Resveratrol Protects Cardiac Tissue in Experimental Malignant Hypertension Due to Antioxidant, Anti-Inflammatory, and Anti-Apoptotic Properties
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
34066865
PubMed Central
PMC8125904
DOI
10.3390/ijms22095006
PII: ijms22095006
Knihovny.cz E-zdroje
- Klíčová slova
- heart, resveratrol, spontaneously and malignant hypertension,
- MeSH
- antiflogistika farmakologie terapeutické užití MeSH
- antioxidancia terapeutické užití MeSH
- apoptóza * účinky léků MeSH
- hemodynamika účinky léků MeSH
- hypertenze maligní farmakoterapie enzymologie patologie patofyziologie MeSH
- kardiotonika farmakologie terapeutické užití MeSH
- krysa rodu Rattus MeSH
- látky reagující s kyselinou thiobarbiturovou metabolismus MeSH
- myokard patologie MeSH
- NG-nitroargininmethylester chemie farmakologie MeSH
- oxidace-redukce MeSH
- potkani inbrední SHR MeSH
- protein X asociovaný s bcl-2 metabolismus MeSH
- resveratrol chemie farmakologie terapeutické užití MeSH
- srdeční komory účinky léků patologie patofyziologie MeSH
- tělesná hmotnost účinky léků MeSH
- velikost orgánu účinky léků MeSH
- zánět komplikace farmakoterapie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antiflogistika MeSH
- antioxidancia MeSH
- kardiotonika MeSH
- látky reagující s kyselinou thiobarbiturovou MeSH
- NG-nitroargininmethylester MeSH
- protein X asociovaný s bcl-2 MeSH
- resveratrol MeSH
Hypertension is one of the most prevalent and powerful contributors of cardiovascular diseases. Malignant hypertension is a relatively rare but extremely severe form of hypertension accompanied with heart, brain, and renal impairment. Resveratrol, a recently described grape-derived, polyphenolic antioxidant molecule, has been proposed as an effective agent in the prevention of cardiovascular diseases. This study was designed to examine chronic resveratrol administration on blood pressure, oxidative stress, and inflammation, with special emphasis on cardiac structure and function in two models of experimental hypertension. The experiments were performed in spontaneously (SHRs) and malignantly hypertensive rats (MHRs). The chronic administration of resveratrol significantly decreased blood pressure in both spontaneously and malignant hypertensive animals. The resveratrol treatment ameliorated morphological changes in the heart tissue. The immunohistochemistry of the heart tissue after resveratrol treatment showed that both TGF-β and Bax were not present in the myocytes of SHRs and were present mainly in the myocytes of MHRs. Resveratrol suppressed lipid peroxidation and significantly improved oxidative status and release of NO. These results suggest that resveratrol prevents hypertrophic and apoptotic consequences induced by high blood pressure with more pronounced effects in malignant hypertension.
Institute of Pathology and Forensic Medicine Military Medical Academy 11000 Belgrade Serbia
Medical Faculty of the Military Medical Academy University of Defence 11000 Belgrade Serbia
Zobrazit více v PubMed
Bauer V., Sotníková R. Nitric oxide--the endothelium-derived relaxing factor and its role in endothelial functions. Gen. Physiol. Biophys. 2010;29:319–340. doi: 10.4149/gpb_2010_04_319. PubMed DOI
Leishman A.W.D. Hypertension—Treated and untreated: A study of 400 cases. Br. Med. J. 1959;1:1361. doi: 10.1136/bmj.1.5134.1361. PubMed DOI PMC
