Exercise-Induced Blood Pressure Dynamics: Insights from the General Population and the Athletic Cohort
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
grant number IGA LF 2023-020
Faculty of Medicine, Palacky University
PubMed
38132648
PubMed Central
PMC10743421
DOI
10.3390/jcdd10120480
PII: jcdd10120480
Knihovny.cz E-zdroje
- Klíčová slova
- blood pressure, cardiovascular risk, exercise, guidelines, prognosis,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Blood pressure (BP) dynamics during graded exercise testing provide important insights into cardiovascular health, particularly in athletes. These measurements, taken during intense physical exertion, complement and often enhance our understanding beyond traditional resting BP measurements. Historically, the challenge has been to distinguish 'normal' from 'exaggerated' BP responses in the athletic environment. While basic guidelines have served their purpose, they may not fully account for the complex nature of BP responses in today's athletes, as illuminated by contemporary research. This review critically evaluates existing guidelines in the context of athletic performance and cardiovascular health. Through a rigorous analysis of the current literature, we highlight the multifaceted nature of exercise-induced BP fluctuations in athletes, emphasising the myriad determinants that influence these responses, from specific training regimens to inherent physiological nuances. Our aim is to advocate a tailored, athlete-centred approach to BP assessment during exercise. Such a paradigm shift is intended to set the stage for evidence-based guidelines to improve athletic training, performance and overall cardiovascular well-being.
Faculty of Medicine Masaryk University Kamenice 735 5 625 00 Brno Czech Republic
Faculty of Medicine Palacky University Krizkovskeho 511 8 779 00 Olomouc Czech Republic
Faculty of Medicine University of Ostrava Syllabova 19 703 00 Ostrava Czech Republic
Sports Cardiology Center Nemocnice Agel Trinec Podlesi Konska 453 739 61 Trinec Czech Republic
Zobrazit více v PubMed
Fletcher G.F., Ades P.A., Kligfield P., Arena R., Balady G.J. Exercise Standards for Testing and Training: A Scientific Statement from the American Heart Association. Circulation. 2013;128:873–934. doi: 10.1161/CIR.0b013e31829b5b44. PubMed DOI
Currie K.D., Floras J.S., La Gerche A., Goodman J.M. Exercise Blood Pressure Guidelines: Time to Re-Evaluate What Is Normal and Exaggerated? Sports Med. 2018;48:1763–1771. doi: 10.1007/s40279-018-0900-x. PubMed DOI
Fox S.M., Naughton J.P., Haskell W.L. Physical Activity and the Prevention of Coronary Heart Disease. Ann. Clin. Res. 1971;3:404–432. doi: 10.1016/0091-7435(72)90079-5. PubMed DOI
Naughton J.P., Haider R. Exercise Testing and Exercise Training in Coronary Heart Disease. Academic Press; New York, NY, USA: 1973. Methods of Exercise Testing; pp. 79–95.
