Evaluating plant lineage losses and gains in temperate forest understories: a phylogenetic perspective on climate change and nitrogen deposition

. 2024 Mar ; 241 (5) : 2287-2299. [epub] 20231221

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38126264

Grantová podpora
2020-BP-00013 Agència de Gestió d'Ajuts Universitaris i de Recerca
APVV-19-0319 Agentúra na Podporu Výskumu a Vývoja
RVO 67985939 Akademie Věd České Republiky
871128 EU Horizon 2020-funded eLTER PLUS project
19-28491X Grantová Agentura České Republiky
DEB 2213567 National Science Foundation

Global change has accelerated local species extinctions and colonizations, often resulting in losses and gains of evolutionary lineages with unique features. Do these losses and gains occur randomly across the phylogeny? We quantified: temporal changes in plant phylogenetic diversity (PD); and the phylogenetic relatedness (PR) of lost and gained species in 2672 semi-permanent vegetation plots in European temperate forest understories resurveyed over an average period of 40 yr. Controlling for differences in species richness, PD increased slightly over time and across plots. Moreover, lost species within plots exhibited a higher degree of PR than gained species. This implies that gained species originated from a more diverse set of evolutionary lineages than lost species. Certain lineages also lost and gained more species than expected by chance, with Ericaceae, Fabaceae, and Orchidaceae experiencing losses and Amaranthaceae, Cyperaceae, and Rosaceae showing gains. Species losses and gains displayed no significant phylogenetic signal in response to changes in macroclimatic conditions and nitrogen deposition. As anthropogenic global change intensifies, temperate forest understories experience losses and gains in specific phylogenetic branches and ecological strategies, while the overall mean PD remains relatively stable.

El canvi global ha accelerat les extincions i colonitzacions a escala local, cosa que sovint ha suposat pèrdues i guanys de llinatges evolutius amb característiques singulars. Ara bé, aquestes pèrdues i guanys ocorren aleatòriament al llarg de la filogènia? En aquest estudi quantifiquem: els canvis temporals en la diversitat filogenètica de les plantes; i la relació filogenètica de les espècies perdudes i guanyades en 2.672 parcel·les de vegetació semi-permanent en sotaboscos temperats europeus i re-mostrejades durant un període mitjà de 40 anys. En controlar per les diferències en la riquesa d’espècies, la diversitat filogenètica va augmentar lleugerament amb el temps i entre parcel·les. A més, les espècies perdudes dins de les parcel·les presentaven un grau més alt de relació filogenètica que les espècies guanyades. Això implica que les espècies guanyades s’originaren en un conjunt de llinatges evolutius més diversos que les espècies perdudes. Certs llinatges també van perdre i van guanyar més espècies de les esperades aleatòriament: Ericaceae, Fabaceae i Orchidaceae van experimentar pèrdues i Amaranthaceae, Cyperaceae i Rosaceae van mostrar guanys. Les pèrdues i els guanys d’espècies no van mostrar cap senyal filogenètic significatiu en resposta als canvis en les condicions macro-climàtiques i la deposició de nitrogen. A mesura que s’intensifica el canvi global antropogènic, els sotaboscos temperats experimenten pèrdues i guanys en branques filogenètiques i estratègies ecològiques específiques, mentre que la diversitat filogenètica mitjana general roman relativament constant.

Białowieża Geobotanical Station Faculty of Biology University of Warsaw Białowieża 17230 Poland

Center for Computation and Technology Louisiana State University Baton Rouge LA 70808 USA

Centre for Ecological Research and Forestry Applications Cerdanyola del Vallès 08193 Spain

Department of Biological Sciences Louisiana State University Baton Rouge LA 70803 USA

Department of Botany and Zoology Faculty of Science Masaryk University Brno 61137 Czech Republic

Department of Botany Faculty of Biological Sciences University of Wrocław Wrocław 50328 Poland

Department of Botany Faculty of Science Palacký University in Olomouc Olomouc 78371 Czech Republic