Doggrell S.A., Brown L. Rat models of hypertension, cardiac hypertrophy and failure. Cardiovasc. Res. 1998;39:89–105. doi: 10.1016/S0008-6363(98)00076-5. PubMed DOI
Lerman L.O., Kurtz T.W., Touyz R.M., Ellison D.H., Chade A.R., Crowley S.D., Mattson D.L., Mullins J.J., Osborn J., Eirin A., et al. Animal Models of Hypertension: A Scientific Statement From the American Heart Association. Hypertension. 2019;73:e87–e120. doi: 10.1161/HYP.0000000000000090. PubMed DOI PMC
Grujic-Milanovic J., Miloradovic Z., Jovovic D., Jacevic V., Milosavljevic I., Milanovic S.D., Mihailovic-Stanojevic N. The red wine polyphenol, resveratrol improves hemodynamics, oxidative defence and aortal structure in essential and malignant hypertension. J. Funct. Foods. 2017;34:266–276. doi: 10.1016/j.jff.2017.04.035. DOI
Sventek P., Li J.S., Grove K., Deschepper C.F., Schiffrin E.L. Vascular structure and expression of endothelin-1 gene in L-NAME-treated spontaneously hypertensive rats. Hypertension. 1996;27:49–55. doi: 10.1161/01.HYP.27.1.49. PubMed DOI
Heistad D.D., Wakisaka Y., Miller J., Chu Y., Pena-Silva R. Novel aspects of oxidative stress in cardiovascular diseases. Circ. J. 2009;73:201–207. doi: 10.1253/circj.CJ-08-1082. PubMed DOI PMC
Incalza M.A., D’Oria R., Natalicchio A., Perrini S., Laviola L., Giorgino F. Oxidative stress and reactive oxygen species in endothelial dysfunction associated with cardiovascular and metabolic diseases. Vasc. Pharmacol. 2018;100:1–19. doi: 10.1016/j.vph.2017.05.005. PubMed DOI
Touyz R.M., Rios F.J., Alves-Lopes R., Neves K.B., Camargo L.L., Montezano A.C. Oxidative Stress: A Unifying Paradigm in Hypertension. Can. J. Cardiol. 2020;36:659–670. doi: 10.1016/j.cjca.2020.02.081. PubMed DOI PMC
Greer I.A., Dawes J., Johnston T.A., Calder A.A. Neutrophil activation is confined to the maternal circulation in pregnancy-induced hypertension. Obstet. Gynecol. 1991;78:28–32. doi: 10.1016/0020-7292(92)90078-W. PubMed DOI
Arnhold J. The dual role of myeloperoxidase in immune response. Int. J. Mol. Sci. 2020;21:8057. doi: 10.3390/ijms21218057. PubMed DOI PMC
Zhu M.L., Zhao J.P., Cui N., Gonçalves-Rizzi V.H., Possomato-Vieira J.S., Nascimento R.A., Dias-Junior C.A. Cardiac myeloperoxidase activity is elevated in hypertensive pregnant rats. Curr. Med. Sci. 2017;37:904–909. doi: 10.1007/s11596-017-1825-6. PubMed DOI
Kothari N., Keshari R.S., Bogra J., Kohli M., Abbas H., Malik A., Dikshit M., Barthwal M.K. Increased myeloperoxidase enzyme activity in plasma is an indicator of inflammation and onset of sepsis. J. Crit. Care. 2011;26:435.e1–435.e7. doi: 10.1016/j.jcrc.2010.09.001. PubMed DOI
Tsai S., Hollenbeck S.T., Ryer E.J., Edlin R., Yamanouchi D., Kundi R., Wang C., Liu B., Kent K.C. TGF-beta through Smad3 signaling stimulates vascular smooth muscle cell proliferation and neointimal formation. Am. J. Physiol. Heart Circ. Physiol. 2009;297:H540–H549. doi: 10.1152/ajpheart.91478.2007. PubMed DOI PMC
Lefer A.M., Ma X.L., Weyrich A.S., Scalia R. Mechanism of the cardioprotective effect of transforming growth factor β1 in feline myocardial ischemia and reperfusion. Proc. Natl. Acad. Sci. USA. 1993;90:1018–1022. doi: 10.1073/pnas.90.3.1018. PubMed DOI PMC
Hockenbery D.M., Zutter M., Hickey W., Nahm M., Korsmeyer S.J. BCL2 protein is topographically restricted in tissues characterized by apoptotic cell death. Proc. Natl. Acad. Sci. USA. 1991;88:6961–6965. doi: 10.1073/pnas.88.16.6961. PubMed DOI PMC