Ekblom B., Astrand P.O., Saltin B., Stenberg J., Wallström B. Effect of Training on Circulatory Response to Exercise. J. Appl. Physiol. 1968;24:518–528. doi: 10.1152/jappl.1968.24.4.518. PubMed DOI
Pollock M.L., Foster C., Schmidt D., Hellman C., Linnerud A.C., Ward A. Comparative Analysis of Physiologic Responses to Three Different Maximal Graded Exercise Test Protocols in Healthy Women. Am. Heart J. 1982;103:363–373. doi: 10.1016/0002-8703(82)90275-7. PubMed DOI
Ogawa T., Spina R.J., Martin W.H., Kohrt W.M., Schechtman K.B., Holloszy J.O., Ehsani A.A. Effects of Aging, Sex, and Physical Training on Cardiovascular Responses to Exercise. Circulation. 1992;86:494–503. doi: 10.1161/01.CIR.86.2.494. PubMed DOI
Hedman K., Lindow T., Elmberg V., Brudin L., Ekström M. Age- and Gender-Specific Upper Limits and Reference Equations for Workload-Indexed Systolic Blood Pressure Response during Bicycle Ergometry. Eur. J. Prev. Cardiol. 2021;28:1360–1369. doi: 10.1177/2047487320909667. PubMed DOI
Trinity J.D., Layec G., Hart C.R., Richardson R.S. Sex-Specific Impact of Aging on the Blood Pressure Response to Exercise. Am. J. Physiol. Heart Circ. Physiol. 2018;314:H95–H104. doi: 10.1152/ajpheart.00505.2017. PubMed DOI PMC
Schultz M.G., Otahal P., Cleland V.J., Blizzard L., Marwick T.H., Sharman J.E. Exercise-Induced Hypertension, Cardiovascular Events, and Mortality in Patients Undergoing Exercise Stress Testing: A Systematic Review and Meta-Analysis. Am. J. Hypertens. 2013;26:357–366. doi: 10.1093/ajh/hps053. PubMed DOI
Mohammed L.M., Dhavale M., Abdelaal M.K., Alam A.B.M.N., Blazin T., Prajapati D., Mostafa J.A. Exercise-Induced Hypertension in Healthy Individuals and Athletes: Is It an Alarming Sign? Cureus. 2020;12:e11988. doi: 10.7759/cureus.11988. PubMed DOI PMC
Rowell L.B. Human Cardiovascular Control. Oxford University Press; Oxford, UK: 1993.
Nystoriak M.A., Bhatnagar A. Cardiovascular Effects and Benefits of Exercise. Front. Cardiovasc. Med. 2018;5:135. doi: 10.3389/fcvm.2018.00135. PubMed DOI PMC
Everson S.A., Kaplan G.A., Goldberg D.E., Salonen J.T. Anticipatory Blood Pressure Response to Exercise Predicts Future High Blood Pressure in Middle-Aged Men. Hypertension. 1996;27:1059–1064. doi: 10.1161/01.HYP.27.5.1059. PubMed DOI
Carpio-Rivera E., Moncada-Jiménez J., Salazar-Rojas W., Solera-Herrera A. Acute Effects of Exercise on Blood Pressure: A Meta-Analytic Investigation. Arq. Bras. Cardiol. 2016;106:422–433. doi: 10.5935/abc.20160064. PubMed DOI PMC
Kelley G.A., Kelley K.A., Tran Z.V. Aerobic Exercise and Resting Blood Pressure: A Meta-Analytic Review of Randomized, Controlled Trials. Prev. Cardiol. 2001;4:73–80. doi: 10.1111/j.1520-037X.2001.00529.x. PubMed DOI PMC
Charkoudian N., Rabbitts J.A. Sympathetic Neural Mechanisms in Human Cardiovascular Health and Disease. Mayo Clin. Proc. 2009;84:822–830. doi: 10.4065/84.9.822. PubMed DOI PMC
Joyner M.J., Charkoudian N., Wallin B.G. The Sympathetic Nervous System and Blood Pressure in Humans: Individualized Patterns of Regulation and Their Implications. Hypertension. 2010;56:10–16. doi: 10.1161/HYPERTENSIONAHA.109.140186. PubMed DOI PMC
