• This record comes from PubMed

Natural Substances vs. Approved Drugs in the Treatment of Main Cardiovascular Disorders-Is There a Breakthrough?

. 2023 Dec 07 ; 12 (12) : . [epub] 20231207

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article, Review

Cardiovascular diseases (CVDs) are a group of diseases with a very high rate of morbidity and mortality. The clinical presentation of CVDs can vary from asymptomatic to classic symptoms such as chest pain in patients with myocardial infarction. Current therapeutics for CVDs mainly target disease symptoms. The most common CVDs are coronary artery disease, acute myocardial infarction, atrial fibrillation, chronic heart failure, arterial hypertension, and valvular heart disease. In their treatment, conventional therapies and pharmacological therapies are used. However, the use of herbal medicines in the therapy of these diseases has also been reported in the literature, resulting in a need for critical evaluation of advances related to their use. Therefore, we carried out a narrative review of pharmacological and herbal therapeutic effects reported for these diseases. Data for this comprehensive review were obtained from electronic databases such as MedLine, PubMed, Web of Science, Scopus, and Google Scholar. Conventional therapy requires an individual approach to the patients, as when patients do not respond well, this often causes allergic effects or various other unwanted effects. Nowadays, medicinal plants as therapeutics are frequently used in different parts of the world. Preclinical/clinical pharmacology studies have confirmed that some bioactive compounds may have beneficial therapeutic effects in some common CVDs. The natural products analyzed in this review are promising phytochemicals for adjuvant and complementary drug candidates in CVDs pharmacotherapy, and some of them have already been approved by the FDA. There are insufficient clinical studies to compare the effectiveness of natural products compared to approved therapeutics for the treatment of CVDs. Further long-term studies are needed to accelerate the potential of using natural products for these diseases. Despite this undoubted beneficence on CVDs, there are no strong breakthroughs supporting the implementation of natural products in clinical practice. Nevertheless, they are promising agents in the supplementation and co-therapy of CVDs.

See more in PubMed

Olvera Lopez E., Ballard B.D., Jan A. StatPearls. StatPearls Publishing LLC.; Treasure Island, FL, USA: 2023. Cardiovascular Disease. PubMed

Organization., W.H. [(accessed on 8 October 2023)]. Available online: https://www.who.int/news-room/fact-sheets/detail/hypertension.

Willeit J., Kiechl S. Biology of arterial atheroma. Cerebrovasc. Dis. 2000;10((Suppl. S5)):1–8. doi: 10.1159/000047599. PubMed DOI

Roth G.A., Mensah G.A., Johnson C.O., Addolorato G., Ammirati E., Baddour L.M., Barengo N.C., Beaton A.Z., Benjamin E.J., Benziger C.P., et al. Global Burden of Cardiovascular Diseases and Risk Factors, 1990–2019: Update From the GBD 2019 Study. J. Am. Coll. Cardiol. 2020;76:2982–3021. doi: 10.1016/j.jacc.2020.11.010. PubMed DOI PMC

Centers for Disease Control and Prevention . CDC Protects and Prepares Communities. Department of Health & Human Services, CDC; Atlanta, GA, USA: 2020.

Bowman L., Weidinger F., Albert M.A., Fry E.T.A., Pinto F.J., Clinical Trial Expert Group and ESC Patient Forum Randomized Trials Fit for the 21st Century: A Joint Opinion From the European Society of Cardiology, American Heart Association, American College of Cardiology, and the World Heart Federation. Circulation. 2023;147:925–929. doi: 10.1161/CIRCULATIONAHA.122.063378. PubMed DOI

Frak W., Wojtasinska A., Lisinska W., Mlynarska E., Franczyk B., Rysz J. Pathophysiology of Cardiovascular Diseases: New Insights into Molecular Mechanisms of Atherosclerosis, Arterial Hypertension, and Coronary Artery Disease. Biomedicines. 2022;10:1938. doi: 10.3390/biomedicines10081938. PubMed DOI PMC

Verma N., Rastogi S., Chia Y.C., Siddique S., Turana Y., Cheng H.M., Sogunuru G.P., Tay J.C., Teo B.W., Wang T.D., et al. Non-pharmacological management of hypertension. J. Clin. Hypertens. 2021;23:1275–1283. doi: 10.1111/jch.14236. PubMed DOI PMC

Vidal-Petiot E. Thresholds for Hypertension Definition, Treatment Initiation, and Treatment Targets: Recent Guidelines at a Glance. Circulation. 2022;146:805–807. doi: 10.1161/CIRCULATIONAHA.121.055177. PubMed DOI

Schirone L., Forte M., Palmerio S., Yee D., Nocella C., Angelini F., Pagano F., Schiavon S., Bordin A., Carrizzo A., et al. A Review of the Molecular Mechanisms Underlying the Development and Progression of Cardiac Remodeling. Oxid. Med. Cell. Longev. 2017;2017:3920195. doi: 10.1155/2017/3920195. PubMed DOI PMC

Lu L., Liu M., Sun R., Zheng Y., Zhang P. Myocardial Infarction: Symptoms and Treatments. Cell Biochem. Biophys. 2015;72:865–867. doi: 10.1007/s12013-015-0553-4. PubMed DOI

Salari N., Morddarvanjoghi F., Abdolmaleki A., Rasoulpoor S., Khaleghi A.A., Hezarkhani L.A., Shohaimi S., Mohammadi M. The global prevalence of myocardial infarction: A systematic review and meta-analysis. BMC Cardiovasc. Disord. 2023;23:206. doi: 10.1186/s12872-023-03231-w. PubMed DOI PMC

Ferrucci L., Fabbri E. Inflammageing: Chronic inflammation in ageing, cardiovascular disease, and frailty. Nat. Rev. Cardiol. 2018;15:505–522. doi: 10.1038/s41569-018-0064-2. PubMed DOI PMC

Dikalova A., Dikalov S. Response by Dikalova and Dikalov to Letter Regarding Article, “Mitochondrial Deacetylase Sirt3 Reduces Vascular Dysfunction and Hypertension While Sirt3 Depletion in Essential Hypertension Is Linked to Vascular Inflammation and Oxidative Stress”. Circ. Res. 2020;126:e33–e34. doi: 10.1161/CIRCRESAHA.120.316763. PubMed DOI PMC