Oltval Z.N., Milliman C.L., Korsmeyer S.J. Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programed cell death. Cell. 1993;74:609–619. doi: 10.1016/0092-8674(93)90509-O. PubMed DOI
Fraga C.G., Croft K.D., Kennedy D.O., Tomás-Barberán F.A. The effects of polyphenols and other bioactives on human health. Food Funct. 2019;10:514–528. doi: 10.1039/C8FO01997E. PubMed DOI
Droste D.W., Iliescu C., Vaillant M., Gantenbein M., De Bremaeker N., Lieunard C., Velez T., Meyer M., Guth T., Kuemmerle A., et al. Advice on Lifestyle Changes (Diet, Red Wine and Physical Activity) Does Not Affect Internal Carotid and Middle Cerebral Artery Blood Flow Velocity in Patients with Carotid Arteriosclerosis in a Randomized Controlled Trial. Cerebrovasc. Dis. 2014;37:368–375. doi: 10.1159/000362535. PubMed DOI
Opie L.H., Lecour S. The red wine hypothesis: From concepts to protective signalling molecules. Eur. Heart J. 2007;28:1683–1693. doi: 10.1093/eurheartj/ehm149. PubMed DOI
Mihailovic-Stanojevic N., Savikin K., Zivkovic J., Zdunic G., Miloradovic Z., Ivanov M., Karanovic D., Vajic U.J., Jovovic D., Grujic-Milanovic J. Moderate consumption of alcohol-free red wine provide more beneficial effects on systemic haemodynamics, lipid profile and oxidative stress in spontaneously hypertensive rats than red wine. J. Funct. Foods. 2016;26:719–730. doi: 10.1016/j.jff.2016.08.051. DOI
Ronksley P.E., Brien S.E., Turner B.J., Mukamal K.J., Ghali W.A. Association of alcohol consumption with selected cardiovascular disease outcomes: A systematic review and meta-analysis. BMJ. 2011;342:d671. doi: 10.1136/bmj.d671. PubMed DOI PMC
Cheng P.W., Lee H.C., Lu P.J., Chen H.H., Lai C.C., Sun G.C., Yeh T.C., Hsiao M., Lin Y.-T., Liu C.P., et al. Resveratrol Inhibition of Rac1-Derived Reactive Oxygen Species by AMPK Decreases Blood Pressure in a Fructose-Induced Rat Model of Hypertension. Sci. Rep. 2016;6:25342. doi: 10.1038/srep25342. PubMed DOI PMC
Cullberg K.B., Foldager C.B., Lind M., Richelsen B., Pedersen S.B. Inhibitory effects of resveratrol on hypoxia-induced inflammation in 3T3-L1 adipocytes and macrophages. J. Funct. Foods. 2014;7:171–179. doi: 10.1016/j.jff.2014.02.015. DOI
Takashina M., Inoue S., Tomihara K., Tomita K., Hattori K., Zhao Q.L., Suzuki T., Noguchi M., Ohashi W., Hattori Y. Different effect of resveratrol to induction of apoptosis depending on the type of human cancer cells. Int. J. Oncol. 2017;50:787–797. doi: 10.3892/ijo.2017.3859. PubMed DOI
Vázquez-Garza E., Bernal-Ramírez J., Jerjes-Sánchez C., Lozano O., Acuña-Morín E., Vanoye-Tamez M., Ramos-González M.R., Chapoy-Villanueva H., Pérez-Plata L., Sánchez-Trujillo L., et al. Resveratrol Prevents Right Ventricle Remodeling and Dysfunction in Monocrotaline-Induced Pulmonary Arterial Hypertension with a Limited Improvement in the Lung Vasculature. Oxidative Med. Cell. Longev. 2020;2020:1–13. doi: 10.1155/2020/1841527. PubMed DOI PMC
Ungvari Z., Orosz Z., Rivera A., Labinskyy N., Xiangmin Z., Olson S., Podlutsky A., Csiszar A. Resveratrol increases vascular oxidative stress resistance. Am. J. Physiol. Heart Circ. Physiol. 2007;292:2417–2424. doi: 10.1152/ajpheart.01258.2006. PubMed DOI
Toklu H.Z., Şehirli Ö., Erşahin M., Süleymanoǧlu S., Yiǧiner Ö., Emekli-Alturfan E., Yarat A., Yeǧen B.Ç., Şener G. Resveratrol improves cardiovascular function and reduces oxidative organ damage in the renal, cardiovascular and cerebral tissues of two-kidney, one-clip hypertensive rats. J. Pharm. Pharmacol. 2010;62:1784–1793. doi: 10.1111/j.2042-7158.2010.01197.x. PubMed DOI
