Natural Substances vs. Approved Drugs in the Treatment of Main Cardiovascular Disorders-Is There a Breakthrough?
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article, Review
PubMed
38136208
PubMed Central
PMC10740850
DOI
10.3390/antiox12122088
PII: antiox12122088
Knihovny.cz E-resources
- Keywords
- antioxidants, cardiovascular diseases, natural products, oxidative stress,
- Publication type
- Journal Article MeSH
- Review MeSH
Cardiovascular diseases (CVDs) are a group of diseases with a very high rate of morbidity and mortality. The clinical presentation of CVDs can vary from asymptomatic to classic symptoms such as chest pain in patients with myocardial infarction. Current therapeutics for CVDs mainly target disease symptoms. The most common CVDs are coronary artery disease, acute myocardial infarction, atrial fibrillation, chronic heart failure, arterial hypertension, and valvular heart disease. In their treatment, conventional therapies and pharmacological therapies are used. However, the use of herbal medicines in the therapy of these diseases has also been reported in the literature, resulting in a need for critical evaluation of advances related to their use. Therefore, we carried out a narrative review of pharmacological and herbal therapeutic effects reported for these diseases. Data for this comprehensive review were obtained from electronic databases such as MedLine, PubMed, Web of Science, Scopus, and Google Scholar. Conventional therapy requires an individual approach to the patients, as when patients do not respond well, this often causes allergic effects or various other unwanted effects. Nowadays, medicinal plants as therapeutics are frequently used in different parts of the world. Preclinical/clinical pharmacology studies have confirmed that some bioactive compounds may have beneficial therapeutic effects in some common CVDs. The natural products analyzed in this review are promising phytochemicals for adjuvant and complementary drug candidates in CVDs pharmacotherapy, and some of them have already been approved by the FDA. There are insufficient clinical studies to compare the effectiveness of natural products compared to approved therapeutics for the treatment of CVDs. Further long-term studies are needed to accelerate the potential of using natural products for these diseases. Despite this undoubted beneficence on CVDs, there are no strong breakthroughs supporting the implementation of natural products in clinical practice. Nevertheless, they are promising agents in the supplementation and co-therapy of CVDs.
See more in PubMed
Olvera Lopez E., Ballard B.D., Jan A. StatPearls. StatPearls Publishing LLC.; Treasure Island, FL, USA: 2023. Cardiovascular Disease. PubMed
Organization., W.H. [(accessed on 8 October 2023)]. Available online: https://www.who.int/news-room/fact-sheets/detail/hypertension.
Willeit J., Kiechl S. Biology of arterial atheroma. Cerebrovasc. Dis. 2000;10((Suppl. S5)):1–8. doi: 10.1159/000047599. PubMed DOI
Roth G.A., Mensah G.A., Johnson C.O., Addolorato G., Ammirati E., Baddour L.M., Barengo N.C., Beaton A.Z., Benjamin E.J., Benziger C.P., et al. Global Burden of Cardiovascular Diseases and Risk Factors, 1990–2019: Update From the GBD 2019 Study. J. Am. Coll. Cardiol. 2020;76:2982–3021. doi: 10.1016/j.jacc.2020.11.010. PubMed DOI PMC
Centers for Disease Control and Prevention . CDC Protects and Prepares Communities. Department of Health & Human Services, CDC; Atlanta, GA, USA: 2020.
Bowman L., Weidinger F., Albert M.A., Fry E.T.A., Pinto F.J., Clinical Trial Expert Group and ESC Patient Forum Randomized Trials Fit for the 21st Century: A Joint Opinion From the European Society of Cardiology, American Heart Association, American College of Cardiology, and the World Heart Federation. Circulation. 2023;147:925–929. doi: 10.1161/CIRCULATIONAHA.122.063378. PubMed DOI
Frak W., Wojtasinska A., Lisinska W., Mlynarska E., Franczyk B., Rysz J. Pathophysiology of Cardiovascular Diseases: New Insights into Molecular Mechanisms of Atherosclerosis, Arterial Hypertension, and Coronary Artery Disease. Biomedicines. 2022;10:1938. doi: 10.3390/biomedicines10081938. PubMed DOI PMC
Verma N., Rastogi S., Chia Y.C., Siddique S., Turana Y., Cheng H.M., Sogunuru G.P., Tay J.C., Teo B.W., Wang T.D., et al. Non-pharmacological management of hypertension. J. Clin. Hypertens. 2021;23:1275–1283. doi: 10.1111/jch.14236. PubMed DOI PMC
Vidal-Petiot E. Thresholds for Hypertension Definition, Treatment Initiation, and Treatment Targets: Recent Guidelines at a Glance. Circulation. 2022;146:805–807. doi: 10.1161/CIRCULATIONAHA.121.055177. PubMed DOI
Schirone L., Forte M., Palmerio S., Yee D., Nocella C., Angelini F., Pagano F., Schiavon S., Bordin A., Carrizzo A., et al. A Review of the Molecular Mechanisms Underlying the Development and Progression of Cardiac Remodeling. Oxid. Med. Cell. Longev. 2017;2017:3920195. doi: 10.1155/2017/3920195. PubMed DOI PMC
Lu L., Liu M., Sun R., Zheng Y., Zhang P. Myocardial Infarction: Symptoms and Treatments. Cell Biochem. Biophys. 2015;72:865–867. doi: 10.1007/s12013-015-0553-4. PubMed DOI