Zhao M., Wang Y., Li L., Liu S., Wang C., Yuan Y., Yang G., Chen Y., Cheng J., Lu Y., et al. Mitochondrial ROS promote mitochondrial dysfunction and inflammation in ischemic acute kidney injury by disrupting TFAM-mediated mtDNA maintenance. Theranostics. 2021;11:1845–1863. doi: 10.7150/thno.50905. PubMed DOI PMC

Sauer F., Riou M., Charles A.L., Meyer A., Andres E., Geny B., Talha S. Pathophysiology of Heart Failure: A Role for Peripheral Blood Mononuclear Cells Mitochondrial Dysfunction? J. Clin. Med. 2022;11:741. doi: 10.3390/jcm11030741. PubMed DOI PMC

Shaito A., Aramouni K., Assaf R., Parenti A., Orekhov A., Yazbi A.E., Pintus G., Eid A.H. Oxidative Stress-Induced Endothelial Dysfunction in Cardiovascular Diseases. Front. Biosci. 2022;27:105. doi: 10.31083/j.fbl2703105. PubMed DOI

McGill H.C., Jr., McMahan C.A., Zieske A.W., Tracy R.E., Malcom G.T., Herderick E.E., Strong J.P. Association of Coronary Heart Disease Risk Factors with microscopic qualities of coronary atherosclerosis in youth. Circulation. 2000;102:374–379. doi: 10.1161/01.CIR.102.4.374. PubMed DOI

Alderman M., Aiyer K.J. Uric acid: Role in cardiovascular disease and effects of losartan. Curr. Med. Res. Opin. 2004;20:369–379. doi: 10.1185/030079904125002982. PubMed DOI

Antithrombotic Trialists C., Baigent C., Blackwell L., Collins R., Emberson J., Godwin J., Peto R., Buring J., Hennekens C., Kearney P., et al. Aspirin in the primary and secondary prevention of vascular disease: Collaborative meta-analysis of individual participant data from randomised trials. Lancet. 2009;373:1849–1860. PubMed PMC

Qian X., Deng H., Yuan J., Hu J., Dai L., Jiang T. Evaluating the efficacy and safety of percutaneous coronary intervention (PCI) versus the optimal drug therapy (ODT) for stable coronary heart disease: A systematic review and meta-analysis. J. Thorac. Dis. 2022;14:1183–1192. doi: 10.21037/jtd-22-222. PubMed DOI PMC

Cheng A., Malkin C., Briffa N.P. Antithrombotic therapy after heart valve intervention: Review of mechanisms, evidence and current guidance. Heart. 2023 doi: 10.1136/heartjnl-2022-321387. PubMed DOI

Huang S., Frangogiannis N.G. Anti-inflammatory therapies in myocardial infarction: Failures, hopes and challenges. Br. J. Pharmacol. 2018;175:1377–1400. doi: 10.1111/bph.14155. PubMed DOI PMC

Lip G.Y., Fauchier L., Freedman S.B., Van Gelder I., Natale A., Gianni C., Nattel S., Potpara T., Rienstra M., Tse H.F., et al. Atrial fibrillation. Nat. Rev. Dis. Primers. 2016;2:16016. doi: 10.1038/nrdp.2016.16. PubMed DOI

Holmes A.P., Saxena P., Kabir S.N., O’Shea C., Kuhlmann S.M., Gupta S., Fobian D., Apicella C., O’Reilly M., Syeda F., et al. Atrial resting membrane potential confers sodium current sensitivity to propafenone, flecainide and dronedarone. Heart Rhythm. 2021;18:1212–1220. doi: 10.1016/j.hrthm.2021.03.016. PubMed DOI PMC

Cay S., Kara M., Ozcan F., Ozeke O., Aksu T., Aras D., Topaloglu S. Propafenone use in coronary artery disease patients undergoing atrial fibrillation ablation. J. Interv. Card. Electrophysiol. 2022;65:381–389. doi: 10.1007/s10840-022-01186-0. PubMed DOI

Faragli A., Tano G.D., Carlini C., Nassiacos D., Gori M., Confortola G., Lo Muzio F.P., Rapis K., Abawi D., Post H., et al. In-hospital Heart Rate Reduction With Beta Blockers and Ivabradine Early After Recovery in Patients With Acute Decompensated Heart Failure Reduces Short-Term Mortality and Rehospitalization. Front. Cardiovasc. Med. 2021;8:665202. doi: 10.3389/fcvm.2021.665202. PubMed DOI PMC

Kim R., Suresh K., Rosenberg M.A., Tan M.S., Malone D.C., Allen L.A., Kao D.P., Anderson H.D., Tiwari P., Trinkley K.E. A machine learning evaluation of patient characteristics associated with prescribing of guideline-directed medical therapy for heart failure. Front. Cardiovasc. Med. 2023;10:1169574. doi: 10.3389/fcvm.2023.1169574. PubMed DOI PMC

Bertoluci C., Foppa M., Santos A.B.S., Fuchs S.C., Fuchs F.D. Diuretics are Similar to Losartan on Echocardiographic Target-Organ Damage in Stage I Hypertension. PREVER-Treatment Study. Arq. Bras. Cardiol. 2019;112:87–90. PubMed PMC

Benard B., Durand M., Berthoumieux S., Gauthier M., L’Archeveque H., Lamarre-Cliche M., Laskine M. The impact of beta-blockers on the central and delta systolic pressures in a real-world population with treated hypertension: A cross-sectional study. Health Sci. Rep. 2022;5:e948. doi: 10.1002/hsr2.948. PubMed DOI PMC

Faucon A.L., Fu E.L., Stengel B., Mazhar F., Evans M., Carrero J.J. A nationwide cohort study comparing the effectiveness of diuretics and calcium channel blockers on top of renin-angiotensin system inhibitors on chronic kidney disease progression and mortality. Kidney Int. 2023;104:542–551. doi: 10.1016/j.kint.2023.05.024. PubMed DOI

Nachawati D., Patel J.B. StatPearls. StatPearls Publishing LLC.; Treasure Island, FL, USA: 2023. Alpha-Blockers. PubMed

Lee S.N., Yun J.S., Ko S.H., Ahn Y.B., Yoo K.D., Her S.H., Moon D., Jung S.H., Won H.H., Kim D. Impacts of gender and lifestyle on the association between depressive symptoms and cardiovascular disease risk in the UK Biobank. Sci. Rep. 2023;13:10758. doi: 10.1038/s41598-023-37221-x. PubMed DOI PMC

