mol Ther Nucleic Acids. 2021;23:264–76. doi: 10.1016/j.omtn.2020.09.040. PubMed DOI PMC

Wang H, Zhang Y, Guan X, Li X, Zhao Z, Gao Y, et al. An Integrated Transcriptomics and Proteomics Analysis implicates lncRNA MALAT1 in the regulation of lipid metabolism. Mol Cell Proteomics. 2021;20:100141. doi: 10.1016/j.mcpro.2021.100141. PubMed DOI PMC

Mekky RY, Ragab MF, Manie T, Attia AA, Youness RA. MALAT-1: Immunomodulatory lncRNA hampering the innate and the adaptive immune arms in triple negative Breast cancer. Transl Oncol. 2023;31:101653. doi: 10.1016/j.tranon.2023.101653. PubMed DOI PMC

Hou ZH, Xu XW, Fu XY, Zhou LD, Liu SP, Tan DM. Long non-coding RNA MALAT1 promotes angiogenesis and immunosuppressive properties of HCC cells by sponging miR-140. Am J Physiol Cell Physiol. 2020;318:C649–c663. doi: 10.1152/ajpcell.00510.2018. PubMed DOI

Peng N, He J, Li J, Huang H, Huang W, Liao Y, et al. Long noncoding RNA MALAT1 inhibits the apoptosis and autophagy of hepatocellular carcinoma cell by targeting the microRNA-146a/PI3K/Akt/mTOR axis. Cancer Cell Int. 2020;20:165. doi: 10.1186/s12935-020-01231-w. PubMed DOI PMC

Malakoti F, Targhazeh N, Karimzadeh H, Mohammadi E, Asadi M, Asemi Z, et al. Multiple function of lncRNA MALAT1 in cancer occurrence and progression. Chem Biol Drug Des. 2023;101:1113–37. doi: 10.1111/cbdd.14006. PubMed DOI

Fu S, Wang Y, Li H, Chen L, Liu Q. Regulatory Networks of LncRNA MALAT-1 in Cancer. Cancer Manag Res. 2020;12:10181–98. doi: 10.2147/CMAR.S276022. PubMed DOI PMC

Baba SK, Baba SK, Mir R, Elfaki I, Algehainy N, Ullah MF, et al. Long non-coding RNAs modulate Tumor microenvironment to promote Metastasis: novel avenue for therapeutic intervention. Front Cell Dev Biology. 2023;11:1164301. doi: 10.3389/fcell.2023.1164301. PubMed DOI PMC

Huang M, Wang H, Hu X, Cao X. lncRNA MALAT1 binds chromatin remodeling subunit BRG1 to epigenetically promote inflammation-related hepatocellular carcinoma progression. Oncoimmunology. 2019;8:e1518628. doi: 10.1080/2162402X.2018.1518628. PubMed DOI PMC

Chaleshi V, Iran S, Alebouyeh M, Mirfakhraie R, Asadzadeh Aghdaei H. Evaluation of MALAT1 promoter DNA methylation patterns in early colorectal lesions and tumors. Gastroenterol Hepatol Bed Bench. 2019;12:58–s65. PubMed PMC

Zhang Y, Liu Q, Liao Q. Long noncoding RNA: a dazzling dancer in Tumor immune microenvironment. J Experimental Clin Cancer Res. 2020;39:231. doi: 10.1186/s13046-020-01727-3. PubMed DOI PMC

Hou J, Zhang G, Wang X, Wang Y, Wang K. Functions and mechanisms of lncRNA MALAT1 in cancer chemotherapy resistance. Biomark Res. 2023;11:23. doi: 10.1186/s40364-023-00467-8. PubMed DOI PMC

Wei Y, Niu B. Role of MALAT1 as a Prognostic Factor for Survival in Various Cancers: A Systematic Review of the Literature with Meta-Analysis. Dis Markers 2015, 2015:164635. PubMed PMC

Wang Y, Zhang Y, Hu K, Qiu J, Hu Y, Zhou M et al. Elevated long noncoding RNA MALAT-1 expression is predictive of poor prognosis in patients with Breast cancer: a meta-analysis. Biosci Rep 2020, 40. PubMed PMC

Grammatikaki S, Katifelis H, Farooqi AA, Stravodimos K, Karamouzis MV, Souliotis K, et al. An overview of epigenetics in Clear Cell Renal Cell Carcinoma. in vivo. 2023;37:1–10. doi: 10.21873/invivo.13049. PubMed DOI PMC

Zhang HM, Yang FQ, Chen SJ, Che J, Zheng JH. Upregulation of long non-coding RNA MALAT1 correlates with Tumor progression and poor prognosis in clear cell renal cell carcinoma. Tumour Biol. 2015;36:2947–55. doi: 10.1007/s13277-014-2925-6. PubMed DOI

Huang J, Wang X, Wen G, Ren Y. miRNA–205–5p functions as a Tumor suppressor by negatively regulating VEGFA and PI3K/Akt/mTOR signaling in renal carcinoma cells. Oncol Rep. 2019;42:1677–88. PubMed PMC

Hirata H, Hinoda Y, Shahryari V, Deng G, Nakajima K, Tabatabai ZL, et al. Long noncoding RNA MALAT1 promotes aggressive renal cell carcinoma through Ezh2 and interacts with miR-205. Cancer Res. 2015;75:1322–31. doi: 10.1158/0008-5472.CAN-14-2931. PubMed DOI PMC