Salari N., Morddarvanjoghi F., Abdolmaleki A., Rasoulpoor S., Khaleghi A.A., Hezarkhani L.A., Shohaimi S., Mohammadi M. The global prevalence of myocardial infarction: A systematic review and meta-analysis. BMC Cardiovasc. Disord. 2023;23:206. doi: 10.1186/s12872-023-03231-w. PubMed DOI PMC
Ferrucci L., Fabbri E. Inflammageing: Chronic inflammation in ageing, cardiovascular disease, and frailty. Nat. Rev. Cardiol. 2018;15:505–522. doi: 10.1038/s41569-018-0064-2. PubMed DOI PMC
Dikalova A., Dikalov S. Response by Dikalova and Dikalov to Letter Regarding Article, “Mitochondrial Deacetylase Sirt3 Reduces Vascular Dysfunction and Hypertension While Sirt3 Depletion in Essential Hypertension Is Linked to Vascular Inflammation and Oxidative Stress”. Circ. Res. 2020;126:e33–e34. doi: 10.1161/CIRCRESAHA.120.316763. PubMed DOI PMC
Zhao M., Wang Y., Li L., Liu S., Wang C., Yuan Y., Yang G., Chen Y., Cheng J., Lu Y., et al. Mitochondrial ROS promote mitochondrial dysfunction and inflammation in ischemic acute kidney injury by disrupting TFAM-mediated mtDNA maintenance. Theranostics. 2021;11:1845–1863. doi: 10.7150/thno.50905. PubMed DOI PMC
Sauer F., Riou M., Charles A.L., Meyer A., Andres E., Geny B., Talha S. Pathophysiology of Heart Failure: A Role for Peripheral Blood Mononuclear Cells Mitochondrial Dysfunction? J. Clin. Med. 2022;11:741. doi: 10.3390/jcm11030741. PubMed DOI PMC
Shaito A., Aramouni K., Assaf R., Parenti A., Orekhov A., Yazbi A.E., Pintus G., Eid A.H. Oxidative Stress-Induced Endothelial Dysfunction in Cardiovascular Diseases. Front. Biosci. 2022;27:105. doi: 10.31083/j.fbl2703105. PubMed DOI
McGill H.C., Jr., McMahan C.A., Zieske A.W., Tracy R.E., Malcom G.T., Herderick E.E., Strong J.P. Association of Coronary Heart Disease Risk Factors with microscopic qualities of coronary atherosclerosis in youth. Circulation. 2000;102:374–379. doi: 10.1161/01.CIR.102.4.374. PubMed DOI
Alderman M., Aiyer K.J. Uric acid: Role in cardiovascular disease and effects of losartan. Curr. Med. Res. Opin. 2004;20:369–379. doi: 10.1185/030079904125002982. PubMed DOI
Antithrombotic Trialists C., Baigent C., Blackwell L., Collins R., Emberson J., Godwin J., Peto R., Buring J., Hennekens C., Kearney P., et al. Aspirin in the primary and secondary prevention of vascular disease: Collaborative meta-analysis of individual participant data from randomised trials. Lancet. 2009;373:1849–1860. PubMed PMC
Qian X., Deng H., Yuan J., Hu J., Dai L., Jiang T. Evaluating the efficacy and safety of percutaneous coronary intervention (PCI) versus the optimal drug therapy (ODT) for stable coronary heart disease: A systematic review and meta-analysis. J. Thorac. Dis. 2022;14:1183–1192. doi: 10.21037/jtd-22-222. PubMed DOI PMC
Cheng A., Malkin C., Briffa N.P. Antithrombotic therapy after heart valve intervention: Review of mechanisms, evidence and current guidance. Heart. 2023 doi: 10.1136/heartjnl-2022-321387. PubMed DOI
Huang S., Frangogiannis N.G. Anti-inflammatory therapies in myocardial infarction: Failures, hopes and challenges. Br. J. Pharmacol. 2018;175:1377–1400. doi: 10.1111/bph.14155. PubMed DOI PMC
Lip G.Y., Fauchier L., Freedman S.B., Van Gelder I., Natale A., Gianni C., Nattel S., Potpara T., Rienstra M., Tse H.F., et al. Atrial fibrillation. Nat. Rev. Dis. Primers. 2016;2:16016. doi: 10.1038/nrdp.2016.16. PubMed DOI
Holmes A.P., Saxena P., Kabir S.N., O’Shea C., Kuhlmann S.M., Gupta S., Fobian D., Apicella C., O’Reilly M., Syeda F., et al. Atrial resting membrane potential confers sodium current sensitivity to propafenone, flecainide and dronedarone. Heart Rhythm. 2021;18:1212–1220. doi: 10.1016/j.hrthm.2021.03.016. PubMed DOI PMC
Cay S., Kara M., Ozcan F., Ozeke O., Aksu T., Aras D., Topaloglu S. Propafenone use in coronary artery disease patients undergoing atrial fibrillation ablation. J. Interv. Card. Electrophysiol. 2022;65:381–389. doi: 10.1007/s10840-022-01186-0. PubMed DOI
Faragli A., Tano G.D., Carlini C., Nassiacos D., Gori M., Confortola G., Lo Muzio F.P., Rapis K., Abawi D., Post H., et al. In-hospital Heart Rate Reduction With Beta Blockers and Ivabradine Early After Recovery in Patients With Acute Decompensated Heart Failure Reduces Short-Term Mortality and Rehospitalization. Front. Cardiovasc. Med. 2021;8:665202. doi: 10.3389/fcvm.2021.665202. PubMed DOI PMC
Kim R., Suresh K., Rosenberg M.A., Tan M.S., Malone D.C., Allen L.A., Kao D.P., Anderson H.D., Tiwari P., Trinkley K.E. A machine learning evaluation of patient characteristics associated with prescribing of guideline-directed medical therapy for heart failure. Front. Cardiovasc. Med. 2023;10:1169574. doi: 10.3389/fcvm.2023.1169574. PubMed DOI PMC
Bertoluci C., Foppa M., Santos A.B.S., Fuchs S.C., Fuchs F.D. Diuretics are Similar to Losartan on Echocardiographic Target-Organ Damage in Stage I Hypertension. PREVER-Treatment Study. Arq. Bras. Cardiol. 2019;112:87–90. PubMed PMC
Benard B., Durand M., Berthoumieux S., Gauthier M., L’Archeveque H., Lamarre-Cliche M., Laskine M. The impact of beta-blockers on the central and delta systolic pressures in a real-world population with treated hypertension: A cross-sectional study. Health Sci. Rep. 2022;5:e948. doi: 10.1002/hsr2.948. PubMed DOI PMC