Department of Botany University of Wisconsin Madison Madison WI 53706 USA

Department of Plant Systematics Ecology and Theoretical Biology Institute of Biology ELTE Eötvös Loránd University Budapest H 1117 Hungary

Department of Silviculture and Forest Ecology of the Temperate Zones Georg August University Göttingen Göttingen 37077 Germany

Department of Vegetation Ecology Institute of Botany Czech Academy of Sciences Brno 60200 Czech Republic

Environment Agency Austria Ecosystem Research and Environmental Information Management Vienna 1090 Austria

Faculty of Environmental Sciences Czech University of Life Sciences Prague Praha 16500 Czech Republic

Faculty of Forestry and Wood Sciences Czech University of Life Sciences Prague Praha 16521 Czech Republic

Faculty of Forestry Technical University in Zvolen Zvolen 96001 Slovakia

Forest and Nature Lab Ghent University Melle Gontrode B 9090 Belgium

General Botany Institute for Biochemistry and Biology University of Potsdam Potsdam 14469 Germany

German Centre for Integrative Biodiversity Research Halle Jena Leipzig Leipzig 04103 Germany

HUN REN UD Biodiversity and Ecosystem Services Research Group Debrecen 4032 Hungary

Institute of Biology Biotechnology and Environmental Protection Faculty of Natural Sciences University of Silesia Katowice 40007 Poland

Institute of Biology University of Rzeszów Rzeszów 35601 Poland

Institute of Botany Faculty of Biology Jagiellonian University in Kraków Kraków 30387 Poland

Institute of Botany of the Czech Academy of Sciences Průhonice 25243 Czech Republic

Institute of Ecology and Evolution Friedrich Schiller University Jena Jena 07743 Germany

Institute of Ecology University of Bremen Bremen 28334 Germany

Leibniz Centre for Agricultural Landscape Research Müncheberg 15374 Germany

Museum of Natural History Faculty of Biological Sciences University of Wrocław Wrocław 50335 Poland

National Forest Centre Zvolen 96001 Slovakia

UMR CNRS 7058 'Ecologie et Dynamique des Systèmes Anthropisés' Université de Picardie Jules Verne Amiens 80037 France

Universitat Autònoma de Barcelona Cerdanyola del Vallès 08193 Spain

Zobrazit více v PubMed

Archaux F, Wolters V. 2006. Impact of summer drought on forest biodiversity: what do we know? Annals of Forest Science 63: 645-652.

Barber N, Jones HP, Duvall MR, Wysocki WP, Hansen MJ, Gibson DJ. 2016. Phylogenetic diversity is maintained despite richness losses over time in restored tallgrass prairie plant communities. Journal of Applied Ecology 54: 137-144.

Berendse F, Geerts R, Elberse WT, Bezemer TM, Goedhart PW, Xue W, Noordijk E, ter Braak CJF, Korevaar H. 2021. A matter of time: recovery of plant species diversity in wild plant communities at declining nitrogen deposition. Diversity and Distributions 27: 1180-1193.

Bernhardt-Römermann M, Baeten L, Craven D, De Frenne P, Hédl R, Lenoir J, Bert D, Brunet J, Chudomelová M, Decocq G et al. 2015. Drivers of temporal changes in temperate forest plant diversity vary across spatial scales. Global Change Biology 21: 3726-3737.

Bruelheide H, Dengler J, Purschke O, Lenoir J, Jiménez-Alfaro B, Hennekens SM, Botta-Dukát Z, Chytrý M, Field R, Jansen F et al. 2018. Global trait-environment relationships of plant communities. Nature Ecology & Evolution 2: 1906-1917.

Cavender-Bares J, Ackerly DD, Baum DA, Bazzaz FA. 2004. Phylogenetic overdispersion in Floridian oak communities. American Naturalist 163: 823-843.

Chai Y, Yue M, Liu X, Guo Y, Wang M, Xu J, Zhang C, Chen Y, Zhang L, Zhang R. 2016. Patterns of taxonomic, phylogenetic diversity during a long-term succession of forest on the Loess Plateau, China: insights into assembly process. Scientific Reports 6: 27087.

