Anti-Cancer Properties of Resveratrol: A Focus on Its Impact on Mitochondrial Functions

. 2023 Nov 29 ; 12 (12) : . [epub] 20231129

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid38136176

Cancer is one of the most serious public health issues worldwide, demanding ongoing efforts to find novel therapeutic agents and approaches. Amid growing interest in the oncological applications of phytochemicals, particularly polyphenols, resveratrol-a naturally occurring polyphenolic stilbene derivative-has emerged as a candidate of interest. This review analyzes the pleiotropic anti-cancer effects of resveratrol, including its modulation of apoptotic pathways, cell cycle regulation, inflammation, angiogenesis, and metastasis, its interaction with cancer stem cells and the tumor microenvironment. The effects of resveratrol on mitochondrial functions, which are crucial to cancer development, are also discussed. Future research directions are identified, including the elucidation of specific molecular targets, to facilitate the clinical translation of resveratrol in cancer prevention and therapy.

Zobrazit více v PubMed

Upadhyay A. Cancer: An unknown territory; rethinking before going ahead. Genes Dis. 2021;8:655–661. doi: 10.1016/j.gendis.2020.09.002. PubMed DOI PMC

Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A., Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021;71:209–249. doi: 10.3322/caac.21660. PubMed DOI

Weiss C. Ethical Challenges in Cancer Diagnosis and Therapy. Volume 218. Springer; Berlin/Heidelberg, Germany: 2021. One in Four Dies of Cancer. Questions about the Epidemiology of Malignant Tumours; pp. 15–29. Recent Results in Cancer Research. PubMed DOI

Ashraf M.A. Phytochemicals as Potential Anticancer Drugs: Time to Ponder Nature’s Bounty. BioMed Res. Int. 2020;2020:8602879. doi: 10.1155/2020/8602879. PubMed DOI PMC

Choudhari A.S., Mandave P.C., Deshpande M., Ranjekar P., Prakash O. Phytochemicals in Cancer Treatment: From Preclinical Studies to Clinical Practice. Front. Pharmacol. 2019;10:1614. doi: 10.3389/fphar.2019.01614. PubMed DOI PMC

Ijaz S., Akhtar N., Khan M.S., Hameed A., Irfan M., Arshad M.A., Ali S., Asrar M. Plant derived anticancer agents: A green approach towards skin cancers. Biomed. Pharmacother. 2018;103:1643–1651. doi: 10.1016/j.biopha.2018.04.113. PubMed DOI

Manach C., Scalbert A., Morand C., Rémésy C., Jiménez L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr. 2004;79:727–747. doi: 10.1093/ajcn/79.5.727. PubMed DOI

Meng X., Zhou J., Zhao C.N., Gan R.Y., Li H.B. Health Benefits and Molecular Mechanisms of Resveratrol: A Narrative Review. Foods. 2020;9:340. doi: 10.3390/foods9030340. PubMed DOI PMC

Ko J.H., Sethi G., Um J.Y., Shanmugam M.K., Arfuso F., Kumar A.P., Bishayee A., Ahn K.S. The Role of Resveratrol in Cancer Therapy. Int. J. Mol. Sci. 2017;18:2589. doi: 10.3390/ijms18122589. PubMed DOI PMC

Meng T., Xiao D., Muhammed A., Deng J., Chen L., He J. Anti-Inflammatory Action and Mechanisms of Resveratrol. Molecules. 2021;26:229. doi: 10.3390/molecules26010229. PubMed DOI PMC

Peng L., Jiang D. Resveratrol eliminates cancer stem cells of osteosarcoma by STAT3 pathway inhibition. PLoS ONE. 2018;13:e0205918. doi: 10.1371/journal.pone.0205918. PubMed DOI PMC

Han Y., Jo H., Cho J.H., Dhanasekaran D.N., Song Y.S. Resveratrol as a Tumor-Suppressive Nutraceutical Modulating Tumor Microenvironment and Malignant Behaviors of Cancer. Int. J. Mol. Sci. 2019;20:925. doi: 10.3390/ijms20040925. PubMed DOI PMC

Abate M., Festa A., Falco M., Lombardi A., Luce A., Grimaldi A., Zappavigna S., Sperlongano P., Irace C., Caraglia M., et al. Mitochondria as playmakers of apoptosis, autophagy and senescence. Semin. Cell Dev. Biol. 2020;98:139–153. doi: 10.1016/j.semcdb.2019.05.022. PubMed DOI

Neagu M., Constantin C., Popescu I.D., Zipeto D., Tzanakakis G., Nikitovic D., Fenga C., Stratakis C.A., Spandidos D.A., Tsatsakis A.M. Inflammation and Metabolism in Cancer Cell-Mitochondria Key Player. Front. Oncol. 2019;9:348. doi: 10.3389/fonc.2019.00348. PubMed DOI PMC

Bock F.J., Tait S.W.G. Mitochondria as multifaceted regulators of cell death. Nat. Rev. Mol. Cell Biol. 2020;21:85–100. doi: 10.1038/s41580-019-0173-8. PubMed DOI

Kroemer G., Pouyssegur J. Tumor cell metabolism: Cancer’s Achilles’ heel. Cancer Cell. 2008;13:472–482. doi: 10.1016/j.ccr.2008.05.005. PubMed DOI

Ashrafizadeh M., Javanmardi S., Moradi-Ozarlou M., Mohammadinejad R., Farkhondeh T., Samarghandian S., Garg M. Natural products and phytochemical nanoformulations targeting mitochondria in oncotherapy: An updated review on resveratrol. Biosci. Rep. 2020;40:BSR20200257. doi: 10.1042/BSR20200257. PubMed DOI PMC

Gorlach S., Fichna J., Lewandowska U. Polyphenols as mitochondria-targeted anticancer drugs. Cancer Lett. 2015;366:141–149. doi: 10.1016/j.canlet.2015.07.004. PubMed DOI

Vesely O., Baldovska S., Kolesarova A. Enhancing Bioavailability of Nutraceutically Used Resveratrol and Other Stilbenoids. Nutrients. 2021;13:3095. doi: 10.3390/nu13093095. PubMed DOI PMC

Springer M., Moco S. Resveratrol and Its Human Metabolites-Effects on Metabolic Health and Obesity. Nutrients. 2019;11:143. doi: 10.3390/nu11010143. PubMed DOI PMC

Hu Y., Wang S., Wu X., Zhang J., Chen R., Chen M., Wang Y. Chinese herbal medicine-derived compounds for cancer therapy: A focus on hepatocellular carcinoma. J. Ethnopharmacol. 2013;149:601–612. doi: 10.1016/j.jep.2013.07.030. PubMed DOI

Frémont L. Biological effects of resveratrol. Life Sci. 2000;66:663–673. doi: 10.1016/S0024-3205(99)00410-5. PubMed DOI

Mukherjee S., Dudley J.I., Das D.K. Dose-dependency of resveratrol in providing health benefits. Dose Response. 2010;8:478–500. doi: 10.2203/dose-response.09-015.Mukherjee. PubMed DOI PMC

Favaron F., Lucchetta M., Odorizzi S., Pais da Cunha A., Sella L. The role of grape polyphenols on trans-resveratrol activity against Botrytis cinerea and of fungal laccase on the solubility of putative grape PR proteins. J. Plant Pathol. 2009;91:579–588.