Jia G., Aroor A.R., Hill M.A., Sowers J.R. Role of Renin-Angiotensin-Aldosterone System Activation in Promoting Cardiovascular Fibrosis and Stiffness. Hypertension. 2018;72:537–548. doi: 10.1161/HYPERTENSIONAHA.118.11065. PubMed DOI PMC
Goessler K., Polito M., Cornelissen V.A. Effect of Exercise Training on the Renin–Angiotensin–Aldosterone System in Healthy Individuals: A Systematic Review and Meta-Analysis. Hypertens. Res. 2016;39:119–126. doi: 10.1038/hr.2015.100. PubMed DOI
Pescatello L.S., Franklin B.A., Fagard R., Farquhar W.B., Kelley G.A., Ray C.A., American College of Sports Medicine American College of Sports Medicine Position Stand Exercise and Hypertension. Med. Sci. Sports Exerc. 2004;36:533–553. doi: 10.1249/01.MSS.0000115224.88514.3A. PubMed DOI
Gibbons R.J., Balady G.J., Bricker J.T., Chaitman B.R., Fletcher G.F., Froelicher V.F., Mark D.B., McCallister B.D., Mooss A.N., O’Reilly M.G., et al. ACC/AHA 2002 Guideline Update for Exercise Testing: Summary Article. A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to Update the 1997 Exercise Testing Guidelines) J. Am. Coll. Cardiol. 2002;40:1531–1540. doi: 10.1016/S0735-1097(02)02164-2. PubMed DOI
Williams B., Mancia G., Spiering W., Agabiti Rosei E., Azizi M., Burnier M., Clement D.L., Coca A., de Simone G., Dominiczak A., et al. 2018 ESC/ESH Guidelines for the Management of Arterial Hypertension. Eur. Heart J. 2018;39:3021–3104. doi: 10.1093/eurheartj/ehy339. PubMed DOI
Hunter S.K., Angadi S., Bhargava A., Harper J., Hirschberg A.L., Levine B.D., Moreau K.L., Nokoff N.J., Stachenfeld N.S., Bermon S. The Biological Basis of Sex Differences in Athletic Performance: Consensus Statement for the American College of Sports Medicine. Med. Sci. Sports Exerc. 2023;55:2328–2360. doi: 10.1249/MSS.0000000000003300. PubMed DOI
Sabbahi A., Arena R., Kaminsky L.A., Myers J., Phillips S.A. Peak Blood Pressure Responses During Maximum Cardiopulmonary Exercise Testing. Hypertension. 2018;71:229–236. doi: 10.1161/HYPERTENSIONAHA.117.10116. PubMed DOI
Keller K., Hartung K., del Castillo Carillo L., Treiber J., Stock F., Schröder C., Hugenschmidt F., Friedmann-Bette B. Exercise Hypertension in Athletes. J. Clin. Med. 2022;11:4870. doi: 10.3390/jcm11164870. PubMed DOI PMC
Schultz M.G., Sharman J.E. Exercise Hypertension. Pulse. 2014;1:161–176. doi: 10.1159/000360975. PubMed DOI PMC
Conway J., Min S., Villa C., Weintraub R.G., Nakano S., Godown J., Tatangelo M., Armstrong K., Richmond M., Kaufman B., et al. The Prevalence and Association of Exercise Test Abnormalities With Sudden Cardiac Death and Transplant-Free Survival in Childhood Hypertrophic Cardiomyopathy. Circulation. 2023;147:718–727. doi: 10.1161/CIRCULATIONAHA.122.062699. PubMed DOI PMC
Benbassat J., Froom P. Blood Pressure Response to Exercise as a Predictor of Hypertension. Arch. Intern. Med. 1986;146:2053–2055. doi: 10.1001/archinte.1986.00360220227036. PubMed DOI
Tuka V., Rosa J., Dědinová M., Matoulek M. The Determinants of Blood Pressure Response to Exercise. Cor. Vasa. 2015;57:e163–e167. doi: 10.1016/j.crvasa.2015.03.010. DOI