Faucon A.L., Fu E.L., Stengel B., Mazhar F., Evans M., Carrero J.J. A nationwide cohort study comparing the effectiveness of diuretics and calcium channel blockers on top of renin-angiotensin system inhibitors on chronic kidney disease progression and mortality. Kidney Int. 2023;104:542–551. doi: 10.1016/j.kint.2023.05.024. PubMed DOI
Nachawati D., Patel J.B. StatPearls. StatPearls Publishing LLC.; Treasure Island, FL, USA: 2023. Alpha-Blockers. PubMed
Lee S.N., Yun J.S., Ko S.H., Ahn Y.B., Yoo K.D., Her S.H., Moon D., Jung S.H., Won H.H., Kim D. Impacts of gender and lifestyle on the association between depressive symptoms and cardiovascular disease risk in the UK Biobank. Sci. Rep. 2023;13:10758. doi: 10.1038/s41598-023-37221-x. PubMed DOI PMC
Sacco R.L., Roth G.A., Reddy K.S., Arnett D.K., Bonita R., Gaziano T.A., Heidenreich P.A., Huffman M.D., Mayosi B.M., Mendis S., et al. The Heart of 25 by 25: Achieving the Goal of Reducing Global and Regional Premature Deaths From Cardiovascular Diseases and Stroke: A Modeling Study From the American Heart Association and World Heart Federation. Glob. Heart. 2016;11:251–264. doi: 10.1016/j.gheart.2016.04.002. PubMed DOI
Ambrose J.A., Singh M. Pathophysiology of coronary artery disease leading to acute coronary syndromes. F1000Prime Rep. 2015;7:8. doi: 10.12703/P7-08. PubMed DOI PMC
Disease G.B.D., Injury I., Prevalence C. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392:1789–1858. PubMed PMC
Li J.L., Zhou J.R., Tan P., Chen J. Dynamic assessment of coronary artery during different cardiac cycle in patients with coronary artery disease using coronary CT angiography. Perfusion. 2023;38:1453–1460. doi: 10.1177/02676591221114951. PubMed DOI
Knuuti J., Wijns W., Saraste A., Capodanno D., Barbato E., Funck-Brentano C., Prescott E., Storey R.F., Deaton C., Cuisset T., et al. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur. Heart J. 2020;41:407–477. doi: 10.1093/eurheartj/ehz425. PubMed DOI
Byrne R.A., Rossello X., Coughlan J.J., Barbato E., Berry C., Chieffo A., Claeys M.J., Dan G.A., Dweck M.R., Galbraith M., et al. 2023 ESC Guidelines for the management of acute coronary syndromes. Eur. Heart J. 2023;44:3720–3826. doi: 10.1093/eurheartj/ehad191. PubMed DOI
Park J., Kim S.H., Kim M., Lee J., Choi Y., Kim H., Kim T.O., Kang D.Y., Ahn J.M., Yoo J.S., et al. Impact of Optimal Medical Therapy on Long-Term Outcomes After Myocardial Revascularization for Multivessel Coronary Disease. Am. J. Cardiol. 2023;203:81–91. doi: 10.1016/j.amjcard.2023.06.083. PubMed DOI
Yoon G.S., Choi S.H., Kwon S.W., Park S.D., Woo S.I. A prospective double-blinded randomized study on drug-eluting stent implantation into nitrate-induced maximally dilated vessels in patients with coronary artery disease. Trials. 2023;24:460. doi: 10.1186/s13063-023-07497-5. PubMed DOI PMC
Lippi G., Sanchis-Gomar F., Cervellin G. Global epidemiology of atrial fibrillation: An increasing epidemic and public health challenge. Int. J. Stroke. 2021;16:217–221. doi: 10.1177/1747493019897870. PubMed DOI
Burke F.M. Red yeast rice for the treatment of dyslipidemia. Curr. Atheroscler. Rep. 2015;17:495. doi: 10.1007/s11883-015-0495-8. PubMed DOI
Gerards M.C., Terlou R.J., Yu H., Koks C.H., Gerdes V.E. Traditional Chinese lipid-lowering agent red yeast rice results in significant LDL reduction but safety is uncertain—A systematic review and meta-analysis. Atherosclerosis. 2015;240:415–423. doi: 10.1016/j.atherosclerosis.2015.04.004. PubMed DOI
Li P., Wang Q., Chen K., Zou S., Shu S., Lu C., Wang S., Jiang Y., Fan C., Luo Y. Red Yeast Rice for Hyperlipidemia: A Meta-Analysis of 15 High-Quality Randomized Controlled Trials. Front. Pharmacol. 2021;12:819482. doi: 10.3389/fphar.2021.819482. PubMed DOI PMC
Liu J., Zeng F.F., Liu Z.M., Zhang C.X., Ling W.H., Chen Y.M. Effects of blood triglycerides on cardiovascular and all-cause mortality: A systematic review and meta-analysis of 61 prospective studies. Lipids Health Dis. 2013;12:159. doi: 10.1186/1476-511X-12-159. PubMed DOI PMC
Zhao S., Wang Y., Mu Y., Yu B., Ye P., Yan X., Li Z., Wei Y., Ambegaonakr B.M., Hu D., et al. Prevalence of dyslipidaemia in patients treated with lipid-lowering agents in China: Results of the DYSlipidemia International Study (DYSIS) Atherosclerosis. 2014;235:463–469. doi: 10.1016/j.atherosclerosis.2014.05.916. PubMed DOI
Zhu L.Y., Wen X.Y., Xiang Q.Y., Guo L.L., Xu J., Zhao S.P., Liu L. Comparison of the Reductions in LDL-C and Non-HDL-C Induced by the Red Yeast Rice Extract Xuezhikang between Fasting and Non-fasting States in Patients with Coronary Heart Disease. Front. Cardiovasc. Med. 2021;8:674446. doi: 10.3389/fcvm.2021.674446. PubMed DOI PMC
Shang Q., Liu Z., Chen K., Xu H., Liu J. A systematic review of xuezhikang, an extract from red yeast rice, for coronary heart disease complicated by dyslipidemia. Evid. Based Complement. Altern. Med. 2012;2012:636547. doi: 10.1155/2012/636547. PubMed DOI PMC