Signorelli P., Ghidoni R. Resveratrol as an anticancer nutrient: Molecular basis, open questions and promises. J. Nutr. Biochem. 2005;16:449–466. doi: 10.1016/j.jnutbio.2005.01.017. PubMed DOI

Krasnow M.N., Murphy T.M. Polyphenol glucosylating activity in cell suspensions of grape (Vitis vinifera) J. Agric. Food Chem. 2004;52:3467–3472. doi: 10.1021/jf035234r. PubMed DOI

Regev-Shoshani G., Shoseyov O., Bilkis I., Kerem Z. Glycosylation of resveratrol protects it from enzymic oxidation. Biochem. J. 2003;374:157–163. doi: 10.1042/bj20030141. PubMed DOI PMC

Goldberg D.M., Yan J., Soleas G.J. Absorption of three wine-related polyphenols in three different matrices by healthy subjects. Clin. Biochem. 2003;36:79–87. doi: 10.1016/S0009-9120(02)00397-1. PubMed DOI

Sergides C., Chirilă M., Silvestro L., Pitta D., Pittas A. Bioavailability and safety study of resveratrol 500 mg tablets in healthy male and female volunteers. Exp. Ther. Med. 2016;11:164–170. doi: 10.3892/etm.2015.2895. PubMed DOI PMC

Turner R.S., Thomas R.G., Craft S., van Dyck C.H., Mintzer J., Reynolds B.A., Brewer J.B., Rissman R.A., Raman R., Aisen P.S. A randomized, double-blind, placebo-controlled trial of resveratrol for Alzheimer disease. Neurology. 2015;85:1383–1391. doi: 10.1212/WNL.0000000000002035. PubMed DOI PMC

Wang P., Sang S. Metabolism and pharmacokinetics of resveratrol and pterostilbene. Biofactors. 2018;44:16–25. doi: 10.1002/biof.1410. PubMed DOI

Williams L.D., Burdock G.A., Edwards J.A., Beck M., Bausch J. Safety studies conducted on high-purity trans-resveratrol in experimental animals. Food Chem. Toxicol. 2009;47:2170–2182. doi: 10.1016/j.fct.2009.06.002. PubMed DOI

Riche D.M., McEwen C.L., Riche K.D., Sherman J.J., Wofford M.R., Deschamp D., Griswold M. Analysis of safety from a human clinical trial with pterostilbene. J. Toxicol. 2013;2013:463595. doi: 10.1155/2013/463595. PubMed DOI PMC

Cottart C.H., Nivet-Antoine V., Beaudeux J.L. Review of recent data on the metabolism, biological effects, and toxicity of resveratrol in humans. Mol. Nutr. Food Res. 2014;58:7–21. doi: 10.1002/mnfr.201200589. PubMed DOI

Brown V.A., Patel K.R., Viskaduraki M., Crowell J.A., Perloff M., Booth T.D., Vasilinin G., Sen A., Schinas A.M., Piccirilli G., et al. Repeat dose study of the cancer chemopreventive agent resveratrol in healthy volunteers: Safety, pharmacokinetics, and effect on the insulin-like growth factor axis. Cancer Res. 2010;70:9003–9011. doi: 10.1158/0008-5472.CAN-10-2364. PubMed DOI PMC

la Porte C., Voduc N., Zhang G., Seguin I., Tardiff D., Singhal N., Cameron D.W. Steady-State pharmacokinetics and tolerability of trans-resveratrol 2000 mg twice daily with food, quercetin and alcohol (ethanol) in healthy human subjects. Clin. Pharmacokinet. 2010;49:449–454. doi: 10.2165/11531820-000000000-00000. PubMed DOI

Howells L.M., Berry D.P., Elliott P.J., Jacobson E.W., Hoffmann E., Hegarty B., Brown K., Steward W.P., Gescher A.J. Phase I randomized, double-blind pilot study of micronized resveratrol (SRT501) in patients with hepatic metastases--safety, pharmacokinetics, and pharmacodynamics. Cancer Prev. Res. 2011;4:1419–1425. doi: 10.1158/1940-6207.CAPR-11-0148. PubMed DOI PMC

Walle T., Hsieh F., DeLegge M.H., Oatis J.E., Jr., Walle U.K. High absorption but very low bioavailability of oral resveratrol in humans. Drug Metab. Dispos. 2004;32:1377–1382. doi: 10.1124/dmd.104.000885. PubMed DOI

Boocock D.J., Patel K.R., Faust G.E., Normolle D.P., Marczylo T.H., Crowell J.A., Brenner D.E., Booth T.D., Gescher A., Steward W.P. Quantitation of trans-resveratrol and detection of its metabolites in human plasma and urine by high performance liquid chromatography. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2007;848:182–187. doi: 10.1016/j.jchromb.2006.10.017. PubMed DOI PMC

Ren B., Kwah M.X., Liu C., Ma Z., Shanmugam M.K., Ding L., Xiang X., Ho P.C., Wang L., Ong P.S., et al. Resveratrol for cancer therapy: Challenges and future perspectives. Cancer Lett. 2021;515:63–72. doi: 10.1016/j.canlet.2021.05.001. PubMed DOI

Delmas D., Aires V., Limagne E., Dutartre P., Mazué F., Ghiringhelli F., Latruffe N. Transport, stability, and biological activity of resveratrol. Ann. N. Y Acad. Sci. 2011;1215:48–59. doi: 10.1111/j.1749-6632.2010.05871.x. PubMed DOI

Boocock D.J., Faust G.E., Patel K.R., Schinas A.M., Brown V.A., Ducharme M.P., Booth T.D., Crowell J.A., Perloff M., Gescher A.J., et al. Phase I dose escalation pharmacokinetic study in healthy volunteers of resveratrol, a potential cancer chemopreventive agent. Cancer Epidemiol. Biomark. Prev. 2007;16:1246–1252. doi: 10.1158/1055-9965.EPI-07-0022. PubMed DOI