Sacco R.L., Roth G.A., Reddy K.S., Arnett D.K., Bonita R., Gaziano T.A., Heidenreich P.A., Huffman M.D., Mayosi B.M., Mendis S., et al. The Heart of 25 by 25: Achieving the Goal of Reducing Global and Regional Premature Deaths From Cardiovascular Diseases and Stroke: A Modeling Study From the American Heart Association and World Heart Federation. Glob. Heart. 2016;11:251–264. doi: 10.1016/j.gheart.2016.04.002. PubMed DOI

Ambrose J.A., Singh M. Pathophysiology of coronary artery disease leading to acute coronary syndromes. F1000Prime Rep. 2015;7:8. doi: 10.12703/P7-08. PubMed DOI PMC

Disease G.B.D., Injury I., Prevalence C. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392:1789–1858. PubMed PMC

Li J.L., Zhou J.R., Tan P., Chen J. Dynamic assessment of coronary artery during different cardiac cycle in patients with coronary artery disease using coronary CT angiography. Perfusion. 2023;38:1453–1460. doi: 10.1177/02676591221114951. PubMed DOI

Knuuti J., Wijns W., Saraste A., Capodanno D., Barbato E., Funck-Brentano C., Prescott E., Storey R.F., Deaton C., Cuisset T., et al. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur. Heart J. 2020;41:407–477. doi: 10.1093/eurheartj/ehz425. PubMed DOI

Byrne R.A., Rossello X., Coughlan J.J., Barbato E., Berry C., Chieffo A., Claeys M.J., Dan G.A., Dweck M.R., Galbraith M., et al. 2023 ESC Guidelines for the management of acute coronary syndromes. Eur. Heart J. 2023;44:3720–3826. doi: 10.1093/eurheartj/ehad191. PubMed DOI

Park J., Kim S.H., Kim M., Lee J., Choi Y., Kim H., Kim T.O., Kang D.Y., Ahn J.M., Yoo J.S., et al. Impact of Optimal Medical Therapy on Long-Term Outcomes After Myocardial Revascularization for Multivessel Coronary Disease. Am. J. Cardiol. 2023;203:81–91. doi: 10.1016/j.amjcard.2023.06.083. PubMed DOI

Yoon G.S., Choi S.H., Kwon S.W., Park S.D., Woo S.I. A prospective double-blinded randomized study on drug-eluting stent implantation into nitrate-induced maximally dilated vessels in patients with coronary artery disease. Trials. 2023;24:460. doi: 10.1186/s13063-023-07497-5. PubMed DOI PMC

Lippi G., Sanchis-Gomar F., Cervellin G. Global epidemiology of atrial fibrillation: An increasing epidemic and public health challenge. Int. J. Stroke. 2021;16:217–221. doi: 10.1177/1747493019897870. PubMed DOI

Burke F.M. Red yeast rice for the treatment of dyslipidemia. Curr. Atheroscler. Rep. 2015;17:495. doi: 10.1007/s11883-015-0495-8. PubMed DOI

Gerards M.C., Terlou R.J., Yu H., Koks C.H., Gerdes V.E. Traditional Chinese lipid-lowering agent red yeast rice results in significant LDL reduction but safety is uncertain—A systematic review and meta-analysis. Atherosclerosis. 2015;240:415–423. doi: 10.1016/j.atherosclerosis.2015.04.004. PubMed DOI

Li P., Wang Q., Chen K., Zou S., Shu S., Lu C., Wang S., Jiang Y., Fan C., Luo Y. Red Yeast Rice for Hyperlipidemia: A Meta-Analysis of 15 High-Quality Randomized Controlled Trials. Front. Pharmacol. 2021;12:819482. doi: 10.3389/fphar.2021.819482. PubMed DOI PMC

Liu J., Zeng F.F., Liu Z.M., Zhang C.X., Ling W.H., Chen Y.M. Effects of blood triglycerides on cardiovascular and all-cause mortality: A systematic review and meta-analysis of 61 prospective studies. Lipids Health Dis. 2013;12:159. doi: 10.1186/1476-511X-12-159. PubMed DOI PMC

Zhao S., Wang Y., Mu Y., Yu B., Ye P., Yan X., Li Z., Wei Y., Ambegaonakr B.M., Hu D., et al. Prevalence of dyslipidaemia in patients treated with lipid-lowering agents in China: Results of the DYSlipidemia International Study (DYSIS) Atherosclerosis. 2014;235:463–469. doi: 10.1016/j.atherosclerosis.2014.05.916. PubMed DOI

Zhu L.Y., Wen X.Y., Xiang Q.Y., Guo L.L., Xu J., Zhao S.P., Liu L. Comparison of the Reductions in LDL-C and Non-HDL-C Induced by the Red Yeast Rice Extract Xuezhikang between Fasting and Non-fasting States in Patients with Coronary Heart Disease. Front. Cardiovasc. Med. 2021;8:674446. doi: 10.3389/fcvm.2021.674446. PubMed DOI PMC

Shang Q., Liu Z., Chen K., Xu H., Liu J. A systematic review of xuezhikang, an extract from red yeast rice, for coronary heart disease complicated by dyslipidemia. Evid. Based Complement. Altern. Med. 2012;2012:636547. doi: 10.1155/2012/636547. PubMed DOI PMC

Zhao S.P., Li R., Dai W., Yu B.L., Chen L.Z., Huang X.S. Xuezhikang contributes to greater triglyceride reduction than simvastatin in hypertriglyceridemia rats by up-regulating apolipoprotein A5 via the PPARalpha signaling pathway. PLoS ONE. 2017;12:e0184949. PubMed PMC

Lien C.F., Lin C.S., Shyue S.K., Hsieh P.S., Chen S.J., Lin Y.T., Chien S., Tsai M.C. Peroxisome proliferator-activated receptor delta improves the features of atherosclerotic plaque vulnerability by regulating smooth muscle cell phenotypic switching. Br. J. Pharmacol. 2023;180:2085–2101. doi: 10.1111/bph.16074. PubMed DOI

Zheng Q.N., Wang J., Zhou H.B., Niu S.F., Liu Q.L., Yang Z.J., Wang H., Zhao Y.S., Shi S.L. Effectiveness of Amygdalus mongolica oil in hyperlipidemic rats and underlying antioxidant processes. J. Toxicol. Environ. Health A. 2017;80:1193–1198. doi: 10.1080/15287394.2017.1367124. PubMed DOI