Senoner T., Dichtl W. Oxidative stress in cardiovascular diseases: Still a therapeutic target? Nutrients. 2019;11:2090. doi: 10.3390/nu11092090. PubMed DOI PMC
Dong Q., Wu Z., Li X., Yan J., Zhao L., Yang C., Lu J., Deng J., Chen M. Resveratrol ameliorates cardiac dysfunction induced by pressure overload in rats via structural protection and modulation of Ca2+ cycling proteins. J. Transl. Med. 2014;12:323. doi: 10.1186/s12967-014-0323-x. PubMed DOI PMC
Harvey A., Montezano A.C., Touyz R.M. Vascular biology of ageing-Implications in hypertension. J. Mol. Cell. Cardiol. 2015;83:112–121. doi: 10.1016/j.yjmcc.2015.04.011. PubMed DOI PMC
Liu Z., Song Y., Zhang X., Liu Z., Zhang W., Mao W., Wang W., Cui W., Zhang X., Jia X., et al. Effects of trans-resveratrol on hypertension-induced cardiac hypertrophy using the partially nephrectomized rat model. Clin. Exp. Pharmacol. Physiol. 2005;32:1049–1054. doi: 10.1111/j.1440-1681.2005.04303.x. PubMed DOI
Sousa T., Afonso J., Carvalho F., Albino-Teixeir A. Lipid Peroxidation and Antioxidants in Arterial Hypertension. Lipid Peroxidation. 2012:345–392. doi: 10.5772/50346. DOI
Tanase D.M., Gosav E.M., Radu S., Ouatu A., Rezus C., Ciocoiu M., Florida Costea C., Floria M. Review Article Arterial Hypertension and Interleukins: Potential Therapeutic Target or Future Diagnostic Marker? Int. J. Hypertens. 2019;2019:3159283. doi: 10.1155/2019/3159283. PubMed DOI PMC
Robb E.L., Winkelmolen L., Visanji N., Brotchie J., Stuart J.A. Dietary resveratrol administration increases MnSOD expression and activity in mouse brain. Biochem. Biophys. Res. Commun. 2008;372:254–259. doi: 10.1016/j.bbrc.2008.05.028. PubMed DOI
Li Y., Cao Z., Zhu H. Upregulation of endogenous antioxidants and phase 2 enzymes by the red wine polyphenol, resveratrol in cultured aortic smooth muscle cells leads to cytoprotection against oxidative and electrophilic stress. Pharmacol. Res. 2006;53:6–15. doi: 10.1016/j.phrs.2005.08.002. PubMed DOI
Dillenburg D.R., Mostarda C., Moraes-Silva I.C., Ferreira D., da Silva GonçalvesBós D., Duarte A.A.M., Irigoyen M.C., Rigatto K. Resveratrol and grape juice differentially ameliorate cardiovascular autonomic modulation in L-NAME-treated rats. Auton. Neurosci. 2013;179:9–13. doi: 10.1016/j.autneu.2013.06.002. PubMed DOI
Ikizler M., Ovali C., Dernek S., Erkasap N., Sevin B., Kaygisiz Z., Kural T. Protective effects of resveratrol in ischemia-reperfusion injury of skeletal muscle: A clinically relevant animal model for lower extremity ischemia. Chin. J. Physiol. 2006;49:204–209. PubMed
Morales A.I., Buitrago J.M., Santiago J.M., Fernandez-Tagarro M., Lopez-Novoa J.M., Perez-Barriocanal F. Protective effect of trans-resveratrol on gentamicin-induced nephrotoxicity. Antioxid. Redox Signal. 2002;4:893–898. doi: 10.1089/152308602762197434. PubMed DOI
Eiserich J.P., Baldus S., Brennan M.L., Ma W., Zhang C., Tousson A., Castro L., Lusis A.J., Nauseef W.M., White C.R., et al. Myeloperoxidase, a leukocyte-derived vascular NO oxidase. Science. 2002;296:2391–2394. doi: 10.1126/science.1106830. PubMed DOI
Vanhoutte P.M., Shimokawa H., Tang E.H.C., Feletou M. Endothelial dysfunction and vascular disease. Acta Physiol. 2009;196:193–222. doi: 10.1111/j.1748-1716.2009.01964.x. PubMed DOI
Mata-Greenwood E., Grobe A., Kumar S., Noskina Y., Black S.M. Cyclic stretch increases VEGF expression in pulmonary arterial smooth muscle cells via TGF-beta1 and reactive oxygen species: A requirement for NAD(P)H oxidase. Am. J. Physiol. Lung Cell. Mol. Physiol. 2005;289:L288–L289. doi: 10.1152/ajplung.00417.2004. PubMed DOI