Nunes T., Almeida L., Rocha J.F., Falcão A., Fernandes-Lopes C., Loureiro A.I., Wright L., Vaz-da-Silva M., Soares-da-Silva P. Pharmacokinetics of trans-resveratrol following repeated administration in healthy elderly and young subjects. J. Clin. Pharmacol. 2009;49:1477–1482. doi: 10.1177/0091270009339191. PubMed DOI

Pirola L., Fröjdö S. Resveratrol: One molecule, many targets. IUBMB Life. 2008;60:323–332. doi: 10.1002/iub.47. PubMed DOI

Aires V., Delmas D., Le Bachelier C., Latruffe N., Schlemmer D., Benoist J.F., Djouadi F., Bastin J. Stilbenes and resveratrol metabolites improve mitochondrial fatty acid oxidation defects in human fibroblasts. Orphanet J. Rare Dis. 2014;9:79. doi: 10.1186/1750-1172-9-79. PubMed DOI PMC

Kulkarni S.S., Cantó C. The molecular targets of resveratrol. Biochim. Biophys. Acta. 2015;1852:1114–1123. doi: 10.1016/j.bbadis.2014.10.005. PubMed DOI

Porquet D., Casadesús G., Bayod S., Vicente A., Canudas A.M., Vilaplana J., Pelegrí C., Sanfeliu C., Camins A., Pallàs M., et al. Dietary resveratrol prevents Alzheimer’s markers and increases life span in SAMP8. AGE. 2013;35:1851–1865. doi: 10.1007/s11357-012-9489-4. PubMed DOI PMC

Vauzour D., Rodriguez-Mateos A., Corona G., Oruna-Concha M.J., Spencer J.P. Polyphenols and human health: Prevention of disease and mechanisms of action. Nutrients. 2010;2:1106–1131. doi: 10.3390/nu2111106. PubMed DOI PMC

Hung L.M., Chen J.K., Huang S.S., Lee R.S., Su M.J. Cardioprotective effect of resveratrol, a natural antioxidant derived from grapes. Cardiovasc. Res. 2000;47:549–555. doi: 10.1016/S0008-6363(00)00102-4. PubMed DOI

Kirk R.I., Deitch J.A., Wu J.M., Lerea K.M. Resveratrol decreases early signaling events in washed platelets but has little effect on platelet in whole blood. Blood Cells Mol. Dis. 2000;26:144–150. doi: 10.1006/bcmd.2000.0289. PubMed DOI

Valdecantos M.P., Pérez-Matute P., Quintero P., Martínez J.A. Vitamin C, resveratrol and lipoic acid actions on isolated rat liver mitochondria: All antioxidants but different. Redox Rep. 2010;15:207–216. doi: 10.1179/135100010X12826446921464. PubMed DOI PMC

de la Lastra C.A., Villegas I. Resveratrol as an antioxidant and pro-oxidant agent: Mechanisms and clinical implications. Biochem. Soc. Trans. 2007;35:1156–1160. doi: 10.1042/BST0351156. PubMed DOI

Sadi G., Bozan D., Yildiz H.B. Redox regulation of antioxidant enzymes: Post-translational modulation of catalase and glutathione peroxidase activity by resveratrol in diabetic rat liver. Mol. Cell. Biochem. 2014;393:111–122. doi: 10.1007/s11010-014-2051-1. PubMed DOI

Kolling J., Kolling J., Franceschi I.D., Nishihira V.S.K., Baldissera M.D., Pinto C.G., Mezzomo N.J., Carmo G.M.D., Feksa L.R., Fernandes L.S., et al. Resveratrol and resveratrol-hydroxypropyl-β-cyclodextrin complex recovered the changes of creatine kinase and Na+, K+-ATPase activities found in the spleen from streptozotocin-induced diabetic rats. An. Acad. Bras. Cienc. 2019;91:e20181330. doi: 10.1590/0001-3765201920181330. PubMed DOI

Ahmadi Y., Mahmoudi N., Yousefi B., Karimian A. The effects of statins with a high hepatoselectivity rank on the extra-hepatic tissues; New functions for statins. Pharmacol. Res. 2020;152:104621. doi: 10.1016/j.phrs.2019.104621. PubMed DOI

Jang M., Cai L., Udeani G.O., Slowing K.V., Thomas C.F., Beecher C.W., Fong H.H., Farnsworth N.R., Kinghorn A.D., Mehta R.G., et al. Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science. 1997;275:218–220. doi: 10.1126/science.275.5297.218. PubMed DOI

Cucciolla V., Borriello A., Oliva A., Galletti P., Zappia V., Della Ragione F. Resveratrol: From basic science to the clinic. Cell Cycle. 2007;6:2495–2510. doi: 10.4161/cc.6.20.4815. PubMed DOI

Stein J.H., Keevil J.G., Wiebe D.A., Aeschlimann S., Folts J.D. Purple grape juice improves endothelial function and reduces the susceptibility of LDL cholesterol to oxidation in patients with coronary artery disease. Circulation. 1999;100:1050–1055. doi: 10.1161/01.CIR.100.10.1050. PubMed DOI

Sun A.Y., Wang Q., Simonyi A., Sun G.Y. Resveratrol as a therapeutic agent for neurodegenerative diseases. Mol. Neurobiol. 2010;41:375–383. doi: 10.1007/s12035-010-8111-y. PubMed DOI PMC

Dos Santos A.S., de Albuquerque T.M.R., de Brito Alves J.L., de Souza E.L. Effects of Quercetin and Resveratrol on in vitro Properties Related to the Functionality of Potentially Probiotic Lactobacillus Strains. Front. Microbiol. 2019;10:2229. doi: 10.3389/fmicb.2019.02229. PubMed DOI PMC

Pasinetti G.M., Wang J., Marambaud P., Ferruzzi M., Gregor P., Knable L.A., Ho L. Neuroprotective and metabolic effects of resveratrol: Therapeutic implications for Huntington’s disease and other neurodegenerative disorders. Exp. Neurol. 2011;232:1–6. doi: 10.1016/j.expneurol.2011.08.014. PubMed DOI PMC

Kim Y.A., Lim S.Y., Rhee S.H., Park K.Y., Kim C.H., Choi B.T., Lee S.J., Park Y.M., Choi Y.H. Resveratrol inhibits inducible nitric oxide synthase and cyclooxygenase-2 expression in beta-amyloid-treated C6 glioma cells. Int. J. Mol. Med. 2006;17:1069–1075. PubMed

Annabi B., Lord-Dufour S., Vézina A., Béliveau R. Resveratrol Targeting of Carcinogen-Induced Brain Endothelial Cell Inflammation Biomarkers MMP-9 and COX-2 is Sirt1-Independent. Drug Target Insights. 2012;6:1–11. doi: 10.4137/DTI.S9442. PubMed DOI PMC