Joyner M.J., Casey D.P. Regulation of Increased Blood Flow (Hyperemia) to Muscles during Exercise: A Hierarchy of Competing Physiological Needs. Physiol. Rev. 2015;95:549–601. doi: 10.1152/physrev.00035.2013. PubMed DOI PMC
Smith J.R., Koepp K.E., Berg J.D., Akinsanya J.G., Olson T.P. Influence of Sex, Menstrual Cycle, and Menopause Status on the Exercise Pressor Reflex. Med. Sci. Sports Exerc. 2019;51:874–881. doi: 10.1249/MSS.0000000000001877. PubMed DOI PMC
Miyai N., Arita M., Miyashita K., Morioka I., Shiraishi T., Nishio I. Blood Pressure Response to Heart Rate During Exercise Test and Risk of Future Hypertension. Hypertension. 2002;39:761–766. doi: 10.1161/hy0302.105777. PubMed DOI
Chant B., Bakali M., Hinton T., Burchell A.E., Nightingale A.K., Paton J.F.R., Hart E.C. Antihypertensive Treatment Fails to Control Blood Pressure During Exercise. Hypertension. 2018;72:102–109. doi: 10.1161/HYPERTENSIONAHA.118.11076. PubMed DOI
Rankinen T., An P., Rice T., Sun G., Chagnon Y.C., Gagnon J., Leon A.S., Skinner J.S., Wilmore J.H., Rao D.C., et al. Genomic Scan for Exercise Blood Pressure in the Health, Risk Factors, Exercise Training and Genetics (HERITAGE) Family Study. Hypertension. 2001;38:30–37. doi: 10.1161/01.HYP.38.1.30. PubMed DOI
Rankinen T., Bouchard C. Genetics and Blood Pressure Response to Exercise, and Its Interactions with Adiposity. Prev. Cardiol. 2002;5:138–144. doi: 10.1111/j.1520-037X.2002.00544.x. PubMed DOI
Montasser M.E., Gu D., Chen J., Shimmin L.C., Gu C., Kelly T.N., Jaquish C.E., Rice T., Rao D.C., Cao J., et al. Interactions of Genetic Variants with Physical Activity Are Associated with Blood Pressure in Chinese: The GenSalt Study. Am. J. Hypertens. 2011;24:1035–1040. doi: 10.1038/ajh.2011.97. PubMed DOI PMC
MacDougall J.D., Tuxen D., Sale D.G., Moroz J.R., Sutton J.R. Arterial Blood Pressure Response to Heavy Resistance Exercise. J. Appl. Physiol. 1985;58:785–790. doi: 10.1152/jappl.1985.58.3.785. PubMed DOI
Millar P.J., Levy A.S., McGowan C.L., McCartney N., MacDonald M.J. Isometric Handgrip Training Lowers Blood Pressure and Increases Heart Rate Complexity in Medicated Hypertensive Patients. Scand. J. Med. Sci. Sports. 2013;23:620–626. doi: 10.1111/j.1600-0838.2011.01435.x. PubMed DOI
Canivel R.G., Wyatt F.B., Baker J.S. Cardiovascular Responses to Isometric Hand Grip vs. Relaxed Hand Grip in Sustained Cycling Efforts. J. Strength. Cond. Res. 2012;26:3101–3105. doi: 10.1519/JSC.0b013e318240f601. PubMed DOI
Edwards J.J., Deenmamode A.H.P., Griffiths M., Arnold O., Cooper N.J., Wiles J.D., O’Driscoll J.M. Exercise Training and Resting Blood Pressure: A Large-Scale Pairwise and Network Meta-Analysis of Randomised Controlled Trials. Br. J. Sports Med. 2023;57:1317–1326. doi: 10.1136/bjsports-2022-106503. PubMed DOI
Schultz M.G., Otahal P., Picone D.S., Sharman J.E. Clinical Relevance of Exaggerated Exercise Blood Pressure. J. Am. Coll. Cardiol. 2015;66:1843–1845. doi: 10.1016/j.jacc.2015.08.015. PubMed DOI
Schultz M.G., Currie K.D., Hedman K., Climie R.E., Maiorana A., Coombes J.S., Sharman J.E. The Identification and Management of High Blood Pressure Using Exercise Blood Pressure: Current Evidence and Practical Guidance. Int. J. Environ. Res. Public Health. 2022;19:2819. doi: 10.3390/ijerph19052819. PubMed DOI PMC