Micek A., Godos J., Del Rio D., Galvano F., Grosso G. Dietary Flavonoids and Cardiovascular Disease: A Comprehensive Dose-Response Meta-Analysis. Mol. Nutr. Food Res. 2021;65:e2001019. doi: 10.1002/mnfr.202001019. PubMed DOI

Elansary H.O., Szopa A., Kubica P., Ekiert H., Mattar M.A., Al-Yafrasi M.A., El-Ansary D.O., El-Abedin T.K.Z., Yessoufou K. Polyphenol Profile and Pharmaceutical Potential of Quercus spp. Bark Extracts. Plants. 2019;8:486. doi: 10.3390/plants8110486. PubMed DOI PMC

Verdin E., Ott M. 50 years of protein acetylation: From gene regulation to epigenetics, metabolism and beyond. Nat. Rev. Mol. Cell Biol. 2015;16:258–264. doi: 10.1038/nrm3931. PubMed DOI

Hwang J.T., Choi H.K., Kim S.H., Chung S., Hur H.J., Park J.H., Chung M.Y. Hypolipidemic Activity of Quercus acutissima Fruit Ethanol Extract is Mediated by Inhibition of Acetylation. J. Med. Food. 2017;20:542–549. doi: 10.1089/jmf.2016.3912. PubMed DOI

Duan L., Liu Y., Li J., Zhang Y., Dong Y., Liu C., Wang J. Panax notoginseng Saponins Alleviate Coronary Artery Disease through Hypermethylation of the miR-194-MAPK Pathway. Front. Pharmacol. 2022;13:829416. doi: 10.3389/fphar.2022.829416. PubMed DOI PMC

Duan L., Xiong X., Hu J., Liu Y., Li J., Wang J. Panax notoginseng Saponins for Treating Coronary Artery Disease: A Functional and Mechanistic Overview. Front. Pharmacol. 2017;8:702. doi: 10.3389/fphar.2017.00702. PubMed DOI PMC

Xue X., Deng Y., Wang J., Zhou M., Liao L., Wang C., Peng C., Li Y. Hydroxysafflor yellow A, a natural compound from Carthamus tinctorius L with good effect of alleviating atherosclerosis. Phytomedicine. 2021;91:153694. doi: 10.1016/j.phymed.2021.153694. PubMed DOI

Hung C.H., Chan S.H., Chu P.M., Tsai K.L. Quercetin is a potent anti-atherosclerotic compound by activation of SIRT1 signaling under oxLDL stimulation. Mol. Nutr. Food Res. 2015;59:1905–1917. doi: 10.1002/mnfr.201500144. PubMed DOI

Luo M., Tian R., Lu N. Quercetin Inhibited Endothelial Dysfunction and Atherosclerosis in Apolipoprotein E-Deficient Mice: Critical Roles for NADPH Oxidase and Heme Oxygenase-1. J. Agric. Food Chem. 2020;68:10875–10883. doi: 10.1021/acs.jafc.0c03907. PubMed DOI

Artyukov A.A., Zelepuga E.A., Bogdanovich L.N., Lupach N.M., Novikov V.L., Rutckova T.A., Kozlovskaya E.P. Marine Polyhydroxynaphthoquinone, Echinochrome A: Prevention of Atherosclerotic Inflammation and Probable Molecular Targets. J. Clin. Med. 2020;9:1494. doi: 10.3390/jcm9051494. PubMed DOI PMC

Kim H.K., Vasileva E.A., Mishchenko N.P., Fedoreyev S.A., Han J. Multifaceted Clinical Effects of Echinochrome. Mar. Drugs. 2021;19:412. doi: 10.3390/md19080412. PubMed DOI PMC

Antman E.M., Anbe D.T., Armstrong P.W., Bates E.R., Green L.A., Hand M., Hochman J.S., Krumholz H.M., Kushner F.G., Lamas G.A., et al. ACC/AHA guidelines for the management of patients with ST-elevation myocardial infarction--executive summary: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Revise the 1999 Guidelines for the Management of Patients With Acute Myocardial Infarction) Circulation. 2004;110:588–636. PubMed

Wang D., Lv L., Xu Y., Jiang K., Chen F., Qian J., Chen M., Liu G., Xiang Y. Cardioprotection of Panax Notoginseng saponins against acute myocardial infarction and heart failure through inducing autophagy. Biomed. Pharmacother. 2021;136:111287. doi: 10.1016/j.biopha.2021.111287. PubMed DOI

Guo H., Adah D., James P.B., Liu Q., Li G., Ahmadu P., Chai L., Wang S., Liu Y., Hu L. Xueshuantong Injection (Lyophilized) Attenuates Cerebral Ischemia/Reperfusion Injury by the Activation of Nrf2-VEGF Pathway. Neurochem. Res. 2018;43:1096–1103. doi: 10.1007/s11064-018-2523-x. PubMed DOI

Zheng Q., Bao X.Y., Zhu P.C., Tong Q., Zheng G.Q., Wang Y. Ginsenoside Rb1 for Myocardial Ischemia/Reperfusion Injury: Preclinical Evidence and Possible Mechanisms. Oxid. Med. Cell Longev. 2017;2017:6313625. doi: 10.1155/2017/6313625. PubMed DOI PMC

Kim J.H. Pharmacological and medical applications of Panax ginseng and ginsenosides: A review for use in cardiovascular diseases. J. Ginseng Res. 2018;42:264–269. doi: 10.1016/j.jgr.2017.10.004. PubMed DOI PMC

Lin C., Liu Z., Lu Y., Yao Y., Zhang Y., Ma Z., Kuai M., Sun X., Sun S., Jing Y., et al. Cardioprotective effect of Salvianolic acid B on acute myocardial infarction by promoting autophagy and neovascularization and inhibiting apoptosis. J. Pharm. Pharmacol. 2016;68:941–952. doi: 10.1111/jphp.12567. PubMed DOI

He H.B., Yang X.Z., Shi M.Q., Zeng X.W., Wu L.M., Li L.D. Comparison of cardioprotective effects of salvianolic acid B and benazepril on large myocardial infarction in rats. Pharmacol. Rep. 2008;60:369–381. PubMed

Han D., Wei J., Zhang R., Ma W., Shen C., Feng Y., Xia N., Xu D., Cai D., Li Y., et al. Hydroxysafflor yellow A alleviates myocardial ischemia/reperfusion in hyperlipidemic animals through the suppression of TLR4 signaling. Sci. Rep. 2016;6:35319. doi: 10.1038/srep35319. PubMed DOI PMC