Popovic N., Bridenbaugh E.A., Neiger J.D., Hu J.-J., Vannucci M., Mo Q., Trzeciakowski J., Miller M.W., Fossum T.W., Humphrey J.D., et al. Transforming growth factor-beta signaling in hypertensive remodeling of porcine aorta. Am. J. Physiol. Heart Circ. Physiol. 2009;297:H2044–H2053. doi: 10.1152/ajpheart.01015.2008. PubMed DOI PMC
Liu R.M., Desai L.P. Reciprocal regulation of TGF-β and reactive oxygen species: A perverse cycle for fibrosis. Redox Biol. 2015;6:565–577. doi: 10.1016/j.redox.2015.09.009. PubMed DOI PMC
Misao J., Hayakawa Y., Ohno M., Kato S., Fujiwara T., Fujiwara H. Expression of bcl-2 protein, an inhibitor of apoptosis, and Bax, an accelerator of apoptosis, in ventricular myocytes of human hearts with myocardial infarction. Circulation. 1996;94:1506–1512. doi: 10.1161/01.CIR.94.7.1506. PubMed DOI
Krajewski S., Krajewska M., Shabaik A., Miyashita T., Wang H.G., Reed J.C. Immunohistochemical determination of in vivo distribution of Bax, a dominant inhibitor of Bcl-2. Am. J. Pathol. 1994;145:1323–1336. PubMed PMC
Miloradović Z., Jerkić M., Jovović D., Mihailović-Stanojević N., Grujić Milanović J., Stošcic G., Marković-Lipkovski J. Bosentan and losartan ameliorate acute renal failure associated with mild but not strong NO blockade. Nephrol. Dial. Transplant. 2007;22:2476–2484. doi: 10.1093/ndt/gfm213. PubMed DOI
Ohkawa H., Ohishi N., Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 1979;95:351–358. doi: 10.1016/0003-2697(79)90738-3. PubMed DOI
Selmeci L., Seres L., Antal M., Lukács J., Regöly-Mérei A., Acsády G. Advanced oxidation protein products (AOPP) for monitoring oxidative stress in critically ill patients: A simple, fast and inexpensive automated technique. Clin. Chem. Lab. Med. 2005;43:294–297. doi: 10.1515/CCLM.2005.050. PubMed DOI
Ellman G.L. Tissue sulfhydryl groups. Arch. Biochem. Biophys. 1959;82:70–77. doi: 10.1016/0003-9861(59)90090-6. PubMed DOI
Pick E., Keisari Y. A simple colorimetric method for the measurement of hydrogen peroxide produced by cells in culture. J. Immunol. Methods. 1980;38:161–170. doi: 10.1016/0022-1759(80)90340-3. PubMed DOI
Alamdari D.H., Paletas K., Pegiou T., Sarigianni M., Befani C., Koliakos G. A novel assay for the evaluation of the prooxidant-antioxidant balance, before and after antioxidant vitamin administration in type II diabetes patients. Clin. Biochem. 2007;40:248–254. doi: 10.1016/j.clinbiochem.2006.10.017. PubMed DOI
Paglia D.E., Valentine W.N. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J. Lab. Clin. Med. 1967;70:158–169. PubMed
McCord J.M., Fridovich I. The reduction of cytochrome c by milk xanthine oxidase. J. Biol. Chem. 1968;243:5753–5760. doi: 10.1016/S0021-9258(18)91929-0. PubMed DOI
Glatzle D., Vuilleumier J.P., Weber F., Decker K. Glutathione reductase test with whole blood, a convenient procedure for the assessment of the riboflavin status in humans. Experientia. 1974;30:665–667. doi: 10.1007/BF01921531. PubMed DOI
Beutler E. Catalasa. In: Beutler E., editor. Red Cell Metabolism, a Manual of Biochemical Methods. Grune and Stratton; New York, NY, USA: 1982.
Jaćević V., Wu Q., Nepovimova E., Kuča K. Efficacy of methylprednisolone on T-2 toxin-induced cardiotoxicity in vivo: A pathohistological study. Environ. Toxicol. Pharmacol. 2019;71:103221. doi: 10.1016/j.etap.2019.103221. PubMed DOI