Zhao S.P., Li R., Dai W., Yu B.L., Chen L.Z., Huang X.S. Xuezhikang contributes to greater triglyceride reduction than simvastatin in hypertriglyceridemia rats by up-regulating apolipoprotein A5 via the PPARalpha signaling pathway. PLoS ONE. 2017;12:e0184949. PubMed PMC
Lien C.F., Lin C.S., Shyue S.K., Hsieh P.S., Chen S.J., Lin Y.T., Chien S., Tsai M.C. Peroxisome proliferator-activated receptor delta improves the features of atherosclerotic plaque vulnerability by regulating smooth muscle cell phenotypic switching. Br. J. Pharmacol. 2023;180:2085–2101. doi: 10.1111/bph.16074. PubMed DOI
Zheng Q.N., Wang J., Zhou H.B., Niu S.F., Liu Q.L., Yang Z.J., Wang H., Zhao Y.S., Shi S.L. Effectiveness of Amygdalus mongolica oil in hyperlipidemic rats and underlying antioxidant processes. J. Toxicol. Environ. Health A. 2017;80:1193–1198. doi: 10.1080/15287394.2017.1367124. PubMed DOI
Micek A., Godos J., Del Rio D., Galvano F., Grosso G. Dietary Flavonoids and Cardiovascular Disease: A Comprehensive Dose-Response Meta-Analysis. Mol. Nutr. Food Res. 2021;65:e2001019. doi: 10.1002/mnfr.202001019. PubMed DOI
Elansary H.O., Szopa A., Kubica P., Ekiert H., Mattar M.A., Al-Yafrasi M.A., El-Ansary D.O., El-Abedin T.K.Z., Yessoufou K. Polyphenol Profile and Pharmaceutical Potential of Quercus spp. Bark Extracts. Plants. 2019;8:486. doi: 10.3390/plants8110486. PubMed DOI PMC
Verdin E., Ott M. 50 years of protein acetylation: From gene regulation to epigenetics, metabolism and beyond. Nat. Rev. Mol. Cell Biol. 2015;16:258–264. doi: 10.1038/nrm3931. PubMed DOI
Hwang J.T., Choi H.K., Kim S.H., Chung S., Hur H.J., Park J.H., Chung M.Y. Hypolipidemic Activity of Quercus acutissima Fruit Ethanol Extract is Mediated by Inhibition of Acetylation. J. Med. Food. 2017;20:542–549. doi: 10.1089/jmf.2016.3912. PubMed DOI
Duan L., Liu Y., Li J., Zhang Y., Dong Y., Liu C., Wang J. Panax notoginseng Saponins Alleviate Coronary Artery Disease through Hypermethylation of the miR-194-MAPK Pathway. Front. Pharmacol. 2022;13:829416. doi: 10.3389/fphar.2022.829416. PubMed DOI PMC
Duan L., Xiong X., Hu J., Liu Y., Li J., Wang J. Panax notoginseng Saponins for Treating Coronary Artery Disease: A Functional and Mechanistic Overview. Front. Pharmacol. 2017;8:702. doi: 10.3389/fphar.2017.00702. PubMed DOI PMC
Xue X., Deng Y., Wang J., Zhou M., Liao L., Wang C., Peng C., Li Y. Hydroxysafflor yellow A, a natural compound from Carthamus tinctorius L with good effect of alleviating atherosclerosis. Phytomedicine. 2021;91:153694. doi: 10.1016/j.phymed.2021.153694. PubMed DOI
Hung C.H., Chan S.H., Chu P.M., Tsai K.L. Quercetin is a potent anti-atherosclerotic compound by activation of SIRT1 signaling under oxLDL stimulation. Mol. Nutr. Food Res. 2015;59:1905–1917. doi: 10.1002/mnfr.201500144. PubMed DOI
Luo M., Tian R., Lu N. Quercetin Inhibited Endothelial Dysfunction and Atherosclerosis in Apolipoprotein E-Deficient Mice: Critical Roles for NADPH Oxidase and Heme Oxygenase-1. J. Agric. Food Chem. 2020;68:10875–10883. doi: 10.1021/acs.jafc.0c03907. PubMed DOI
Artyukov A.A., Zelepuga E.A., Bogdanovich L.N., Lupach N.M., Novikov V.L., Rutckova T.A., Kozlovskaya E.P. Marine Polyhydroxynaphthoquinone, Echinochrome A: Prevention of Atherosclerotic Inflammation and Probable Molecular Targets. J. Clin. Med. 2020;9:1494. doi: 10.3390/jcm9051494. PubMed DOI PMC
Kim H.K., Vasileva E.A., Mishchenko N.P., Fedoreyev S.A., Han J. Multifaceted Clinical Effects of Echinochrome. Mar. Drugs. 2021;19:412. doi: 10.3390/md19080412. PubMed DOI PMC
Antman E.M., Anbe D.T., Armstrong P.W., Bates E.R., Green L.A., Hand M., Hochman J.S., Krumholz H.M., Kushner F.G., Lamas G.A., et al. ACC/AHA guidelines for the management of patients with ST-elevation myocardial infarction--executive summary: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Revise the 1999 Guidelines for the Management of Patients With Acute Myocardial Infarction) Circulation. 2004;110:588–636. PubMed
Wang D., Lv L., Xu Y., Jiang K., Chen F., Qian J., Chen M., Liu G., Xiang Y. Cardioprotection of Panax Notoginseng saponins against acute myocardial infarction and heart failure through inducing autophagy. Biomed. Pharmacother. 2021;136:111287. doi: 10.1016/j.biopha.2021.111287. PubMed DOI
Guo H., Adah D., James P.B., Liu Q., Li G., Ahmadu P., Chai L., Wang S., Liu Y., Hu L. Xueshuantong Injection (Lyophilized) Attenuates Cerebral Ischemia/Reperfusion Injury by the Activation of Nrf2-VEGF Pathway. Neurochem. Res. 2018;43:1096–1103. doi: 10.1007/s11064-018-2523-x. PubMed DOI
Zheng Q., Bao X.Y., Zhu P.C., Tong Q., Zheng G.Q., Wang Y. Ginsenoside Rb1 for Myocardial Ischemia/Reperfusion Injury: Preclinical Evidence and Possible Mechanisms. Oxid. Med. Cell Longev. 2017;2017:6313625. doi: 10.1155/2017/6313625. PubMed DOI PMC
Kim J.H. Pharmacological and medical applications of Panax ginseng and ginsenosides: A review for use in cardiovascular diseases. J. Ginseng Res. 2018;42:264–269. doi: 10.1016/j.jgr.2017.10.004. PubMed DOI PMC
Lin C., Liu Z., Lu Y., Yao Y., Zhang Y., Ma Z., Kuai M., Sun X., Sun S., Jing Y., et al. Cardioprotective effect of Salvianolic acid B on acute myocardial infarction by promoting autophagy and neovascularization and inhibiting apoptosis. J. Pharm. Pharmacol. 2016;68:941–952. doi: 10.1111/jphp.12567. PubMed DOI