Chao A, Chiu C-H, Jost L. 2010. Phylogenetic diversity measures based on Hill numbers. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 365: 3599-3609.

CITES. 2019. CITES Appendix II. [WWW document] URL https://cites.org/sites/default/files/eng/app/2019/E-Appendices-2019-11-26.pdf [Accessed 24 November 2022].

Clayton WD. 1981. Evolution and distribution of grasses. Annals of the Missouri Botanical Garden 68: 5-14.

Closset-Kopp D, Hattab T, Decocq G. 2019. Do drivers of forestry vehicles also drive herb layer changes (1970-2015) in a temperate forest with contrasting habitat and management conditions? Journal of Ecology 107: 1439-1456.

Cohen J. 1998. Statistical power analysis for the behavioral sciences, 2nd edn. Mahwah, NJ, USA: Erlbaum.

De Frenne P, Rodríguez-Sánchez F, Coomes DA, Baeten L, Verstraeten G, Vellend M, Bernhardt-Römermann M, Brown CD, Brunet J, Cornelis J et al. 2013. Microclimate moderates plant responses to macroclimate warming. Proceedings of the National Academy of Sciences, USA 110: 18561-18565.

De Pauw K, Meeussen C, Govaert S, Sanczuk P, Vanneste T, Bernhardt-Römermann M, Bollmann K, Brunet J, Calders K, Cousins SAO et al. 2021. Taxonomic, phylogenetic and functional diversity of understorey plants respond differently to environmental conditions in European forest edges. Journal of Ecology 109: 2629-2648.

Debastiani VJ, Bastazini VAG, Pillar VD. 2021. Using phylogenetic information to impute missing functional trait values in ecological databases. Ecological Informatics 63: 101315.

Díaz S, Cabido M, Casanoves F. 1998. Plant functional traits and environmental filters at a regional scale. Journal of Vegetation Science 9: 113-122.

Díaz S, Kattge J, Cornelissen JHC, Wright IJ, Lavorel S, Dray S, Reu B, Kleyer M, Wirth C, Prentice IC et al. 2016. The global spectrum of plant form and function. Nature 529: 167-171.

Duprè C, Stevens CJ, Ranke T, Bleeker A, Peppler-Lisbach C, Gowing DJG, Dise NB, Dorland E, Bobbink R, Diekmann M. 2010. Changes in species richness and composition in European acidic grasslands over the past 70 years: the contribution of cumulative atmospheric nitrogen deposition. Global Change Biology 16: 344-357.

Eiserhardt WL, Borchsenius F, Plum CM, Ordonez A, Svenning J-C. 2015. Climate-driven extinctions shape the phylogenetic structure of temperate tree floras. Ecology Letters 18: 263-272.

European Commission. 2022. European State of the Climate (ESOTC) 2022. [WWW document] URL https://climate.copernicus.eu/esotc/2022 [accessed 2 August 2023].

Faith DP. 1992. Conservation evaluation and phylogenetic diversity. Biological Conservation 61: 1-10.

Gerhold P, Cahill JF, Winter M, Bartish IV, Prinzing A. 2015. Phylogenetic patterns are not proxies of community assembly mechanisms (they are far better). Functional Ecology 29: 600-614.

Gilliam FS. 2007. The ecological significance of the herbaceous layer in temperate forest ecosystems. Bioscience 57: 845-858.

Haddad NM, Brudvig LA, Clobert J, Davies KF, Gonzalez A, Holt RD, Lovejoy TE, Sexton JO, Austin MP, Collins CD et al. 2015. Habitat fragmentation and its lasting impact on Earth's ecosystems. Science Advances 1: e1500052.

Harris C, Brummitt N, Cobbold CA, Reeve R. 2022a. Strong phylogenetic signals in global plant bioclimatic envelopes. Global Ecology and Biogeography 31: 2191-2203.