Ye J., Lu S., Wang M., Ge W., Liu H., Qi Y., Fu J., Zhang Q., Zhang B., Sun G., et al. Hydroxysafflor Yellow A Protects Against Myocardial Ischemia/Reperfusion Injury via Suppressing NLRP3 Inflammasome and Activating Autophagy. Front. Pharmacol. 2020;11:1170. doi: 10.3389/fphar.2020.01170. PubMed DOI PMC

Zhou D., Ding T., Ni B., Jing Y., Liu S. Hydroxysafflor Yellow A mitigated myocardial ischemia/reperfusion injury by inhibiting the activation of the JAK2/STAT1 pathway. Int. J. Mol. Med. 2019;44:405–416. doi: 10.3892/ijmm.2019.4230. PubMed DOI PMC

Park J.H., Lee N.K., Lim H.J., Mazumder S., Kumar Rethineswaran V., Kim Y.J., Jang W.B., Ji S.T., Kang S., Kim D.Y., et al. Therapeutic Cell Protective Role of Histochrome under Oxidative Stress in Human Cardiac Progenitor Cells. Mar. Drugs. 2019;17:368. doi: 10.3390/md17060368. PubMed DOI PMC

Tang X., Nishimura A., Ariyoshi K., Nishiyama K., Kato Y., Vasileva E.A., Mishchenko N.P., Fedoreyev S.A., Stonik V.A., Kim H.K., et al. Echinochrome Prevents Sulfide Catabolism-Associated Chronic Heart Failure after Myocardial Infarction in Mice. Mar. Drugs. 2023;21:52. doi: 10.3390/md21010052. PubMed DOI PMC

Song B.W., Kim S., Kim R., Jeong S., Moon H., Kim H., Vasileva E.A., Mishchenko N.P., Fedoreyev S.A., Stonik V.A., et al. Regulation of Inflammation-Mediated Endothelial to Mesenchymal Transition with Echinochrome a for Improving Myocardial Dysfunction. Mar. Drugs. 2022;20:756. doi: 10.3390/md20120756. PubMed DOI PMC

He J., Li S., Ding Y., Tong Y., Li X. Research Progress on Natural Products’ Therapeutic Effects on Atrial Fibrillation by Regulating Ion Channels. Cardiovasc. Ther. 2022;2022:4559809. doi: 10.1155/2022/4559809. PubMed DOI PMC

Pistoia F., Sacco S., Tiseo C., Degan D., Ornello R., Carolei A. The Epidemiology of Atrial Fibrillation and Stroke. Cardiol. Clin. 2016;34:255–268. doi: 10.1016/j.ccl.2015.12.002. PubMed DOI

Isakadze N., Kazzi Z., Bantsadze T., Gotsadze G., Butkhikridze N., El Chami M., Papiashvili G. Updated Atrial Fibrillation Management Recommendations for Georgian Hospitals Based on the 2020 European Society of Cardiology Atrial Fibrillation Guidelines. Georgian Med. News. 2022;333:13–16. PubMed

Hindricks G., Potpara T., Dagres N., Arbelo E., Bax J.J., Blomstrom-Lundqvist C., Boriani G., Castella M., Dan G.A., Dilaveris P.E., et al. 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS): The Task Force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC) Developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC. Eur. Heart J. 2021;42:373–498. PubMed

Camm A.J., Savelieva I. Some patients with paroxysmal atrial fibrillation should carry flecainide or propafenone to self treat. BMJ. 2007;334:637. doi: 10.1136/bmj.39143.720602.BE. PubMed DOI PMC

Levy S. Cardioversion of recent-onset atrial fibrillation using intravenous antiarrhythmics: A European perspective. J. Cardiovasc. Electrophysiol. 2021;32:3259–3269. doi: 10.1111/jce.15264. PubMed DOI

Siemers L.A., MacGillivray J., Andrade J.G., Turgeon R.D. Chronic Amiodarone Use and the Risk of Cancer: A Systematic Review and Meta-analysis. CJC Open. 2021;3:109–114. doi: 10.1016/j.cjco.2020.09.013. PubMed DOI PMC

Lu Y.Y., Cheng C.C., Chen Y.C., Lin Y.K., Chen S.A., Chen Y.J. Electrolyte disturbances differentially regulate sinoatrial node and pulmonary vein electrical activity: A contribution to hypokalemia- or hyponatremia-induced atrial fibrillation. Heart Rhythm. 2016;13:781–788. doi: 10.1016/j.hrthm.2015.12.005. PubMed DOI

Xu Z.Y., Xu Y., Xie X.F., Tian Y., Sui J.H., Sun Y., Lin D.S., Gao X., Peng C., Fan Y.J. Anti-platelet aggregation of Panax notoginseng triol saponins by regulating GP1BA for ischemic stroke therapy. Chin. Med. 2021;16:12. doi: 10.1186/s13020-021-00424-3. PubMed DOI PMC

Slagsvold K.H., Johnsen A.B., Rognmo O., Hoydal M.A., Wisloff U., Wahba A. Mitochondrial respiration and microRNA expression in right and left atrium of patients with atrial fibrillation. Physiol. Genom. 2014;46:505–511. doi: 10.1152/physiolgenomics.00042.2014. PubMed DOI

Wang Y.G., Zima A.V., Ji X., Pabbidi R., Blatter L.A., Lipsius S.L. Ginsenoside Re suppresses electromechanical alternans in cat and human cardiomyocytes. Am. J. Physiol. Heart Circ. Physiol. 2008;295:H851–H859. doi: 10.1152/ajpheart.01242.2007. PubMed DOI PMC

Jiang L., Yin X., Chen Y.H., Chen Y., Jiang W., Zheng H., Huang F.Q., Liu B., Zhou W., Qi L.W., et al. Proteomic analysis reveals ginsenoside Rb1 attenuates myocardial ischemia/reperfusion injury through inhibiting ROS production from mitochondrial complex I. Theranostics. 2021;11:1703–1720. doi: 10.7150/thno.43895. PubMed DOI PMC

Li X., Xiang N., Wang Z. Ginsenoside Rg2 attenuates myocardial fibrosis and improves cardiac function after myocardial infarction via AKT signaling pathway. Biosci. Biotechnol. Biochem. 2020;84:2199–2206. doi: 10.1080/09168451.2020.1793292. PubMed DOI

Mirhadi E., Rezaee M., Malaekeh-Nikouei B. Nano strategies for berberine delivery, a natural alkaloid of Berberis. Biomed. Pharmacother. 2018;104:465–473. doi: 10.1016/j.biopha.2018.05.067. PubMed DOI