Dutra-Marques A.C., Rodrigues S., Cepeda F.X., Toschi-Dias E., Rondon E., Carvalho J.C., Alves M.J.N.N., Braga A.M.F.W., Rondon M.U.P.B., Trombetta I.C. Exaggerated Exercise Blood Pressure as a Marker of Baroreflex Dysfunction in Normotensive Metabolic Syndrome Patients. Front. Neurosci. 2021;15:680195. doi: 10.3389/fnins.2021.680195. PubMed DOI PMC
Sharman J.E., LaGerche A. Exercise Blood Pressure: Clinical Relevance and Correct Measurement. J. Hum. Hypertens. 2015;29:351–358. doi: 10.1038/jhh.2014.84. PubMed DOI
Wielemborek-Musial K., Szmigielska K., Leszczynska J., Jegier A. Blood Pressure Response to Submaximal Exercise Test in Adults. Biomed. Res. Int. 2016;2016:5607507. doi: 10.1155/2016/5607507. PubMed DOI PMC
Sarma S., Howden E., Carrick-Ranson G., Lawley J., Hearon C., Samels M., Everding B., Livingston S., Adams-Huet B., Palmer M.D., et al. Elevated Exercise Blood Pressure in Middle-Aged Women Is Associated with Altered Left Ventricular and Vascular Stiffness. J. Appl. Physiol. 2020;128:1123–1129. doi: 10.1152/japplphysiol.00458.2019. PubMed DOI PMC
Borlaug B.A., Nishimura R.A., Sorajja P., Lam C.S.P., Redfield M.M. Exercise Hemodynamics Enhance Diagnosis of Early Heart Failure with Preserved Ejection Fraction. Circ. Heart Fail. 2010;3:588–595. doi: 10.1161/CIRCHEARTFAILURE.109.930701. PubMed DOI PMC
Mariampillai J.E., Liestøl K., Kjeldsen S.E., Prestgaard E.E., Engeseth K., Bodegard J., Berge E., Gjesdal K., Erikssen J., Grundvold I., et al. Exercise Systolic Blood Pressure at Moderate Workload Is Linearly Associated With Coronary Disease Risk in Healthy Men. Hypertension. 2020;75:44–50. doi: 10.1161/HYPERTENSIONAHA.119.13528. PubMed DOI
Whelton P.K., Carey R.M., Aronow W.S., Casey D.E., Collins K.J., Dennison Himmelfarb C., DePalma S.M., Gidding S., Jamerson K.A., Jones D.W., et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 2018;71:e127–e248. doi: 10.1016/j.jacc.2017.11.006. PubMed DOI
Matthews C.E., Pate R.R., Jackson K.L., Ward D.S., Macera C.A., Kohl H.W., Blair S.N. Exaggerated Blood Pressure Response to Dynamic Exercise and Risk of Future Hypertension. J. Clin. Epidemiol. 1998;51:29–35. doi: 10.1016/S0895-4356(97)00223-0. PubMed DOI
Keller K., Stelzer K., Ostad M.A., Post F. Impact of Exaggerated Blood Pressure Response in Normotensive Individuals on Future Hypertension and Prognosis: Systematic Review According to PRISMA Guideline. Adv. Med. Sci. 2017;62:317–329. doi: 10.1016/j.advms.2016.11.010. PubMed DOI
Jae S.Y., Kurl S., Kunutsor S.K., Franklin B.A., Laukkanen J.A. Relation of Maximal Systolic Blood Pressure during Exercise Testing to the Risk of Sudden Cardiac Death in Men with and without Cardiovascular Disease. Eur. J. Prev. Cardiol. 2020;27:2220–2222. doi: 10.1177/2047487319880031. PubMed DOI
Tahir E., Starekova J., Muellerleile K., von Stritzky A., Münch J., Avanesov M., Weinrich J.M., Stehning C., Bohnen S., Radunski U.K., et al. Myocardial Fibrosis in Competitive Triathletes Detected by Contrast-Enhanced CMR Correlates With Exercise-Induced Hypertension and Competition History. JACC Cardiovasc. Imaging. 2018;11:1260–1270. doi: 10.1016/j.jcmg.2017.09.016. PubMed DOI