Harris IC, Jones PD, Osborn T. 2022b. CRU TS4.06: Climatic Research Unit (CRU) Time-Series (TS) version 4.06 of high-resolution gridded data of month-by-month variation in climate (Jan. 1901- Dec. 2021). NERC EDS Centre for Environmental Data Analysis. [WWW document] URL https://catalogue.ceda.ac.uk/uuid/e0b4e1e56c1c4460b796073a31366980 [accessed 17 November 2022].

Hawkins BA, Rueda M, Rangel TF, Field R, Diniz-Filho JAF. 2014. Community phylogenetics at the biogeographical scale: cold tolerance, niche conservatism and the structure of North American forests. Journal of Biogeography 41: 23-38.

IPBES. 2019. Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. Bonn, Germany: IPBES Secretariat.

Ives AR, Zhu J. 2006. Statistics for correlated data: phylogenies, space, and time. Ecological Applications 16: 20-32.

Jandt U, Bruelheide H, Jansen F, Bonn A, Grescho V, Klenke RA, Sabatini FM, Bernhardt-Römermann M, Blüml V, Dengler J et al. 2022. More losses than gains during one century of plant biodiversity change in Germany. Nature 611: 512-518.

Jin Y, Qian H. 2022. V.PhyloMaker2: an updated and enlarged R package that can generate very large phylogenies for vascular plants. Plant Diversity 4: 335-339.

Kattge J, Bönisch G, Díaz S, Lavorel S, Prentice IC, Leadley P, Tautenhahn S, Werner GDA, Aakala T, Abedi M et al. 2020. TRY plant trait database -enhanced coverage and open access. Global Change Biology 26: 119-188.

Keddy PA. 1992. Assembly and response rules -two goals for predictive community ecology. Journal of Vegetation Science 3: 157-164.

Kindt R. 2020. WorldFlora: an R package for exact and fuzzy matching of plant names against the World Flora Online taxonomic backbone data. Applications in Plant Sciences 8: e11388.

Kopecký M, Hédl R, Szabó P. 2012. Non-random extinctions dominate plant community changes in abandoned coppices. Journal of Applied Ecology 50: 79-87.

Lavorel S, Garnier E. 2002. Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Functional Ecology 16: 545-556.

Letten AD, Keith DA, Tozer MG. 2014. Phylogenetic and functional dissimilarity does not increase during temporal heathland succession. Proceedings of the Royal Society B 281: 20142102.

Li D, Olden JD, Lockwood JL, Record S, McKinney ML, Baiser B. 2020. Changes in taxonomic and phylogenetic diversity in the Anthropocene. Proceedings of the Royal Society B: Biological Sciences 287: 20200777.

Li D, Waller D. 2017. Fire exclusion and climate change interact to affect long-term changes in the functional composition of plant communities. Diversity and Distributions 23: 496-506.

Li SP, Cadotte MW, Meiners SJ, Hua ZS, Jiang L, Shu WS. 2015. Species colonisation, not competitive exclusion, drives community overdispersion over long-term succession. Ecology Letters 18: 964-973.

Loidi J, Chytrý M, Jiménez-Alfaro B, Alessi N, Biurrun I, Campos JA, Čarni A, Fernández-Pascual E, Font Castell X, Gholizadeh H et al. 2021. Life-form diversity across temperate deciduous forests of Western Eurasia: a different story in the understory. Journal of Biogeography 48: 2932-2945.

Losos JB. 2008. Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species. Ecology Letters 11: 995-1007.

Mace GM, Gittleman JL, Purvis A. 2003. Preserving the tree of life. Science 300: 1707-1709.

Magurran AE, Henderson PA. 2010. Temporal turnover and the maintenance of diversity in ecological communities. Philosophical Transactions of the Royal Society B 365: 3611-3620.

Mathakutha R, Steyn C, le Roux PC, Blom IJ, Chown SL, Daru BH, Ripley BS, Louw A, Greve M. 2019. Invasive species differ in key functional traits from native and non-invasive alien plant species. Journal of Vegetation Science 30: 994-1006.

Mohieddinne H, Brasseur B, Gallet-Moron E, Lenoir J, Spicher F, Kobaissi A, Horen H. 2022. Assessment of soil compaction and rutting in managed forests through an airborne LiDAR technique. Land Degradation & Development 34: 1558-1569.