Zhou Z.W., Zheng H.C., Zhao L.F., Li W., Hou J.W., Yu Y., Miao P.Z., Zhu J.M. Effect of berberine on acetylcholine-induced atrial fibrillation in rabbit. Am. J. Transl. Res. 2015;7:1450–1457. PubMed PMC

Wang H.X., Kwan C.Y., Wong T.M. Tetrandrine inhibits electrically induced [Ca2+]i transient in the isolated single rat cardiomyocyte. Eur. J. Pharmacol. 1997;319:115–122. doi: 10.1016/S0014-2999(96)00834-5. PubMed DOI

Wu S.N., Li H.F., Lo Y.C. Characterization of tetrandrine-induced inhibition of large-conductance calcium-activated potassium channels in a human endothelial cell line (HUV-EC-C) J. Pharmacol. Exp. Ther. 2000;292:188–195. PubMed

Huang B., Qin D., El-Sherif N. Spatial alterations of Kv channels expression and K+ currents in post-MI remodeled rat heart. Cardiovasc. Res. 2001;52:246–254. doi: 10.1016/S0008-6363(01)00378-9. PubMed DOI

Liu Q.N., Zhang L., Gong P.L., Yang X.Y., Zeng F.D. Inhibitory effects of dauricine on early afterdepolarizations and L-type calcium current. Can. J. Physiol. Pharmacol. 2009;87:954–962. doi: 10.1139/Y09-090. PubMed DOI

Zhou J., Ma W., Wang X., Liu H., Miao Y., Wang J., Du P., Chen Y., Zhang Y., Liu Z. Matrine Suppresses Reactive Oxygen Species (ROS)-Mediated MKKs/p38-Induced Inflammation in Oxidized Low-Density Lipoprotein (ox-LDL)-Stimulated Macrophages. Med. Sci. Monit. 2019;25:4130–4136. doi: 10.12659/MSM.917151. PubMed DOI PMC

Hernandez-Cascales J. Resveratrol enhances the inotropic effect but inhibits the proarrhythmic effect of sympathomimetic agents in rat myocardium. PeerJ. 2017;5:e3113. doi: 10.7717/peerj.3113. PubMed DOI PMC

Qian C., Ma J., Zhang P., Luo A., Wang C., Ren Z., Kong L., Zhang S., Wang X., Wu Y. Resveratrol attenuates the Na+-dependent intracellular Ca2+ overload by inhibiting H2O2-induced increase in late sodium current in ventricular myocytes. PLoS ONE. 2012;7:e51358. doi: 10.1371/journal.pone.0051358. PubMed DOI PMC

Gao Q., Yang B., Ye Z.G., Wang J., Bruce I.C., Xia Q. Opening the calcium-activated potassium channel participates in the cardioprotective effect of puerarin. Eur. J. Pharmacol. 2007;574:179–184. doi: 10.1016/j.ejphar.2007.07.018. PubMed DOI

Othong R., Trakulsrichai S., Wananukul W. Diospyros rhodocalyx (Tako-Na), a Thai folk medicine, associated with hypokalemia and generalized muscle weakness: A case series. Clin. Toxicol. 2017;55:986–990. doi: 10.1080/15563650.2017.1330957. PubMed DOI

McDonagh T.A., Metra M., Adamo M., Gardner R.S., Baumbach A., Bohm M., Burri H., Butler J., Celutkiene J., Chioncel O., et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2021;42:3599–3726. doi: 10.1093/eurheartj/ehab368. PubMed DOI

Chang K.Y., Giorgio K., Schmitz K., Walker R.F., Prins K.W., Pritzker M.R., Archer S.L., Lutsey P.L., Thenappan T. Effect of Chronic Digoxin Use on Mortality and Heart Failure Hospitalization in Pulmonary Arterial Hypertension. J. Am. Heart Assoc. 2023;12:e027559. doi: 10.1161/JAHA.122.027559. PubMed DOI PMC

Zhou Z.L., Yu P., Lin D. Study on effect of Astragalus injection in treating congestive heart failure. Zhongguo Zhong Xi Yi Jie He Za Zhi. 2001;21:747–749. PubMed

Jia Y., Chen C., Ng C.S., Leung S.W. Meta-Analysis of Randomized Controlled Trials on the Efficacy of Di’ao Xinxuekang Capsule and Isosorbide Dinitrate in Treating Angina Pectoris. Evid. Based Complement. Altern. Med. 2012;2012:904147. doi: 10.1155/2012/904147. PubMed DOI PMC

Li X., Zhang J., Huang J., Ma A., Yang J., Li W., Wu Z., Yao C., Zhang Y., Yao W., et al. A multicenter, randomized, double-blind, parallel-group, placebo-controlled study of the effects of qili qiangxin capsules in patients with chronic heart failure. J. Am. Coll. Cardiol. 2013;62:1065–1072. doi: 10.1016/j.jacc.2013.05.035. PubMed DOI

Ma R.G., Wang C.X., Shen Y.H., Wang Z.Q., Ma J.H., Huang L.S. Effect of Shenmai Injection on ventricular diastolic function in patients with chronic heart failure: An assessment by tissue Doppler imaging. Chin. J. Integr. Med. 2010;16:173–175. doi: 10.1007/s11655-010-0173-1. PubMed DOI

Singhuber J., Zhu M., Prinz S., Kopp B. Aconitum in traditional Chinese medicine: A valuable drug or an unpredictable risk? J. Ethnopharmacol. 2009;126:18–30. doi: 10.1016/j.jep.2009.07.031. PubMed DOI

Mares C., Udrea A.M., Buiu C., Staicu A., Avram S. Therapeutic Potentials of Aconite-like Alkaloids—Bioinformatics and Experimental Approaches. Mini Rev. Med. Chem. 2023;24:159–175. doi: 10.2174/1389557523666230328153417. PubMed DOI

Zhang Y., Chen S., Fan F., Xu N., Meng X.L., Zhang Y., Lin J.M. Neurotoxicity mechanism of aconitine in HT22 cells studied by microfluidic chip-mass spectrometry. J. Pharm. Anal. 2023;13:88–98. doi: 10.1016/j.jpha.2022.11.007. PubMed DOI PMC

Droge W. Free radicals in the physiological control of cell function. Physiol. Rev. 2002;82:47–95. doi: 10.1152/physrev.00018.2001. PubMed DOI