Candelario-Jalil E., de Oliveira A.C., Gräf S., Bhatia H.S., Hüll M., Muñoz E., Fiebich B.L. Resveratrol potently reduces prostaglandin E2 production and free radical formation in lipopolysaccharide-activated primary rat microglia. J. Neuroinflamm. 2007;4:25. doi: 10.1186/1742-2094-4-25. PubMed DOI PMC

Soleas G.J., Grass L., Josephy P.D., Goldberg D.M., Diamandis E.P. A comparison of the anticarcinogenic properties of four red wine polyphenols. Clin. Biochem. 2002;35:119–124. doi: 10.1016/S0009-9120(02)00275-8. PubMed DOI

Sareen D., Darjatmoko S.R., Albert D.M., Polans A.S. Mitochondria, calcium, and calpain are key mediators of resveratrol-induced apoptosis in breast cancer. Mol. Pharmacol. 2007;72:1466–1475. doi: 10.1124/mol.107.039040. PubMed DOI

Amini P., Moazamiyanfar R., Dakkali M.S., Khani A., Jafarzadeh E., Mouludi K., Khodamoradi E., Johari R., Taeb S., Najafi M. Resveratrol in Cancer Therapy: From Stimulation of Genomic Stability to Adjuvant Cancer Therapy: A Comprehensive Review. Curr. Top. Med. Chem. 2023;23:629–648. doi: 10.2174/1568026623666221014152759. PubMed DOI

Gielecińska A., Kciuk M., Mujwar S., Celik I., Kołat D., Kałuzińska-Kołat Ż., Kontek R. Substances of Natural Origin in Medicine: Plants vs. Cancer. Cells. 2023;12:986. doi: 10.3390/cells12070986. PubMed DOI PMC

Karkon-Shayan S., Aliashrafzadeh H., Dianat-Moghadam H., Rastegar-Pouyani N., Majidi M., Zarei M., Moradi-Vastegani S., Bahramvand Y., Babaniamansour S., Jafarzadeh E. Resveratrol as an antitumor agent for glioblastoma multiforme: Targeting resistance and promoting apoptotic cell deaths. Acta Histochem. 2023;125:152058. doi: 10.1016/j.acthis.2023.152058. PubMed DOI

Kumar A., Kurmi B.D., Singh A., Singh D. Potential role of resveratrol and its nano-formulation as anti-cancer agent. Explor. Target. Antitumor Ther. 2022;3:643–658. doi: 10.37349/etat.2022.00105. PubMed DOI PMC

Song B., Wang W., Tang X., Goh R.M.W., Thuya W.L., Ho P.C.L., Chen L., Wang L. Inhibitory Potential of Resveratrol in Cancer Metastasis: From Biology to Therapy. Cancers. 2023;15:2758. doi: 10.3390/cancers15102758. PubMed DOI PMC

Fukuoka N., Ishida T., Ishii K., Sato A., Dagli M.L.Z., Virgona N., Yano T. Resveratrol can induce differentiating phenotypes in canine oral mucosal melanoma cells. J. Vet. Med. Sci. 2023;85:721–726. doi: 10.1292/jvms.22-0446. PubMed DOI PMC

Montalesi E., Cracco P., Acconcia F., Fiocchetti M., Iucci G., Battocchio C., Orlandini E., Ciccone L., Nencetti S., Muzzi M., et al. Resveratrol Analogs and Prodrugs Differently Affect the Survival of Breast Cancer Cells Impairing Estrogen/Estrogen Receptor α/Neuroglobin Pathway. Int. J. Mol. Sci. 2023;24:2148. doi: 10.3390/ijms24032148. PubMed DOI PMC

Brockmueller A., Girisa S., Kunnumakkara A.B., Shakibaei M. Resveratrol Modulates Chemosensitisation to 5-FU via β1-Integrin/HIF-1α Axis in CRC Tumor Microenvironment. Int. J. Mol. Sci. 2023;24:4988. doi: 10.3390/ijms24054988. PubMed DOI PMC

Li J., Fan Y., Zhang Y., Liu Y., Yu Y., Ma M. Resveratrol Induces Autophagy and Apoptosis in Non-Small-Cell Lung Cancer Cells by Activating the NGFR-AMPK-mTOR Pathway. Nutrients. 2022;14:2413. doi: 10.3390/nu14122413. PubMed DOI PMC

Nitulescu G.M., Van De Venter M., Nitulescu G., Ungurianu A., Juzenas P., Peng Q., Olaru O.T., Grădinaru D., Tsatsakis A., Tsoukalas D., et al. The Akt pathway in oncology therapy and beyond (Review) Int. J. Oncol. 2018;53:2319–2331. doi: 10.3892/ijo.2018.4597. PubMed DOI PMC

Inoue J., Gohda J., Akiyama T., Semba K. NF-kappaB activation in development and progression of cancer. Cancer Sci. 2007;98:268–274. doi: 10.1111/j.1349-7006.2007.00389.x. PubMed DOI PMC

Xia L., Tan S., Zhou Y., Lin J., Wang H., Oyang L., Tian Y., Liu L., Su M., Wang H., et al. Role of the NFκB-signaling pathway in cancer. Onco Targets Ther. 2018;11:2063–2073. doi: 10.2147/OTT.S161109. PubMed DOI PMC

Buhrmann C., Shayan P., Goel A., Shakibaei M. Resveratrol Regulates Colorectal Cancer Cell Invasion by Modulation of Focal Adhesion Molecules. Nutrients. 2017;9:1073. doi: 10.3390/nu9101073. PubMed DOI PMC

Buhrmann C., Shayan P., Popper B., Goel A., Shakibaei M. Sirt1 Is Required for Resveratrol-Mediated Chemopreventive Effects in Colorectal Cancer Cells. Nutrients. 2016;8:145. doi: 10.3390/nu8030145. PubMed DOI PMC

Holcombe R.F., Martinez M., Planutis K., Planutiene M. Effects of a grape-supplemented diet on proliferation and Wnt signaling in the colonic mucosa are greatest for those over age 50 and with high arginine consumption. Nutr. J. 2015;14:62. doi: 10.1186/s12937-015-0050-z. PubMed DOI PMC

Geng W., Guo X., Zhang L., Ma Y., Wang L., Liu Z., Ji H., Xiong Y. Resveratrol inhibits proliferation, migration and invasion of multiple myeloma cells via NEAT1-mediated Wnt/β-catenin signaling pathway. Biomed. Pharmacother. 2018;107:484–494. doi: 10.1016/j.biopha.2018.08.003. PubMed DOI

Fu Y., Chang H., Peng X., Bai Q., Yi L., Zhou Y., Zhu J., Mi M. Resveratrol inhibits breast cancer stem-like cells and induces autophagy via suppressing Wnt/β-catenin signaling pathway. PLoS ONE. 2014;9:e102535. doi: 10.1371/journal.pone.0102535. PubMed DOI PMC