Naimi B, Hamm N, Groen TA, Skidmore AK, Toxopeus AG. 2014. Where is positional uncertainty a problem for species distribution modelling. Ecography 37: 191-203.

Navarro DJ. 2015. Learning statistics with R: a tutorial for psychology students and other beginners. Adelaide, SA, Australia: University of Adelaide.

Orme D, Freckleton R, Thomas G, Petzoldt T, Fritz S, Isaac N, Pearse W. 2018. caper: comparative analyses of phylogenetics and evolution in R. R package v.1.0.1. [WWW document] URL https://CRAN.R-project.org/package=caper [accessed 11 April 2023].

Owen NR, Gumbs R, Gray CL, Faith DP. 2019. Global conservation of phylogenetic diversity captures more than just functional diversity. Nature Communications 10: 859.

Pagel M. 1999. Inferring the historical patterns of biological evolution. Nature 401: 877-884.

Penone C, Davidson AD, Shoemaker KT, Di Marco M, Rondinini C, Brooks TM, Young BE, Graham CH, Costa GC. 2014. Imputation of missing data in life-history trait datasets: which approach performs the best? Methods in Ecology and Evolution 5: 961-970.

Perring MP, Bernhardt-Römermann M, Baeten L, Midolo G, Blondeel H, Depauw L, Landuyt D, Maes SL, de Lombaerde E, Carón MM et al. 2018. Global environmental change effects on plant community composition trajectories depend upon management legacies. Global Change Biology 24: 1722-1740.

Pilon NA, Durigan G, Rickenback J, Pennington RT, Dexter KG, Hoffmann WA, Landuyt D, Maes SL, De Lombaerde E, Carón MM et al. 2020. Shade alters savanna grass layer structure and function along a gradient of canopy cover. Journal of Vegetation Science 32: e12959.

Pinheiro J, Bates D, R Core Team. 2022. nlme: linear and nonlinear mixed effects models. R package v.3.1.157. https://CRAN.R-project.org/package=nlme [accessed 5 April 2023].

Poggio L, de Sousa LM, Batjes NH, Heuvelink GBM, Kempen B, Ribeiro E, Rossiter D. 2021. SoilGrids 2.0: producing soil information for the globe with quantified spatial uncertainty. The Soil 7: 217-240.

Purschke O, Schmid BC, Sykes MT, Poschlod P, Michalski SG, Durka W, Kühn I, Winter M, Prentice HC. 2013. Contrasting changes in taxonomic, phylogenetic and functional diversity during a long-term succession: insights into assembly processes. Journal of Ecology 101: 857-866.

Qian H, Jin Y. 2016. An updated megaphylogeny of plants, a tool for generating plant phylogenies and an analysis of phylogenetic community structure. Journal of Plant Ecology 9: 233-239.

Qian H, Jin Y. 2021. Are phylogenies resolved at the genus level appropriate for studies on phylogenetic structure of species assemblages? Plant Diversity 4: 255-263.

R Core Team. 2022. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical. [WWW document] URL https://www.R-project.org/ [accessed 1 March 2023].

Revell LJ. 2012. phytools: an R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution 3: 217-223.

Santos T. 2018. Pvr: phylogenetic eigenvectors regression and phylogenetic signal-representation curve. R Package v.0.3. [WWW document] URL https://CRAN.R-project.org/package=PVR [accessed 1 August 2023].

Segar J, Pereira HM, Baeten L, Bernhardt-Römermann M, De Frenne P, Fernández N, Gilliam FS, Lenoir J, Ortmann-Ajkai A, Verheyen K et al. 2022. Divergent roles of herbivory in eutrophying forests. Nature Communications 13: 7837.

Simkin SM, Allen EB, Bowman WD, Clark CM, Belnap J, Brooks ML, Cade BS, Collins SL, Geiser LH, Gilliam FS et al. 2016. Conditional vulnerability of plant diversity to atmospheric nitrogen deposition across the United States. Proceedings of the National Academy of Sciences, USA 113: 4086-4091.