Udompholkul P, Baggio C, Gambini L, Alboreggia G, Pellecchia M. Lysine covalent antagonists of Melanoma inhibitors of apoptosis protein. J Med Chem. 2021;64:16147–58. doi: 10.1021/acs.jmedchem.1c01459. PubMed DOI

Kumar S, Fairmichael C, Longley DB, Turkington RC. The multiple roles of the IAP super-family in cancer. Pharmacol Ther. 2020;214:107610. doi: 10.1016/j.pharmthera.2020.107610. PubMed DOI

Chen S, Ma P, Zhao Y, Li B, Jiang S, Xiong H, et al. Biological function and mechanism of MALAT-1 in renal cell carcinoma proliferation and apoptosis: role of the MALAT-1–Livin protein interaction. J Physiological Sci. 2017;67:577–85. doi: 10.1007/s12576-016-0486-8. PubMed DOI PMC

Kulkarni P, Dasgupta P, Bhat NS, Shahryari V, Shiina M, Hashimoto Y, et al. Elevated mir-182-5p associates with renal Cancer cell mitotic arrest through diminished MALAT-1 expression. Mol Cancer Res. 2018;16:1750–60. doi: 10.1158/1541-7786.MCR-17-0762. PubMed DOI PMC

Frazzi R. BIRC3 and BIRC5: multi-faceted inhibitors in cancer. Cell & Bioscience. 2021;11:8. doi: 10.1186/s13578-020-00521-0. PubMed DOI PMC

Wang J. Structural Basis of Gene Regulation by the Transcription Factors Tfcp2l1 and Tfcp2. 2022.

Dhara A, Ghosh S, Sen N. Regulation of ETS family of transcription factors in cancer. J Cancer. 2022;3:33–49.

Wang Y, Huang Z, Sun M, Huang W, Xia L. ETS transcription factors: multifaceted players from cancer progression to Tumor immunity. Biochim et Biophys Acta (BBA)-Reviews Cancer 2023:188872. PubMed

Jin C, Shi L, Li K, Liu W, Qiu Y, Zhao Y, et al. Mechanism of Tumor–derived extracellular vesicles in regulating renal cell carcinoma progression by the delivery of MALAT1. Oncol Rep. 2021;46:187. doi: 10.3892/or.2021.8138. PubMed DOI PMC

Swiatek M, Jancewicz I, Kluebsoongnoen J, Zub R, Maassen A, Kubala S, et al. Various forms of HIF-1α protein characterize the clear cell renal cell carcinoma cell lines. IUBMB Life. 2020;72:1220–32. doi: 10.1002/iub.2281. PubMed DOI

Peng X, Gao H, Xu R, Wang H, Mei J, Liu C. The interplay between HIF-1α and noncoding RNAs in cancer. J Exp Clin Cancer Res. 2020;39:27. doi: 10.1186/s13046-020-1535-y. PubMed DOI PMC

Niu Y, Lin Z, Wan A, Sun L, Yan S, Liang H, et al. Loss-of‐function genetic screening identifies aldolase a as an essential driver for Liver cancer cell growth under hypoxia. Hepatology. 2021;74:1461–79. doi: 10.1002/hep.31846. PubMed DOI PMC

Na N, Li H, Xu C, Miao B, Hong L, Huang Z, et al. High expression of Aldolase A predicts poor survival in patients with clear-cell renal cell carcinoma. Ther Clin Risk Manag. 2017;13:279–85. doi: 10.2147/TCRM.S123199. PubMed DOI PMC

Jiao Y, Zhu G, Yu J, Li Y, Wu M, Zhao J, et al. miR-1271 inhibits growth, invasion and epithelial-mesenchymal transition by targeting ZEB1 in Ovarian cancer cells. Onco Targets Ther. 2019;12:6973–80. doi: 10.2147/OTT.S219018. PubMed DOI PMC

Liu N, Feng S, Li H, Chen X, Bai S, Liu Y. Long non-coding RNA MALAT1 facilitates the tumorigenesis, invasion and glycolysis of Multiple Myeloma via miR-1271-5p/SOX13 axis. J Cancer Res Clin Oncol. 2020;146:367–79. doi: 10.1007/s00432-020-03127-8. PubMed DOI PMC

Yang Y, Li Q, Guo L. MicroRNA–122 acts as Tumor suppressor by targeting TRIM29 and blocking the activity of PI3K/AKT signaling in nasopharyngeal carcinoma in vitro. Mol Med Rep. 2018;17:8244–52. PubMed PMC

Lv L, Zhou M, Zhang J, Liu F, Qi L, Zhang S, et al. SOX6 suppresses the development of lung adenocarcinoma by regulating expression of p53, p21(CIPI), cyclin D1 and β-catenin. FEBS Open Bio. 2020;10:135–46. doi: 10.1002/2211-5463.12762. PubMed DOI PMC

Grammatikaki S, Katifelis H, Stravodimos K, Bakolas E, Kavantzas N, Grigoriadou D et al. The Role of HIF1-related Genes and Non-coding RNAs Expression in Clear Cell Renal Cell Carcinoma. in vivo 2023, 37:1103–1110. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...