Alavi M., Farkhondeh T., Aschner M., Samarghandian S. Resveratrol mediates its anti-cancer effects by Nrf2 signaling pathway activation. Cancer Cell Int. 2021;21:579. doi: 10.1186/s12935-021-02280-5. PubMed DOI PMC

Soeur J., Eilstein J., Léreaux G., Jones C., Marrot L. Skin resistance to oxidative stress induced by resveratrol: From Nrf2 activation to GSH biosynthesis. Free Radic. Biol. Med. 2015;78:213–223. doi: 10.1016/j.freeradbiomed.2014.10.510. PubMed DOI

Zhang Y., Zhu X.B., Zhao J.C., Gao X.F., Zhang X.N., Hou K. Neuroprotective effect of resveratrol against radiation after surgically induced brain injury by reducing oxidative stress, inflammation, and apoptosis through NRf2/HO-1/NF-κB signaling pathway. J. Biochem. Mol. Toxicol. 2020;34:e22600. doi: 10.1002/jbt.22600. PubMed DOI

Talib W.H., Alsayed A.R., Farhan F., Al Kury L.T. Resveratrol and Tumor Microenvironment: Mechanistic Basis and Therapeutic Targets. Molecules. 2020;25:4282. doi: 10.3390/molecules25184282. PubMed DOI PMC

Choi C.Y., Lim S.C., Lee T.B., Han S.I. Molecular Basis of Resveratrol-Induced Resensitization of Acquired Drug-Resistant Cancer Cells. Nutrients. 2022;14:699. doi: 10.3390/nu14030699. PubMed DOI PMC

Meng J., Liu G.J., Song J.Y., Chen L., Wang A.H., Gao X.X., Wang Z.J. Preliminary results indicate resveratrol affects proliferation and apoptosis of leukemia cells by regulating PTEN/PI3K/AKT pathway. Eur. Rev. Med. Pharmacol. Sci. 2019;23:4285–4292. doi: 10.26355/eurrev_201905_17933. PubMed DOI

Almatroodi S.A., Alsahli M.A., Aljohani A.S.M., Alhumaydhi F.A., Babiker A.Y., Khan A.A., Rahmani A.H. Potential Therapeutic Targets of Resveratrol, a Plant Polyphenol, and Its Role in the Therapy of Various Types of Cancer. Molecules. 2022;27:2665. doi: 10.3390/molecules27092665. PubMed DOI PMC

Maleki Dana P., Sadoughi F., Asemi Z., Yousefi B. The role of polyphenols in overcoming cancer drug resistance: A comprehensive review. Cell Mol. Biol. Lett. 2022;27:1. doi: 10.1186/s11658-021-00301-9. PubMed DOI PMC

Xie C., Liang C., Wang R., Yi K., Zhou X., Li X., Chen Y., Miao D., Zhong C., Zhu J. Resveratrol suppresses lung cancer by targeting cancer stem-like cells and regulating tumor microenvironment. J. Nutr. Biochem. 2023;112:109211. doi: 10.1016/j.jnutbio.2022.109211. PubMed DOI

Pradhan R., Paul S., Das B., Sinha S., Dash S.R., Mandal M., Kundu C.N. Resveratrol nanoparticle attenuates metastasis and angiogenesis by deregulating inflammatory cytokines through inhibition of CAFs in oral cancer by CXCL-12/IL-6-dependent pathway. J. Nutr. Biochem. 2023;113:109257. doi: 10.1016/j.jnutbio.2022.109257. PubMed DOI

Rezakhani L., Salmani S., Dashtaki M.E., Ghasemi S. Resveratrol: Targeting cancer stem cells and ncRNAs to overcome cancer drug resistance. Curr. Mol. Med. 2023;27:1. doi: 10.2174/1566524023666230817102114. PubMed DOI

Subbaramaiah K., Dannenberg A.J. Resveratrol inhibits the expression of cyclooxygenase-2 in mammary epithelial cells. Adv. Exp. Med. Biol. 2001;492:147–157. doi: 10.1007/978-1-4615-1283-7_12. PubMed DOI

Annaji M., Poudel I., Boddu S.H.S., Arnold R.D., Tiwari A.K., Babu R.J. Resveratrol-loaded nanomedicines for cancer applications. Cancer Rep. 2021;4:e1353. doi: 10.1002/cnr2.1353. PubMed DOI PMC

Wu J., Wang Y., Yang H., Liu X., Lu Z. Preparation and biological activity studies of resveratrol loaded ionically cross-linked chitosan-TPP nanoparticles. Carbohydr. Polym. 2017;175:170–177. doi: 10.1016/j.carbpol.2017.07.058. PubMed DOI

Balanč B., Trifković K., Đorđević V., Marković S., Pjanović R., Nedović V., Bugarski B. Novel resveratrol delivery systems based on alginate-sucrose and alginate-chitosan microbeads containing liposomes. Food Hydrocoll. 2016;61:832–842. doi: 10.1016/j.foodhyd.2016.07.005. DOI

Park S., Cha S.-H., Cho I., Park S., Park Y., Cho S., Park Y. Antibacterial nanocarriers of resveratrol with gold and silver nanoparticles. Mater. Sci. Eng. C. 2016;58:1160–1169. doi: 10.1016/j.msec.2015.09.068. PubMed DOI

Juère E., Florek J., Bouchoucha M., Jambhrunkar S., Wong K.Y., Popat A., Kleitz F. In Vitro Dissolution, Cellular Membrane Permeability, and Anti-Inflammatory Response of Resveratrol-Encapsulated Mesoporous Silica Nanoparticles. Mol. Pharm. 2017;14:4431–4441. doi: 10.1021/acs.molpharmaceut.7b00529. PubMed DOI

Narayanan N.K., Nargi D., Randolph C., Narayanan B.A. Liposome encapsulation of curcumin and resveratrol in combination reduces prostate cancer incidence in PTEN knockout mice. Int. J. Cancer. 2009;125:1–8. doi: 10.1002/ijc.24336. PubMed DOI

Caddeo C., Nacher A., Vassallo A., Armentano M.F., Pons R., Fernàndez-Busquets X., Carbone C., Valenti D., Fadda A.M., Manconi M. Effect of quercetin and resveratrol co-incorporated in liposomes against inflammatory/oxidative response associated with skin cancer. Int. J. Pharm. 2016;513:153–163. doi: 10.1016/j.ijpharm.2016.09.014. PubMed DOI

Meng J., Guo F., Xu H., Liang W., Wang C., Yang X.D. Combination Therapy using Co-encapsulated Resveratrol and Paclitaxel in Liposomes for Drug Resistance Reversal in Breast Cancer Cells in vivo. Sci. Rep. 2016;6:22390. doi: 10.1038/srep22390. PubMed DOI PMC