Smith SA, Brown JW. 2018. Constructing a broadly inclusive seed plant phylogeny. American Journal of Botany 105: 302-314.

Sodhi NS, Koh LP, Peh KS-H, Tan HTW, Chazdon RL, Corlett RT, Lee TM, Colwell RK, Brook BW, Sekercioglu CH et al. 2008. Correlates of extinction proneness in tropical angiosperms. Diversity and Distributions 14: 1-10.

Staude IR, Waller DM, Bernhardt-Römermann M, Bjorkman AD, Brunet J, De Frenne P, Hédl R, Jandt U, Lenoir J, Máliš F et al. 2020. Replacements of small- by large-ranged species scale up to diversity loss in Europe's temperate forest biome. Nature Ecology & Evolution 4: 802-808.

Stekhoven DJ. 2022. missForest: nonparametric missing value imputation using random forest. R package v.1.5. [WWW document] URL https://cran.r-project.org/web/packages/missForest/ [accessed 1 August 2023].

van Strien AJ, Boomsluiter M, Noordeloos ME, Verweij RJT, Kuyper TW. 2017. Woodland ectomycorrhizal fungi benefit from large-scale reduction in nitrogen deposition in The Netherlands. Journal of Applied Ecology 55: 290-298.

Suggitt AJ, Wilson RJ, Isaac NJB, Beale CM, Auffret AG, August T, Bennie JJ, Crick HQP, Duffield S, Fox R et al. 2018. Extinction risk from climate change is reduced by microclimatic buffering. Nature Climate Change 8: 713-717.

Tsirogiannis C, Sandel B. 2016. PhyloMeasures: a package for computing phylogenetic biodiversity measures and their statistical moments. Ecography 39: 709-714.

Valiente-Banuet A, Verdú M. 2013. Plant facilitation and phylogenetics. Annual Review of Ecology, Evolution, and Systematics 44: 347-366.

Vamosi JC, Wilson JRU. 2008. Nonrandom extinction leads to elevated loss of angiosperm evolutionary history. Ecology Letters 11: 1047-1053.

Vellend M, Baeten L, Myers-Smith IH, Elmendorf SC, Beauséjour R, Brown CD, De Frenne P, Verheyen K, Wipf S. 2013. Global meta-analysis reveals no net change in local-scale plant biodiversity over time. Proceedings of the National Academy of Sciences, USA 110: 19456-19459.

Verheyen K, Bažány M, Chećko E, Chudomelová M, Closset-Kopp D, Czortek P, Decocq G, De Frenne P, De Keersmaeker L, Enríquez García C et al. 2018. Observer and relocation errors matter in resurveys of historical vegetation plots. Journal of Vegetation Science 29: 812-823.

Verheyen K, De Frenne P, Baeten L, Waller DM, Hédl R, Perring MP, Blondeel H, Brunet J, Chudomelová M, Decocq G et al. 2017. Combining biodiversity resurveys across regions to advance global change research. Bioscience 67: 73-83.

Webb CO, Ackerly DD, Kembel SW. 2008. Phylocom: software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics 18: 2098-2100.

Webb CO, Ackerly DD, McPeek MA, Donoghue MJ. 2002. Phylogenies and community ecology. Annual Review of Ecology and Systematics 3: 475-505.

Westoby M. 1998. A leaf-height-seed (LHS) plant ecology strategy scheme. Plant and Soil 19: 213-227.

Zellweger F, De Frenne P, Lenoir J, Vangansbeke P, Verheyen K, Bernhardt-Römermann M, Baeten L, Hédl R, Berki I, Brunet J et al. 2020. Forest microclimate dynamics drive plant responses to warming. Science 368: 772-775.

Zuur AF, Leno EN, Smith GM. 2007. Analysing ecological data. New York, NY, USA: Springer.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Long-term nitrogen deposition reduces the diversity of nitrogen-fixing plants

. 2024 Oct 18 ; 10 (42) : eadp7953. [epub] 20241018

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...