Mongirdiene A., Liuize A., Karciauskaite D., Mazgelyte E., Liekis A., Sadauskiene I. Relationship between Oxidative Stress and Left Ventricle Markers in Patients with Chronic Heart Failure. Cells. 2023;12:803. doi: 10.3390/cells12050803. PubMed DOI PMC

Najjar R.S., Feresin R.G. Protective Role of Polyphenols in Heart Failure: Molecular Targets and Cellular Mechanisms Underlying Their Therapeutic Potential. Int. J. Mol. Sci. 2021;22:1668. doi: 10.3390/ijms22041668. PubMed DOI PMC

Akhlaghi M., Bandy B. Preconditioning and acute effects of flavonoids in protecting cardiomyocytes from oxidative cell death. Oxid. Med. Cell Longev. 2012;2012:782321. doi: 10.1155/2012/782321. PubMed DOI PMC

Isaak C.K., Petkau J.C., Blewett H., O K., Siow Y.L. Lingonberry anthocyanins protect cardiac cells from oxidative-stress-induced apoptosis. Can. J. Physiol. Pharmacol. 2017;95:904–910. doi: 10.1139/cjpp-2016-0667. PubMed DOI

Wang L., Deng H., Wang T., Qiao Y., Zhu J., Xiong M. Investigation into the protective effects of hypaconitine and glycyrrhetinic acid against chronic heart failure of the rats. BMC Complement. Med. Ther. 2022;22:160. doi: 10.1186/s12906-022-03632-y. PubMed DOI PMC

Heidenreich P.A., Bozkurt B., Aguilar D., Allen L.A., Byun J.J., Colvin M.M., Deswal A., Drazner M.H., Dunlay S.M., Evers L.R., et al. 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: Executive Summary: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation. 2022;145:e876–e894. doi: 10.1161/CIR.0000000000001062. PubMed DOI

Dobson L.E., Prendergast B.D. Heart valve disease: A journey of discovery. Heart. 2022;108:774–779. doi: 10.1136/heartjnl-2021-320146. PubMed DOI

Wasmus C., Dudek J. Metabolic Alterations Caused by Defective Cardiolipin Remodeling in Inherited Cardiomyopathies. Life. 2020;10:277. doi: 10.3390/life10110277. PubMed DOI PMC

Chiang Y.F., Chen H.Y., Chang Y.J., Shih Y.H., Shieh T.M., Wang K.L., Hsia S.M. Protective Effects of Fucoxanthin on High Glucose- and 4-Hydroxynonenal (4-HNE)-Induced Injury in Human Retinal Pigment Epithelial Cells. Antioxidants. 2020;9:1176. doi: 10.3390/antiox9121176. PubMed DOI PMC

Azizi M., Sapoval M., Gosse P., Monge M., Bobrie G., Delsart P., Midulla M., Mounier-Vehier C., Courand P.Y., Lantelme P., et al. Optimum and stepped care standardised antihypertensive treatment with or without renal denervation for resistant hypertension (DENERHTN): A multicentre, open-label, randomised controlled trial. Lancet. 2015;385:1957–1965. doi: 10.1016/S0140-6736(14)61942-5. PubMed DOI

Whelton P.K., Carey R.M., Mancia G., Kreutz R., Bundy J.D., Williams B. Harmonization of the American College of Cardiology/American Heart Association and European Society of Cardiology/European Society of Hypertension Blood Pressure/Hypertension Guidelines. Eur. Heart J. 2022;43:3302–3311. doi: 10.1093/eurheartj/ehac432. PubMed DOI PMC

Wang J., Yin N., Deng Y., Wei Y., Huang Y., Pu X., Li L., Zheng Y., Guo J., Yu J., et al. Ascorbic Acid Protects against Hypertension through Downregulation of ACE1 Gene Expression Mediated by Histone Deacetylation in Prenatal Inflammation-Induced Offspring. Sci. Rep. 2016;6:39469. doi: 10.1038/srep39469. PubMed DOI PMC

Ahmad K.A., Yuan Yuan D., Nawaz W., Ze H., Zhuo C.X., Talal B., Taleb A., Mais E., Qilong D. Antioxidant therapy for management of oxidative stress induced hypertension. Free Radic. Res. 2017;51:428–438. doi: 10.1080/10715762.2017.1322205. PubMed DOI

Raghuvanshi R., Chandra M., Mishra A., Misra M.K. Effect of vitamin E administration on blood pressure following reperfusion of patients with myocardial infarction. Exp. Clin. Cardiol. 2007;12:87–90. PubMed PMC

Panahi Y., Namazi S., Rostami-Yalmeh J., Sahebi E., Khalili N., Jamialahmadi T., Sahebkar A. Effect of Vitamin D Supplementation on the Regulation of Blood Pressure in Iranian Patients with Essential Hypertension: A Clinical Trial. Adv. Exp. Med. Biol. 2021;1328:501–511. PubMed

Grujic-Milanovic J., Miloradovic Z., Jovovic D., Jacevic V., Milosavljevic I., Milanovic S., Mihailovic-Stanojevic N. The red wine polyphenol, resveratrol improves hemodynamics, oxidative defence and aortal structure in essential and malignant hypertension. J. Func. Foods. 2017;34:266–276. doi: 10.1016/j.jff.2017.04.035. DOI

Gojkovic-Bukarica L., Markovic-Lipkovski J., Heinle H., Cirovic S., Rajkovic J., Djokic V., Zivanovic V., Bukarica A., Novakovic R. The red wine polyphenol resveratrol induced relaxation of the isolated renal artery of diabetic rats: The role of potassium channels. J. Func. Foods. 2019;52:266–275. doi: 10.1016/j.jff.2018.11.009. DOI

Grujic-Milanovic J., Jacevic V., Miloradovic Z., Jovovic D., Milosavljevic I., Milanovic S.D., Mihailovic-Stanojevic N. Resveratrol Protects Cardiac Tissue in Experimental Malignant Hypertension Due to Antioxidant, Anti-Inflammatory, and Anti-Apoptotic Properties. Int. J. Mol. Sci. 2021;22:5006. doi: 10.3390/ijms22095006. PubMed DOI PMC

Grujic-Milanovic J., Jacevic V., Miloradovic Z., Milanovic S.D., Jovovic D., Ivanov M., Karanovic D., Vajic U.J., Mihailovic-Stanojevic N. Resveratrol improved kidney function and structure in malignantly hypertensive rats by restoration of antioxidant capacity and nitric oxide bioavailability. Biomed. Pharmacother. 2022;154:113642. doi: 10.1016/j.biopha.2022.113642. PubMed DOI