Singh S.K., Lillard J.W., Jr., Singh R. Reversal of drug resistance by planetary ball milled (PBM) nanoparticle loaded with resveratrol and docetaxel in prostate cancer. Cancer Lett. 2018;427:49–62. doi: 10.1016/j.canlet.2018.04.017. PubMed DOI PMC

Cosco D., Paolino D., Maiuolo J., Marzio L.D., Carafa M., Ventura C.A., Fresta M. Ultradeformable liposomes as multidrug carrier of resveratrol and 5-fluorouracil for their topical delivery. Int. J. Pharm. 2015;489:1–10. doi: 10.1016/j.ijpharm.2015.04.056. PubMed DOI

Chen Z., Farag M.A., Zhong Z., Zhang C., Yang Y., Wang S., Wang Y. Multifaceted role of phyto-derived polyphenols in nanodrug delivery systems. Adv. Drug Deliv. Rev. 2021;176:113870. doi: 10.1016/j.addr.2021.113870. PubMed DOI

Al-Attar T., Madihally S.V. Targeted cancer treatment using a combination of siRNA-liposomes and resveratrol-electrospun fibers in co-cultures. Int. J. Pharm. 2019;569:118599. doi: 10.1016/j.ijpharm.2019.118599. PubMed DOI

Al-Abd A.M., Mahmoud A.M., El-Sherbiny G.A., El-Moselhy M.A., Nofal S.M., El-Latif H.A., El-Eraky W.I., El-Shemy H.A. Resveratrol enhances the cytotoxic profile of docetaxel and doxorubicin in solid tumour cell lines in vitro. Cell Prolif. 2011;44:591–601. doi: 10.1111/j.1365-2184.2011.00783.x. PubMed DOI PMC

Wu S.L., Sun Z.J., Yu L., Meng K.W., Qin X.L., Pan C.E. Effect of resveratrol and in combination with 5-FU on murine liver cancer. World J. Gastroenterol. 2004;10:3048–3052. doi: 10.3748/wjg.v10.i20.3048. PubMed DOI PMC

Liang M., Guo M., Saw P.E., Yao Y. Fully Natural Lecithin Encapsulated Nano-Resveratrol for Anti-Cancer Therapy. Int. J. Nanomed. 2022;17:2069–2078. doi: 10.2147/IJN.S362418. PubMed DOI PMC

Sarfraz M., Arafat M., Zaidi S.H.H., Eltaib L., Siddique M.I., Kamal M., Ali A., Asdaq S.M.B., Khan A., Aaghaz S., et al. Resveratrol-Laden Nano-Systems in the Cancer Environment: Views and Reviews. Cancers. 2023;15:4499. doi: 10.3390/cancers15184499. PubMed DOI PMC

Morelli A.M., Ravera S., Panfoli I. The aerobic mitochondrial ATP synthesis from a comprehensive point of view. Open Biol. 2020;10:200224. doi: 10.1098/rsob.200224. PubMed DOI PMC

Ryan M.T., Hoogenraad N.J. Mitochondrial-nuclear communications. Annu. Rev. Biochem. 2007;76:701–722. doi: 10.1146/annurev.biochem.76.052305.091720. PubMed DOI

Naoi M., Wu Y., Shamoto-Nagai M., Maruyama W. Mitochondria in Neuroprotection by Phytochemicals: Bioactive Polyphenols Modulate Mitochondrial Apoptosis System, Function and Structure. Int. J. Mol. Sci. 2019;20:2451. doi: 10.3390/ijms20102451. PubMed DOI PMC

Marinho H.S., Real C., Cyrne L., Soares H., Antunes F. Hydrogen peroxide sensing, signaling and regulation of transcription factors. Redox Biol. 2014;2:535–562. doi: 10.1016/j.redox.2014.02.006. PubMed DOI PMC

Turrens J.F. Mitochondrial formation of reactive oxygen species. J. Physiol. 2003;552:335–344. doi: 10.1113/jphysiol.2003.049478. PubMed DOI PMC

Ma Q. Role of nrf2 in oxidative stress and toxicity. Annu. Rev. Pharmacol. Toxicol. 2013;53:401–426. doi: 10.1146/annurev-pharmtox-011112-140320. PubMed DOI PMC

Nguyen P., Leray V., Diez M., Serisier S., Le Bloc’h J., Siliart B., Dumon H. Liver lipid metabolism. J. Anim. Physiol. Anim. Nutr. 2008;92:272–283. doi: 10.1111/j.1439-0396.2007.00752.x. PubMed DOI

Deponte M. Glutathione catalysis and the reaction mechanisms of glutathione-dependent enzymes. Biochim. Biophys. Acta. 2013;1830:3217–3266. doi: 10.1016/j.bbagen.2012.09.018. PubMed DOI

Taylor R.W., Turnbull D.M. Mitochondrial DNA mutations in human disease. Nat. Rev. Genet. 2005;6:389–402. doi: 10.1038/nrg1606. PubMed DOI PMC

Weinberg F., Ramnath N., Nagrath D. Reactive Oxygen Species in the Tumor Microenvironment: An Overview. Cancers. 2019;11:1191. doi: 10.3390/cancers11081191. PubMed DOI PMC

Sies H., Berndt C., Jones D.P. Oxidative Stress. Annu. Rev. Biochem. 2017;86:715–748. doi: 10.1146/annurev-biochem-061516-045037. PubMed DOI

Carlsen L., Zhang S., Tian X., De La Cruz A., George A., Arnoff T.E., El-Deiry W.S. The role of p53 in anti-tumor immunity and response to immunotherapy. Front. Mol. Biosci. 2023;10:1148389. doi: 10.3389/fmolb.2023.1148389. PubMed DOI PMC

Łasut-Szyszka B., Rusin M. The Wheel of p53 Helps to Drive the Immune System. Int. J. Mol. Sci. 2023;24:7645. doi: 10.3390/ijms24087645. PubMed DOI PMC

Lebelo M.T., Joubert A.M., Visagie M.H. Warburg effect and its role in tumourigenesis. Arch. Pharmacal Res. 2019;42:833–847. doi: 10.1007/s12272-019-01185-2. PubMed DOI

Zaidi N., Lupien L., Kuemmerle N.B., Kinlaw W.B., Swinnen J.V., Smans K. Lipogenesis and lipolysis: The pathways exploited by the cancer cells to acquire fatty acids. Progress Lipid Res. 2013;52:585–589. doi: 10.1016/j.plipres.2013.08.005. PubMed DOI PMC