Aker A., Saliba W., Hislop E., Zafrir B. Blood Pressure Measurements during Treadmill Exercise Testing and the Risk for the Future Development of Atrial Fibrillation. Hypertens. Res. 2022;45:1496–1504. doi: 10.1038/s41440-022-00920-5. PubMed DOI
Schultz M.G., La Gerche A., Sharman J.E. Blood Pressure Response to Exercise and Cardiovascular Disease. Curr. Hypertens. Rep. 2017;19:89. doi: 10.1007/s11906-017-0787-1. PubMed DOI
Caselli S., Serdoz A., Mango F., Lemme E., Vaquer Seguì A., Milan A., Attenhofer Jost C., Schmied C., Spataro A., Pelliccia A. High Blood Pressure Response to Exercise Predicts Future Development of Hypertension in Young Athletes. Eur. Heart J. 2019;40:62–68. doi: 10.1093/eurheartj/ehy810. PubMed DOI
Caselli S., Vaquer Segui A., Quattrini F., Di Gacinto B., Milan A., Assorgi R., Verdile L., Spataro A., Pelliccia A. Upper Normal Values of Blood Pressure Response to Exercise in Olympic Athletes. Am. Heart J. 2016;177:120–128. doi: 10.1016/j.ahj.2016.04.020. PubMed DOI
Richard N.A., Hodges L., Koehle M.S. Elevated Peak Systolic Blood Pressure in Endurance-Trained Athletes: Physiology or Pathology? Scand. J. Med. Sci. Sports. 2021;31:956–966. doi: 10.1111/sms.13914. PubMed DOI
Pressler A., Jähnig A., Halle M., Haller B. Blood Pressure Response to Maximal Dynamic Exercise Testing in an Athletic Population. J. Hypertens. 2018;36:1803–1809. doi: 10.1097/HJH.0000000000001791. PubMed DOI
Kim J.H., Hollowed C., Liu C., Al-Badri A., Alkhoder A., Dommisse M., Gowani Z., Miller A., Nguyen P., Prabakaran G., et al. Weight Gain, Hypertension, and the Emergence of a Maladaptive Cardiovascular Phenotype Among US Football Players. JAMA Cardiol. 2019;4:1221–1229. doi: 10.1001/jamacardio.2019.3909. PubMed DOI PMC
Jiravska Godula B., Jiravsky O., Pesova P., Jelinek L., Sovova M., Moravcova K., Ozana J., Hudec M., Miklik R., Hecko J., et al. Preparticipation Screening of Athletes: The Prevalence of Positive Family History. J. Cardiovasc. Dev. Dis. 2023;10:183. doi: 10.3390/jcdd10040183. PubMed DOI PMC
Schweiger V., Niederseer D., Schmied C., Attenhofer-Jost C., Caselli S. Athletes and Hypertension. Curr. Cardiol. Rep. 2021;23:176. doi: 10.1007/s11886-021-01608-x. PubMed DOI PMC
Shin S.-Y., Park J.-I., Park S.K., Barrett-Connor E. Utility of Graded Exercise Tolerance Tests for Prediction of Cardiovascular Mortality in Old Age: The Rancho Bernardo Study. Int. J. Cardiol. 2015;181:323–327. doi: 10.1016/j.ijcard.2014.12.026. PubMed DOI PMC
O’Connor F.G., Deuster P.A., Davis J., Pappas C.G., Knapik J.J. Functional Movement Screening: Predicting Injuries in Officer Candidates. Med. Sci. Sports Exerc. 2011;43:2224–2230. doi: 10.1249/MSS.0b013e318223522d. PubMed DOI
Kim Y.J., Chun H., Kim C.-H. Exaggerated Response of Systolic Blood Pressure to Cycle Ergometer. Ann. Rehabil. Med. 2013;37:364–372. doi: 10.5535/arm.2013.37.3.364. PubMed DOI PMC
Brubaker P.H. Exercise Testing. In: Mooren F.C., editor. Encyclopedia of Exercise Medicine in Health and Disease. Springer; Berlin/Heidelberg, Germany: 2012. pp. 318–323.