Fogacci F., Tocci G., Presta V., Fratter A., Borghi C., Cicero A.F.G. Effect of resveratrol on blood pressure: A systematic review and meta-analysis of randomized, controlled, clinical trials. Crit. Rev. Food Sci. Nutr. 2019;59:1605–1618. doi: 10.1080/10408398.2017.1422480. PubMed DOI

Vanaja K., Wahl M.A., Bukarica L., Heinle H. Liposomes as carriers of the lipid soluble antioxidant resveratrol: Evaluation of amelioration of oxidative stress by additional antioxidant vitamin. Life Sci. 2013;93:917–923. doi: 10.1016/j.lfs.2013.10.019. PubMed DOI

De Angelis M., Della-Morte D., Buttinelli G., Di Martino A., Pacifici F., Checconi P., Ambrosio L., Stefanelli P., Palamara A.T., Garaci E., et al. Protective Role of Combined Polyphenols and Micronutrients against Influenza A Virus and SARS-CoV-2 Infection In Vitro. Biomedicines. 2021;9:1721. doi: 10.3390/biomedicines9111721. PubMed DOI PMC

Lin X., Zhao J., Ge S., Lu H., Xiong Q., Guo X., Li L., He S., Wang J., Peng F., et al. Dietary Polyphenol Intake and Risk of Hypertension: An 18-y Nationwide Cohort Study in China. Am. J. Clin. Nutr. 2023;118:264–272. doi: 10.1016/j.ajcnut.2023.05.001. PubMed DOI PMC

Chang X., Zhang T., Zhang W., Zhao Z., Sun J. Natural Drugs as a Treatment Strategy for Cardiovascular Disease through the Regulation of Oxidative Stress. Oxid. Med. Cell Longev. 2020;2020:5430407. doi: 10.1155/2020/5430407. PubMed DOI PMC

Wang J., Zeng L., Zhang Y., Qi W., Wang Z., Tian L., Zhao D., Wu Q., Li X., Wang T. Pharmacological properties, molecular mechanisms and therapeutic potential of ginsenoside Rg3 as an antioxidant and anti-inflammatory agent. Front. Pharmacol. 2022;13:975784. doi: 10.3389/fphar.2022.975784. PubMed DOI PMC

Jin H., Jiao Y., Guo L., Ma Y., Zhao R., Li X., Shen L., Zhou Z., Kim S.C., Liu J. Astragaloside IV blocks monocrotaline-induced pulmonary arterial hypertension by improving inflammation and pulmonary artery remodeling. Int. J. Mol. Med. 2021;47:595–606. doi: 10.3892/ijmm.2020.4813. PubMed DOI PMC

Serban M.C., Sahebkar A., Zanchetti A., Mikhailidis D.P., Howard G., Antal D., Andrica F., Ahmed A., Aronow W.S., Muntner P., et al. Effects of Quercetin on Blood Pressure: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Am. Heart Assoc. 2016;5:e002713. doi: 10.1161/JAHA.115.002713. PubMed DOI PMC

Larson A.J., Symons J.D., Jalili T. Therapeutic potential of quercetin to decrease blood pressure: Review of efficacy and mechanisms. Adv. Nutr. 2012;3:39–46. doi: 10.3945/an.111.001271. PubMed DOI PMC

Wang H.P., Yang J., Qin L.Q., Yang X.J. Effect of garlic on blood pressure: A meta-analysis. J. Clin. Hypertens. 2015;17:223–231. doi: 10.1111/jch.12473. PubMed DOI PMC

Ried K., Travica N., Sali A. The effect of aged garlic extract on blood pressure and other cardiovascular risk factors in uncontrolled hypertensives: The AGE at Heart trial. Integr. Blood Press Control. 2016;9:9–21. doi: 10.2147/IBPC.S93335. PubMed DOI PMC

Hansawasdi C., Kawabata J., Kasai T. Alpha-amylase inhibitors from roselle (Hibiscus sabdariffa Linn.) tea. Biosci. Biotechnol. Biochem. 2000;64:1041–1043. doi: 10.1271/bbb.64.1041. PubMed DOI

Alemayehu G.F., Forsido S.F., Tola Y.B., Amare E. Nutritional and Phytochemical Composition and Associated Health Benefits of Oat (Avena sativa) Grains and Oat-Based Fermented Food Products. Sci. World J. 2023;2023:2730175. doi: 10.1155/2023/2730175. PubMed DOI PMC

Ali M.Z., Mehmood M.H., Saleem M., Hamid Akash M.S., Malik A. Pharmacological evaluation of Euphorbia hirta, Fagonia indica and Capparis decidua in hypertension through in-vivo and in vitro-assays. Heliyon. 2021;7:e08094. doi: 10.1016/j.heliyon.2021.e08094. PubMed DOI PMC

Brendler T., Abdel-Tawab M. Buchu (Agathosma betulina and A. crenulata): Rightfully Forgotten or Underutilized? Front. Pharmacol. 2022;13:813142. doi: 10.3389/fphar.2022.813142. PubMed DOI PMC

An P., Wan S., Luo Y., Luo J., Zhang X., Zhou S., Xu T., He J., Mechanick J.I., Wu W.C., et al. Micronutrient Supplementation to Reduce Cardiovascular Risk. J. Am. Coll. Cardiol. 2022;80:2269–2285. doi: 10.1016/j.jacc.2022.09.048. PubMed DOI

Shaito A., Thuan D.T.B., Phu H.T., Nguyen T.H.D., Hasan H., Halabi S., Abdelhady S., Nasrallah G.K., Eid A.H., Pintus G. Herbal Medicine for Cardiovascular Diseases: Efficacy, Mechanisms, and Safety. Front. Pharmacol. 2020;11:422. doi: 10.3389/fphar.2020.00422. PubMed DOI PMC

Sharifi-Rad J., Rodrigues C.F., Sharopov F., Docea A.O., Can Karaca A., Sharifi-Rad M., Kahveci Karincaoglu D., Gulseren G., Senol E., Demircan E., et al. Diet, Lifestyle and Cardiovascular Diseases: Linking Pathophysiology to Cardioprotective Effects of Natural Bioactive Compounds. Int. J. Environ. Res. Public Health. 2020;17:2326. doi: 10.3390/ijerph17072326. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...