Vegliante R., Di Leo L., Ciccarone F., Ciriolo M.R. Hints on ATGL implications in cancer: Beyond bioenergetic clues. Cell Death Dis. 2018;9:316. doi: 10.1038/s41419-018-0345-z. PubMed DOI PMC

Chiche J., Brahimi-Horn M.C., Pouyssegur J. Tumour hypoxia induces a metabolic shift causing acidosis: A common feature in cancer. J. Cell. Mol. Med. 2010;14:771–794. doi: 10.1111/j.1582-4934.2009.00994.x. PubMed DOI PMC

Lee N., Kim D. Cancer Metabolism: Fueling More than Just Growth. Mol. Cells. 2016;39:847–854. doi: 10.14348/molcells.2016.0310. PubMed DOI PMC

Lu S., Wang Y. Nonmetabolic functions of metabolic enzymes in cancer development. Cancer Commun. 2018;38:63. doi: 10.1186/s40880-018-0336-6. PubMed DOI PMC

Seyfried T.N., Flores R.E., Poff A.M., D’Agostino D.P. Cancer as a metabolic disease: Implications for novel therapeutics. Carcinogenesis. 2014;35:515–527. doi: 10.1093/carcin/bgt480. PubMed DOI PMC

Zhong H., Xiao M., Zarkovic K., Zhu M., Sa R., Lu J., Tao Y., Chen Q., Xia L., Cheng S., et al. Mitochondrial control of apoptosis through modulation of cardiolipin oxidation in hepatocellular carcinoma: A novel link between oxidative stress and cancer. Free Radic. Biol. Med. 2017;102:67–76. doi: 10.1016/j.freeradbiomed.2016.10.494. PubMed DOI

Kiebish M.A., Han X., Cheng H., Chuang J.H., Seyfried T.N. Cardiolipin and electron transport chain abnormalities in mouse brain tumor mitochondria: Lipidomic evidence supporting the Warburg theory of cancer. J. Lipid Res. 2008;49:2545–2556. doi: 10.1194/jlr.M800319-JLR200. PubMed DOI PMC

Sun D.P., Chen J.T., Yang S.T., Chen T.H., Liu S.H., Chen R.M. Resveratrol triggers the ER stress-mediated intrinsic apoptosis of neuroblastoma cells coupled with suppression of Rho-dependent migration and consequently prolongs mouse survival. Chem. Biol. Interact. 2023;382:110645. doi: 10.1016/j.cbi.2023.110645. PubMed DOI

Fu Y., Ye Y., Zhu G., Xu Y., Sun J., Wu H., Feng F., Wen Z., Jiang S., Li Y., et al. Resveratrol induces human colorectal cancer cell apoptosis by activating the mitochondrial pathway via increasing reactive oxygen species. Mol. Med. Rep. 2021;23:170. doi: 10.3892/mmr.2020.11809. PubMed DOI

Takashina M., Inoue S., Tomihara K., Tomita K., Hattori K., Zhao Q.L., Suzuki T., Noguchi M., Ohashi W., Hattori Y. Different effect of resveratrol to induction of apoptosis depending on the type of human cancer cells. Int. J. Oncol. 2017;50:787–797. doi: 10.3892/ijo.2017.3859. PubMed DOI

Fouad M.A., Agha A.M., Merzabani M.M., Shouman S.A. Resveratrol inhibits proliferation, angiogenesis and induces apoptosis in colon cancer cells: Calorie restriction is the force to the cytotoxicity. Hum. Exp. Toxicol. 2013;32:1067–1080. doi: 10.1177/0960327113475679. PubMed DOI

Jung K.H., Lee J.H., Thien Quach C.H., Paik J.Y., Oh H., Park J.W., Lee E.J., Moon S.H., Lee K.H. Resveratrol suppresses cancer cell glucose uptake by targeting reactive oxygen species-mediated hypoxia-inducible factor-1α activation. J. Nucl. Med. 2013;54:2161–2167. doi: 10.2967/jnumed.112.115436. PubMed DOI

Li W., Ma X., Li N., Liu H., Dong Q., Zhang J., Yang C., Liu Y., Liang Q., Zhang S., et al. Resveratrol inhibits Hexokinases II mediated glycolysis in non-small cell lung cancer via targeting Akt signaling pathway. Exp. Cell Res. 2016;349:320–327. doi: 10.1016/j.yexcr.2016.11.002. PubMed DOI

Faber A.C., Dufort F.J., Blair D., Wagner D., Roberts M.F., Chiles T.C. Inhibition of phosphatidylinositol 3-kinase-mediated glucose metabolism coincides with resveratrol-induced cell cycle arrest in human diffuse large B-cell lymphomas. Biochem. Pharmacol. 2006;72:1246–1256. doi: 10.1016/j.bcp.2006.08.009. PubMed DOI

Kueck A., Opipari A.W., Jr., Griffith K.A., Tan L., Choi M., Huang J., Wahl H., Liu J.R. Resveratrol inhibits glucose metabolism in human ovarian cancer cells. Gynecol. Oncol. 2007;107:450–457. doi: 10.1016/j.ygyno.2007.07.065. PubMed DOI

Zhang Y., Yuan F., Li P., Gu J., Han J., Ni Z., Liu F. Resveratrol inhibits HeLa cell proliferation by regulating mitochondrial function. Ecotoxicol. Environ. Saf. 2022;241:113788. doi: 10.1016/j.ecoenv.2022.113788. PubMed DOI

Rodríguez-Enríquez S., Pacheco-Velázquez S.C., Marín-Hernández Á., Gallardo-Pérez J.C., Robledo-Cadena D.X., Hernández-Reséndiz I., García-García J.D., Belmont-Díaz J., López-Marure R., Hernández-Esquivel L., et al. Resveratrol inhibits cancer cell proliferation by impairing oxidative phosphorylation and inducing oxidative stress. Toxicol. Appl. Pharmacol. 2019;370:65–77. doi: 10.1016/j.taap.2019.03.008. PubMed DOI

Madreiter-Sokolowski C.T., Gottschalk B., Parichatikanond W., Eroglu E., Klec C., Waldeck-Weiermair M., Malli R., Graier W.F. Resveratrol Specifically Kills Cancer Cells by a Devastating Increase in the Ca2+ Coupling between the Greatly Tethered Endoplasmic Reticulum and Mitochondria. Cell. Physiol. Biochem. 2016;39:1404–1420. doi: 10.1159/000447844. PubMed DOI PMC

Devi R.V., Raj D., Doble M. Lockdown of mitochondrial Ca2+ extrusion and subsequent resveratrol treatment kill HeLa cells by Ca2+ overload. Int. J. Biochem. Cell Biol. 2021;139:106071. doi: 10.1016/j.biocel.2021.106071. PubMed DOI