Carlén A., Eklund G., Andersson A., Carlhäll C.-J., Ekström M., Hedman K. Systolic Blood Pressure Response to Exercise in Endurance Athletes in Relation to Oxygen Uptake, Work Rate and Normative Values. J. Cardiovasc. Dev. Dis. 2022;9:227. doi: 10.3390/jcdd9070227. PubMed DOI PMC
Burtscher J., Strasser B., Burtscher M., Millet G.P. The Impact of Training on the Loss of Cardiorespiratory Fitness in Aging Masters Endurance Athletes. Int. J. Environ. Res. Public. Health. 2022;19:11050. doi: 10.3390/ijerph191711050. PubMed DOI PMC
Bjarnason-Wehrens B., Predel H.-G. Rays of Light into the “black-Box” of Exercise Hypertension. Eur. J. Prev. Cardiol. 2022;28:e7–e9. doi: 10.1177/2047487320918343. PubMed DOI
Hedman K., Cauwenberghs N., Christle J.W., Kuznetsova T., Haddad F., Myers J. Workload-Indexed Blood Pressure Response Is Superior to Peak Systolic Blood Pressure in Predicting All-Cause Mortality. Eur. J. Prev. Cardiol. 2020;27:978–987. doi: 10.1177/2047487319877268. PubMed DOI
Ligetvári R., Szokodi I., Far G., Csöndör É., Móra Á., Komka Z., Tóth M., Oláh A., Ács P. Apelin as a Potential Regulator of Peak Athletic Performance. Int. J. Mol. Sci. 2023;24:8195. doi: 10.3390/ijms24098195. PubMed DOI PMC
Aengevaeren V.L., Hopman M.T.E., Thompson P.D., Bakker E.A., George K.P., Thijssen D.H.J., Eijsvogels T.M.H. Exercise-Induced Cardiac Troponin I Increase and Incident Mortality and Cardiovascular Events. Circulation. 2019;140:804–814. doi: 10.1161/CIRCULATIONAHA.119.041627. PubMed DOI
Omland T., Aakre K.M. Cardiac Troponin Increase After Endurance Exercise. Circulation. 2019;140:815–818. doi: 10.1161/CIRCULATIONAHA.119.042131. PubMed DOI
Airaksinen K.E.J. Cardiac Troponin Release After Endurance Exercise: Still Much to Learn. J. Am. Heart Assoc. 2020;9:e015912. doi: 10.1161/JAHA.120.015912. PubMed DOI PMC
Aengevaeren V.L., Baggish A.L., Chung E.H., George K., Kleiven Ø., Mingels A.M.A., Ørn S., Shave R.E., Thompson P.D., Eijsvogels T.M.H. Exercise-Induced Cardiac Troponin Elevations: From Underlying Mechanisms to Clinical Relevance. Circulation. 2021;144:1955–1972. doi: 10.1161/CIRCULATIONAHA.121.056208. PubMed DOI PMC
Janssen S.L., Berge K., Luiken T., Aengevaeren V.L., Eijsvogels T.M. Cardiac Troponin Release in Athletes: What Do We Know and Where Should We Go? Curr. Opin. Physiol. 2023;31:100629. doi: 10.1016/j.cophys.2022.100629. DOI
Legaz-Arrese A., López-Laval I., George K., Puente-Lanzarote J.J., Mayolas-Pi C., Serrano-Ostáriz E., Revilla-Martí P., Moliner-Urdiales D., Reverter-Masià J. Impact of an Endurance Training Program on Exercise-Induced Cardiac Biomarker Release. Am. J. Physiol. Heart Circ. Physiol. 2015;308:H913–H920. doi: 10.1152/ajpheart.00914.2014. PubMed DOI
Skadberg Ø., Kleiven Ø., Ørn S., Bjørkavoll-Bergseth M.F., Melberg T.H., Omland T., Aakre K.M. The Cardiac Troponin Response Following Physical Exercise in Relation to Biomarker Criteria for Acute Myocardial Infarction; the North Sea Race Endurance Exercise Study (NEEDED) 2013. Clin. Chim. Acta. 2018;479:155–159. doi: 10.1016/j.cca.2018.01.033. PubMed DOI