He H.B., Yang X.Z., Shi M.Q., Zeng X.W., Wu L.M., Li L.D. Comparison of cardioprotective effects of salvianolic acid B and benazepril on large myocardial infarction in rats. Pharmacol. Rep. 2008;60:369–381. PubMed
Han D., Wei J., Zhang R., Ma W., Shen C., Feng Y., Xia N., Xu D., Cai D., Li Y., et al. Hydroxysafflor yellow A alleviates myocardial ischemia/reperfusion in hyperlipidemic animals through the suppression of TLR4 signaling. Sci. Rep. 2016;6:35319. doi: 10.1038/srep35319. PubMed DOI PMC
Ye J., Lu S., Wang M., Ge W., Liu H., Qi Y., Fu J., Zhang Q., Zhang B., Sun G., et al. Hydroxysafflor Yellow A Protects Against Myocardial Ischemia/Reperfusion Injury via Suppressing NLRP3 Inflammasome and Activating Autophagy. Front. Pharmacol. 2020;11:1170. doi: 10.3389/fphar.2020.01170. PubMed DOI PMC
Zhou D., Ding T., Ni B., Jing Y., Liu S. Hydroxysafflor Yellow A mitigated myocardial ischemia/reperfusion injury by inhibiting the activation of the JAK2/STAT1 pathway. Int. J. Mol. Med. 2019;44:405–416. doi: 10.3892/ijmm.2019.4230. PubMed DOI PMC
Park J.H., Lee N.K., Lim H.J., Mazumder S., Kumar Rethineswaran V., Kim Y.J., Jang W.B., Ji S.T., Kang S., Kim D.Y., et al. Therapeutic Cell Protective Role of Histochrome under Oxidative Stress in Human Cardiac Progenitor Cells. Mar. Drugs. 2019;17:368. doi: 10.3390/md17060368. PubMed DOI PMC
Tang X., Nishimura A., Ariyoshi K., Nishiyama K., Kato Y., Vasileva E.A., Mishchenko N.P., Fedoreyev S.A., Stonik V.A., Kim H.K., et al. Echinochrome Prevents Sulfide Catabolism-Associated Chronic Heart Failure after Myocardial Infarction in Mice. Mar. Drugs. 2023;21:52. doi: 10.3390/md21010052. PubMed DOI PMC
Song B.W., Kim S., Kim R., Jeong S., Moon H., Kim H., Vasileva E.A., Mishchenko N.P., Fedoreyev S.A., Stonik V.A., et al. Regulation of Inflammation-Mediated Endothelial to Mesenchymal Transition with Echinochrome a for Improving Myocardial Dysfunction. Mar. Drugs. 2022;20:756. doi: 10.3390/md20120756. PubMed DOI PMC
He J., Li S., Ding Y., Tong Y., Li X. Research Progress on Natural Products’ Therapeutic Effects on Atrial Fibrillation by Regulating Ion Channels. Cardiovasc. Ther. 2022;2022:4559809. doi: 10.1155/2022/4559809. PubMed DOI PMC
Pistoia F., Sacco S., Tiseo C., Degan D., Ornello R., Carolei A. The Epidemiology of Atrial Fibrillation and Stroke. Cardiol. Clin. 2016;34:255–268. doi: 10.1016/j.ccl.2015.12.002. PubMed DOI
Isakadze N., Kazzi Z., Bantsadze T., Gotsadze G., Butkhikridze N., El Chami M., Papiashvili G. Updated Atrial Fibrillation Management Recommendations for Georgian Hospitals Based on the 2020 European Society of Cardiology Atrial Fibrillation Guidelines. Georgian Med. News. 2022;333:13–16. PubMed
Hindricks G., Potpara T., Dagres N., Arbelo E., Bax J.J., Blomstrom-Lundqvist C., Boriani G., Castella M., Dan G.A., Dilaveris P.E., et al. 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS): The Task Force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC) Developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC. Eur. Heart J. 2021;42:373–498. PubMed
Camm A.J., Savelieva I. Some patients with paroxysmal atrial fibrillation should carry flecainide or propafenone to self treat. BMJ. 2007;334:637. doi: 10.1136/bmj.39143.720602.BE. PubMed DOI PMC
Levy S. Cardioversion of recent-onset atrial fibrillation using intravenous antiarrhythmics: A European perspective. J. Cardiovasc. Electrophysiol. 2021;32:3259–3269. doi: 10.1111/jce.15264. PubMed DOI
Siemers L.A., MacGillivray J., Andrade J.G., Turgeon R.D. Chronic Amiodarone Use and the Risk of Cancer: A Systematic Review and Meta-analysis. CJC Open. 2021;3:109–114. doi: 10.1016/j.cjco.2020.09.013. PubMed DOI PMC
Lu Y.Y., Cheng C.C., Chen Y.C., Lin Y.K., Chen S.A., Chen Y.J. Electrolyte disturbances differentially regulate sinoatrial node and pulmonary vein electrical activity: A contribution to hypokalemia- or hyponatremia-induced atrial fibrillation. Heart Rhythm. 2016;13:781–788. doi: 10.1016/j.hrthm.2015.12.005. PubMed DOI
Xu Z.Y., Xu Y., Xie X.F., Tian Y., Sui J.H., Sun Y., Lin D.S., Gao X., Peng C., Fan Y.J. Anti-platelet aggregation of Panax notoginseng triol saponins by regulating GP1BA for ischemic stroke therapy. Chin. Med. 2021;16:12. doi: 10.1186/s13020-021-00424-3. PubMed DOI PMC
Slagsvold K.H., Johnsen A.B., Rognmo O., Hoydal M.A., Wisloff U., Wahba A. Mitochondrial respiration and microRNA expression in right and left atrium of patients with atrial fibrillation. Physiol. Genom. 2014;46:505–511. doi: 10.1152/physiolgenomics.00042.2014. PubMed DOI
Wang Y.G., Zima A.V., Ji X., Pabbidi R., Blatter L.A., Lipsius S.L. Ginsenoside Re suppresses electromechanical alternans in cat and human cardiomyocytes. Am. J. Physiol. Heart Circ. Physiol. 2008;295:H851–H859. doi: 10.1152/ajpheart.01242.2007. PubMed DOI PMC
Jiang L., Yin X., Chen Y.H., Chen Y., Jiang W., Zheng H., Huang F.Q., Liu B., Zhou W., Qi L.W., et al. Proteomic analysis reveals ginsenoside Rb1 attenuates myocardial ischemia/reperfusion injury through inhibiting ROS production from mitochondrial complex I. Theranostics. 2021;11:1703–1720. doi: 10.7150/thno.43895. PubMed DOI PMC
Li X., Xiang N., Wang Z. Ginsenoside Rg2 attenuates myocardial fibrosis and improves cardiac function after myocardial infarction via AKT signaling pathway. Biosci. Biotechnol. Biochem. 2020;84:2199–2206. doi: 10.1080/09168451.2020.1793292. PubMed DOI
Mirhadi E., Rezaee M., Malaekeh-Nikouei B. Nano strategies for berberine delivery, a natural alkaloid of Berberis. Biomed. Pharmacother. 2018;104:465–473. doi: 10.1016/j.biopha.2018.05.067. PubMed DOI
Zhou Z.W., Zheng H.C., Zhao L.F., Li W., Hou J.W., Yu Y., Miao P.Z., Zhu J.M. Effect of berberine on acetylcholine-induced atrial fibrillation in rabbit. Am. J. Transl. Res. 2015;7:1450–1457. PubMed PMC
Wang H.X., Kwan C.Y., Wong T.M. Tetrandrine inhibits electrically induced [Ca2+]i transient in the isolated single rat cardiomyocyte. Eur. J. Pharmacol. 1997;319:115–122. doi: 10.1016/S0014-2999(96)00834-5. PubMed DOI
Wu S.N., Li H.F., Lo Y.C. Characterization of tetrandrine-induced inhibition of large-conductance calcium-activated potassium channels in a human endothelial cell line (HUV-EC-C) J. Pharmacol. Exp. Ther. 2000;292:188–195. PubMed
Huang B., Qin D., El-Sherif N. Spatial alterations of Kv channels expression and K+ currents in post-MI remodeled rat heart. Cardiovasc. Res. 2001;52:246–254. doi: 10.1016/S0008-6363(01)00378-9. PubMed DOI
Liu Q.N., Zhang L., Gong P.L., Yang X.Y., Zeng F.D. Inhibitory effects of dauricine on early afterdepolarizations and L-type calcium current. Can. J. Physiol. Pharmacol. 2009;87:954–962. doi: 10.1139/Y09-090. PubMed DOI
Zhou J., Ma W., Wang X., Liu H., Miao Y., Wang J., Du P., Chen Y., Zhang Y., Liu Z. Matrine Suppresses Reactive Oxygen Species (ROS)-Mediated MKKs/p38-Induced Inflammation in Oxidized Low-Density Lipoprotein (ox-LDL)-Stimulated Macrophages. Med. Sci. Monit. 2019;25:4130–4136. doi: 10.12659/MSM.917151. PubMed DOI PMC
Hernandez-Cascales J. Resveratrol enhances the inotropic effect but inhibits the proarrhythmic effect of sympathomimetic agents in rat myocardium. PeerJ. 2017;5:e3113. doi: 10.7717/peerj.3113. PubMed DOI PMC
Qian C., Ma J., Zhang P., Luo A., Wang C., Ren Z., Kong L., Zhang S., Wang X., Wu Y. Resveratrol attenuates the Na+-dependent intracellular Ca2+ overload by inhibiting H2O2-induced increase in late sodium current in ventricular myocytes. PLoS ONE. 2012;7:e51358. doi: 10.1371/journal.pone.0051358. PubMed DOI PMC
Gao Q., Yang B., Ye Z.G., Wang J., Bruce I.C., Xia Q. Opening the calcium-activated potassium channel participates in the cardioprotective effect of puerarin. Eur. J. Pharmacol. 2007;574:179–184. doi: 10.1016/j.ejphar.2007.07.018. PubMed DOI
Othong R., Trakulsrichai S., Wananukul W. Diospyros rhodocalyx (Tako-Na), a Thai folk medicine, associated with hypokalemia and generalized muscle weakness: A case series. Clin. Toxicol. 2017;55:986–990. doi: 10.1080/15563650.2017.1330957. PubMed DOI
McDonagh T.A., Metra M., Adamo M., Gardner R.S., Baumbach A., Bohm M., Burri H., Butler J., Celutkiene J., Chioncel O., et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2021;42:3599–3726. doi: 10.1093/eurheartj/ehab368. PubMed DOI
Chang K.Y., Giorgio K., Schmitz K., Walker R.F., Prins K.W., Pritzker M.R., Archer S.L., Lutsey P.L., Thenappan T. Effect of Chronic Digoxin Use on Mortality and Heart Failure Hospitalization in Pulmonary Arterial Hypertension. J. Am. Heart Assoc. 2023;12:e027559. doi: 10.1161/JAHA.122.027559. PubMed DOI PMC
Zhou Z.L., Yu P., Lin D. Study on effect of Astragalus injection in treating congestive heart failure. Zhongguo Zhong Xi Yi Jie He Za Zhi. 2001;21:747–749. PubMed
Jia Y., Chen C., Ng C.S., Leung S.W. Meta-Analysis of Randomized Controlled Trials on the Efficacy of Di’ao Xinxuekang Capsule and Isosorbide Dinitrate in Treating Angina Pectoris. Evid. Based Complement. Altern. Med. 2012;2012:904147. doi: 10.1155/2012/904147. PubMed DOI PMC
Li X., Zhang J., Huang J., Ma A., Yang J., Li W., Wu Z., Yao C., Zhang Y., Yao W., et al. A multicenter, randomized, double-blind, parallel-group, placebo-controlled study of the effects of qili qiangxin capsules in patients with chronic heart failure. J. Am. Coll. Cardiol. 2013;62:1065–1072. doi: 10.1016/j.jacc.2013.05.035. PubMed DOI
Ma R.G., Wang C.X., Shen Y.H., Wang Z.Q., Ma J.H., Huang L.S. Effect of Shenmai Injection on ventricular diastolic function in patients with chronic heart failure: An assessment by tissue Doppler imaging. Chin. J. Integr. Med. 2010;16:173–175. doi: 10.1007/s11655-010-0173-1. PubMed DOI
Singhuber J., Zhu M., Prinz S., Kopp B. Aconitum in traditional Chinese medicine: A valuable drug or an unpredictable risk? J. Ethnopharmacol. 2009;126:18–30. doi: 10.1016/j.jep.2009.07.031. PubMed DOI
Mares C., Udrea A.M., Buiu C., Staicu A., Avram S. Therapeutic Potentials of Aconite-like Alkaloids—Bioinformatics and Experimental Approaches. Mini Rev. Med. Chem. 2023;24:159–175. doi: 10.2174/1389557523666230328153417. PubMed DOI
Zhang Y., Chen S., Fan F., Xu N., Meng X.L., Zhang Y., Lin J.M. Neurotoxicity mechanism of aconitine in HT22 cells studied by microfluidic chip-mass spectrometry. J. Pharm. Anal. 2023;13:88–98. doi: 10.1016/j.jpha.2022.11.007. PubMed DOI PMC
Droge W. Free radicals in the physiological control of cell function. Physiol. Rev. 2002;82:47–95. doi: 10.1152/physrev.00018.2001. PubMed DOI
Mongirdiene A., Liuize A., Karciauskaite D., Mazgelyte E., Liekis A., Sadauskiene I. Relationship between Oxidative Stress and Left Ventricle Markers in Patients with Chronic Heart Failure. Cells. 2023;12:803. doi: 10.3390/cells12050803. PubMed DOI PMC
Najjar R.S., Feresin R.G. Protective Role of Polyphenols in Heart Failure: Molecular Targets and Cellular Mechanisms Underlying Their Therapeutic Potential. Int. J. Mol. Sci. 2021;22:1668. doi: 10.3390/ijms22041668. PubMed DOI PMC
Akhlaghi M., Bandy B. Preconditioning and acute effects of flavonoids in protecting cardiomyocytes from oxidative cell death. Oxid. Med. Cell Longev. 2012;2012:782321. doi: 10.1155/2012/782321. PubMed DOI PMC
Isaak C.K., Petkau J.C., Blewett H., O K., Siow Y.L. Lingonberry anthocyanins protect cardiac cells from oxidative-stress-induced apoptosis. Can. J. Physiol. Pharmacol. 2017;95:904–910. doi: 10.1139/cjpp-2016-0667. PubMed DOI
Wang L., Deng H., Wang T., Qiao Y., Zhu J., Xiong M. Investigation into the protective effects of hypaconitine and glycyrrhetinic acid against chronic heart failure of the rats. BMC Complement. Med. Ther. 2022;22:160. doi: 10.1186/s12906-022-03632-y. PubMed DOI PMC
Heidenreich P.A., Bozkurt B., Aguilar D., Allen L.A., Byun J.J., Colvin M.M., Deswal A., Drazner M.H., Dunlay S.M., Evers L.R., et al. 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: Executive Summary: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation. 2022;145:e876–e894. doi: 10.1161/CIR.0000000000001062. PubMed DOI
Dobson L.E., Prendergast B.D. Heart valve disease: A journey of discovery. Heart. 2022;108:774–779. doi: 10.1136/heartjnl-2021-320146. PubMed DOI
Wasmus C., Dudek J. Metabolic Alterations Caused by Defective Cardiolipin Remodeling in Inherited Cardiomyopathies. Life. 2020;10:277. doi: 10.3390/life10110277. PubMed DOI PMC
Chiang Y.F., Chen H.Y., Chang Y.J., Shih Y.H., Shieh T.M., Wang K.L., Hsia S.M. Protective Effects of Fucoxanthin on High Glucose- and 4-Hydroxynonenal (4-HNE)-Induced Injury in Human Retinal Pigment Epithelial Cells. Antioxidants. 2020;9:1176. doi: 10.3390/antiox9121176. PubMed DOI PMC
Azizi M., Sapoval M., Gosse P., Monge M., Bobrie G., Delsart P., Midulla M., Mounier-Vehier C., Courand P.Y., Lantelme P., et al. Optimum and stepped care standardised antihypertensive treatment with or without renal denervation for resistant hypertension (DENERHTN): A multicentre, open-label, randomised controlled trial. Lancet. 2015;385:1957–1965. doi: 10.1016/S0140-6736(14)61942-5. PubMed DOI
Whelton P.K., Carey R.M., Mancia G., Kreutz R., Bundy J.D., Williams B. Harmonization of the American College of Cardiology/American Heart Association and European Society of Cardiology/European Society of Hypertension Blood Pressure/Hypertension Guidelines. Eur. Heart J. 2022;43:3302–3311. doi: 10.1093/eurheartj/ehac432. PubMed DOI PMC
Wang J., Yin N., Deng Y., Wei Y., Huang Y., Pu X., Li L., Zheng Y., Guo J., Yu J., et al. Ascorbic Acid Protects against Hypertension through Downregulation of ACE1 Gene Expression Mediated by Histone Deacetylation in Prenatal Inflammation-Induced Offspring. Sci. Rep. 2016;6:39469. doi: 10.1038/srep39469. PubMed DOI PMC
Ahmad K.A., Yuan Yuan D., Nawaz W., Ze H., Zhuo C.X., Talal B., Taleb A., Mais E., Qilong D. Antioxidant therapy for management of oxidative stress induced hypertension. Free Radic. Res. 2017;51:428–438. doi: 10.1080/10715762.2017.1322205. PubMed DOI
Raghuvanshi R., Chandra M., Mishra A., Misra M.K. Effect of vitamin E administration on blood pressure following reperfusion of patients with myocardial infarction. Exp. Clin. Cardiol. 2007;12:87–90. PubMed PMC
Panahi Y., Namazi S., Rostami-Yalmeh J., Sahebi E., Khalili N., Jamialahmadi T., Sahebkar A. Effect of Vitamin D Supplementation on the Regulation of Blood Pressure in Iranian Patients with Essential Hypertension: A Clinical Trial. Adv. Exp. Med. Biol. 2021;1328:501–511. PubMed
Grujic-Milanovic J., Miloradovic Z., Jovovic D., Jacevic V., Milosavljevic I., Milanovic S., Mihailovic-Stanojevic N. The red wine polyphenol, resveratrol improves hemodynamics, oxidative defence and aortal structure in essential and malignant hypertension. J. Func. Foods. 2017;34:266–276. doi: 10.1016/j.jff.2017.04.035. DOI
Gojkovic-Bukarica L., Markovic-Lipkovski J., Heinle H., Cirovic S., Rajkovic J., Djokic V., Zivanovic V., Bukarica A., Novakovic R. The red wine polyphenol resveratrol induced relaxation of the isolated renal artery of diabetic rats: The role of potassium channels. J. Func. Foods. 2019;52:266–275. doi: 10.1016/j.jff.2018.11.009. DOI
Grujic-Milanovic J., Jacevic V., Miloradovic Z., Jovovic D., Milosavljevic I., Milanovic S.D., Mihailovic-Stanojevic N. Resveratrol Protects Cardiac Tissue in Experimental Malignant Hypertension Due to Antioxidant, Anti-Inflammatory, and Anti-Apoptotic Properties. Int. J. Mol. Sci. 2021;22:5006. doi: 10.3390/ijms22095006. PubMed DOI PMC
Grujic-Milanovic J., Jacevic V., Miloradovic Z., Milanovic S.D., Jovovic D., Ivanov M., Karanovic D., Vajic U.J., Mihailovic-Stanojevic N. Resveratrol improved kidney function and structure in malignantly hypertensive rats by restoration of antioxidant capacity and nitric oxide bioavailability. Biomed. Pharmacother. 2022;154:113642. doi: 10.1016/j.biopha.2022.113642. PubMed DOI
Fogacci F., Tocci G., Presta V., Fratter A., Borghi C., Cicero A.F.G. Effect of resveratrol on blood pressure: A systematic review and meta-analysis of randomized, controlled, clinical trials. Crit. Rev. Food Sci. Nutr. 2019;59:1605–1618. doi: 10.1080/10408398.2017.1422480. PubMed DOI
Vanaja K., Wahl M.A., Bukarica L., Heinle H. Liposomes as carriers of the lipid soluble antioxidant resveratrol: Evaluation of amelioration of oxidative stress by additional antioxidant vitamin. Life Sci. 2013;93:917–923. doi: 10.1016/j.lfs.2013.10.019. PubMed DOI
De Angelis M., Della-Morte D., Buttinelli G., Di Martino A., Pacifici F., Checconi P., Ambrosio L., Stefanelli P., Palamara A.T., Garaci E., et al. Protective Role of Combined Polyphenols and Micronutrients against Influenza A Virus and SARS-CoV-2 Infection In Vitro. Biomedicines. 2021;9:1721. doi: 10.3390/biomedicines9111721. PubMed DOI PMC
Lin X., Zhao J., Ge S., Lu H., Xiong Q., Guo X., Li L., He S., Wang J., Peng F., et al. Dietary Polyphenol Intake and Risk of Hypertension: An 18-y Nationwide Cohort Study in China. Am. J. Clin. Nutr. 2023;118:264–272. doi: 10.1016/j.ajcnut.2023.05.001. PubMed DOI PMC
Chang X., Zhang T., Zhang W., Zhao Z., Sun J. Natural Drugs as a Treatment Strategy for Cardiovascular Disease through the Regulation of Oxidative Stress. Oxid. Med. Cell Longev. 2020;2020:5430407. doi: 10.1155/2020/5430407. PubMed DOI PMC
Wang J., Zeng L., Zhang Y., Qi W., Wang Z., Tian L., Zhao D., Wu Q., Li X., Wang T. Pharmacological properties, molecular mechanisms and therapeutic potential of ginsenoside Rg3 as an antioxidant and anti-inflammatory agent. Front. Pharmacol. 2022;13:975784. doi: 10.3389/fphar.2022.975784. PubMed DOI PMC
Jin H., Jiao Y., Guo L., Ma Y., Zhao R., Li X., Shen L., Zhou Z., Kim S.C., Liu J. Astragaloside IV blocks monocrotaline-induced pulmonary arterial hypertension by improving inflammation and pulmonary artery remodeling. Int. J. Mol. Med. 2021;47:595–606. doi: 10.3892/ijmm.2020.4813. PubMed DOI PMC
Serban M.C., Sahebkar A., Zanchetti A., Mikhailidis D.P., Howard G., Antal D., Andrica F., Ahmed A., Aronow W.S., Muntner P., et al. Effects of Quercetin on Blood Pressure: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Am. Heart Assoc. 2016;5:e002713. doi: 10.1161/JAHA.115.002713. PubMed DOI PMC
Larson A.J., Symons J.D., Jalili T. Therapeutic potential of quercetin to decrease blood pressure: Review of efficacy and mechanisms. Adv. Nutr. 2012;3:39–46. doi: 10.3945/an.111.001271. PubMed DOI PMC
Wang H.P., Yang J., Qin L.Q., Yang X.J. Effect of garlic on blood pressure: A meta-analysis. J. Clin. Hypertens. 2015;17:223–231. doi: 10.1111/jch.12473. PubMed DOI PMC
Ried K., Travica N., Sali A. The effect of aged garlic extract on blood pressure and other cardiovascular risk factors in uncontrolled hypertensives: The AGE at Heart trial. Integr. Blood Press Control. 2016;9:9–21. doi: 10.2147/IBPC.S93335. PubMed DOI PMC
Hansawasdi C., Kawabata J., Kasai T. Alpha-amylase inhibitors from roselle (Hibiscus sabdariffa Linn.) tea. Biosci. Biotechnol. Biochem. 2000;64:1041–1043. doi: 10.1271/bbb.64.1041. PubMed DOI
Alemayehu G.F., Forsido S.F., Tola Y.B., Amare E. Nutritional and Phytochemical Composition and Associated Health Benefits of Oat (Avena sativa) Grains and Oat-Based Fermented Food Products. Sci. World J. 2023;2023:2730175. doi: 10.1155/2023/2730175. PubMed DOI PMC
Ali M.Z., Mehmood M.H., Saleem M., Hamid Akash M.S., Malik A. Pharmacological evaluation of Euphorbia hirta, Fagonia indica and Capparis decidua in hypertension through in-vivo and in vitro-assays. Heliyon. 2021;7:e08094. doi: 10.1016/j.heliyon.2021.e08094. PubMed DOI PMC
Brendler T., Abdel-Tawab M. Buchu (Agathosma betulina and A. crenulata): Rightfully Forgotten or Underutilized? Front. Pharmacol. 2022;13:813142. doi: 10.3389/fphar.2022.813142. PubMed DOI PMC
An P., Wan S., Luo Y., Luo J., Zhang X., Zhou S., Xu T., He J., Mechanick J.I., Wu W.C., et al. Micronutrient Supplementation to Reduce Cardiovascular Risk. J. Am. Coll. Cardiol. 2022;80:2269–2285. doi: 10.1016/j.jacc.2022.09.048. PubMed DOI
Shaito A., Thuan D.T.B., Phu H.T., Nguyen T.H.D., Hasan H., Halabi S., Abdelhady S., Nasrallah G.K., Eid A.H., Pintus G. Herbal Medicine for Cardiovascular Diseases: Efficacy, Mechanisms, and Safety. Front. Pharmacol. 2020;11:422. doi: 10.3389/fphar.2020.00422. PubMed DOI PMC
Sharifi-Rad J., Rodrigues C.F., Sharopov F., Docea A.O., Can Karaca A., Sharifi-Rad M., Kahveci Karincaoglu D., Gulseren G., Senol E., Demircan E., et al. Diet, Lifestyle and Cardiovascular Diseases: Linking Pathophysiology to Cardioprotective Effects of Natural Bioactive Compounds. Int. J. Environ. Res. Public Health. 2020;17:2326. doi: 10.3390/ijerph17072326. PubMed DOI PMC