Fonseca J., Moradi F., Maddalena L.A., Ferreira-Tollstadius B., Selim S., Stuart J.A. Resveratrol integrates metabolic and growth effects in PC3 prostate cancer cells-involvement of prolyl hydroxylase and hypoxia inducible factor-1. Oncol. Lett. 2019;17:697–705. doi: 10.3892/ol.2018.9526. PubMed DOI PMC

Ashrafizadeh M., Taeb S., Haghi-Aminjan H., Afrashi S., Moloudi K., Musa A.E., Najafi M., Farhood B. Resveratrol as an Enhancer of Apoptosis in Cancer: A Mechanistic Review. Anticancer Agents Med. Chem. 2021;21:2327–2336. doi: 10.2174/1871520620666201020160348. PubMed DOI

de Oliveira M.R., Nabavi S.F., Manayi A., Daglia M., Hajheydari Z., Nabavi S.M. Resveratrol and the mitochondria: From triggering the intrinsic apoptotic pathway to inducing mitochondrial biogenesis, a mechanistic view. Biochim. Biophys. Acta. 2016;1860:727–745. doi: 10.1016/j.bbagen.2016.01.017. PubMed DOI

Brockmueller A., Buhrmann C., Shayan P., Shakibaei M. Resveratrol induces apoptosis by modulating the reciprocal crosstalk between p53 and Sirt-1 in the CRC tumor microenvironment. Front. Immunol. 2023;14:1225530. doi: 10.3389/fimmu.2023.1225530. PubMed DOI PMC

Liberti M.V., Locasale J.W. The Warburg Effect: How Does it Benefit Cancer Cells? Trends Biochem. Sci. 2016;41:211–218. doi: 10.1016/j.tibs.2015.12.001. PubMed DOI PMC

Brockmueller A., Sameri S., Liskova A., Zhai K., Varghese E., Samuel S.M., Büsselberg D., Kubatka P., Shakibaei M. Resveratrol’s Anti-Cancer Effects through the Modulation of Tumor Glucose Metabolism. Cancers. 2021;13:188. doi: 10.3390/cancers13020188. PubMed DOI PMC

Jung K.H., Lee J.H., Park J.W., Quach C.H.T., Moon S.H., Cho Y.S., Lee K.H. Resveratrol-loaded polymeric nanoparticles suppress glucose metabolism and tumor growth in vitro and in vivo. Int. J. Pharm. 2015;478:251–257. doi: 10.1016/j.ijpharm.2014.11.049. PubMed DOI

Li Y., Zhu W., Li J., Liu M., Wei M. Resveratrol suppresses the STAT3 signaling pathway and inhibits proliferation of high glucose-exposed HepG2 cells partly through SIRT1. Oncol. Rep. 2013;30:2820–2828. doi: 10.3892/or.2013.2748. PubMed DOI

Scarlatti F., Sala G., Somenzi G., Signorelli P., Sacchi N., Ghidoni R. Resveratrol induces growth inhibition and apoptosis in metastatic breast cancer cells via de novo ceramide signaling. FASEB J. 2003;17:2339–2341. doi: 10.1096/fj.03-0292fje. PubMed DOI

Srivani G., Behera S.K., Dariya B., Aliya S., Alam A., Nagaraju G.P. Resveratrol binds and inhibits transcription factor HIF-1α in pancreatic cancer. Exp. Cell Res. 2020;394:112126. doi: 10.1016/j.yexcr.2020.112126. PubMed DOI

Zheng J., Ramirez V.D. Inhibition of mitochondrial proton F0F1-ATPase/ATP synthase by polyphenolic phytochemicals. Br. J. Pharmacol. 2000;130:1115–1123. doi: 10.1038/sj.bjp.0703397. PubMed DOI PMC

Madreiter-Sokolowski C.T., Sokolowski A.A., Graier W.F. Dosis Facit Sanitatem-Concentration-Dependent Effects of Resveratrol on Mitochondria. Nutrients. 2017;9:1117. doi: 10.3390/nu9101117. PubMed DOI PMC

Ma X., Tian X., Huang X., Yan F., Qiao D. Resveratrol-induced mitochondrial dysfunction and apoptosis are associated with Ca2+ and mCICR-mediated MPT activation in HepG2 cells. Mol. Cell. Biochem. 2007;302:99–109. doi: 10.1007/s11010-007-9431-8. PubMed DOI

Bouyahya A., Omari N.E., Bakrim S., Hachlafi N.E., Balahbib A., Wilairatana P., Mubarak M.S. Advances in Dietary Phenolic Compounds to Improve Chemosensitivity of Anticancer Drugs. Cancers. 2022;14:4573. doi: 10.3390/cancers14194573. PubMed DOI PMC

Biasutto L., Mattarei A., Sassi N., Azzolini M., Romio M., Paradisi C., Zoratti M. Improving the efficacy of plant polyphenols. Anticancer Agents Med. Chem. 2014;14:1332–1342. doi: 10.2174/1871520614666140627150054. PubMed DOI

Bhaskara V.K., Mittal B., Mysorekar V.V., Amaresh N., Simal-Gandara J. Resveratrol, cancer and cancer stem cells: A review on past to future. Curr. Res. Food Sci. 2020;3:284–295. doi: 10.1016/j.crfs.2020.10.004. PubMed DOI PMC

Zhang L., Wen X., Li M., Li S., Zhao H. Targeting cancer stem cells and signaling pathways by resveratrol and pterostilbene. Biofactors. 2018;44:61–68. doi: 10.1002/biof.1398. PubMed DOI

Koh Y.C., Ho C.T., Pan M.H. The Role of Mitochondria in Phytochemically Mediated Disease Amelioration. J. Agric. Food Chem. 2023;71:6775–6788. doi: 10.1021/acs.jafc.2c08921. PubMed DOI

Kong F., Xie C., Zhao X., Zong X., Bu L., Zhang B., Tian H., Ma S. Resveratrol regulates PINK1/Parkin-mediated mitophagy via the lncRNA ZFAS1-miR-150-5p-PINK1 axis, and enhances the antitumor activity of paclitaxel against non-small cell lung cancer. Toxicol. Res. 2022;11:962–974. doi: 10.1093/toxres/tfac072. PubMed DOI PMC

Zheng J., Wei S., Xiao T., Li G. LC3B/p62-mediated mitophagy protects A549 cells from resveratrol-induced apoptosis. Life Sci. 2021;271:119139. doi: 10.1016/j.lfs.2021.119139. PubMed DOI

Yang X., Jiang T., Wang Y., Guo L. The Role and Mechanism of SIRT1 in Resveratrol-regulated Osteoblast Autophagy in Osteoporosis Rats. Sci. Rep. 2019;9:18424. doi: 10.1038/s41598-019-44766-3. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace