Determining the Mouth-to-Microphone Distance in Rigid Laryngoscopy: A Simple Solution Based on the Newly Measured Values of the Depth of Endoscope Insertion into the Mouth
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
TH04010422
Technology Agency of the Czech Republic
IGA_PrF_2021_017
Palacký University in Olomouc
IGA_PrF_2022_029
Palacký University in Olomouc
PubMed
38137629
PubMed Central
PMC10744282
DOI
10.3390/jcm12247560
PII: jcm12247560
Knihovny.cz E-zdroje
- Klíčová slova
- mouth-to-microphone distance, oral cavity length, rigid laryngoscopy, voice recording,
- Publikační typ
- časopisecké články MeSH
Mouth-to-microphone (MTM) distance is important when measuring the sound of voice. However, determining the MTM distance for laryngoscope-mounted microphones during laryngoscopic examinations is cumbersome. We introduce a novel solution for such cases, using the depth of insertion of the laryngoscope into the mouth DI as a reference distance. We measured the average insertion depth, DI, in 60 adult women and 60 adult men for rigid laryngoscopes with 70° and 90° view. We found the DI for the 70°/90° laryngoscope to be 9.7 ± 0.9/9.4 ± 0.6 cm in men, 8.9 ± 0.9/8.7 ± 0.7 cm in women, and 9.3 ± 0.9/9.0 ± 0.7 cm in all adults. Using these values, we show that, for microphones fixed at 15-40 cm from the tip of the laryngoscope, the final MTM distances are between 5 and 35 cm from the lips, and the standard uncertainties of these distances are between 16% and 2.5%. Our solution allows laryngologists and laryngoscope manufacturers to set and estimate the MTM distance for any rigid laryngeal endoscope with a microphone attached with reasonable accuracy, avoiding the need to measure this distance in vivo in routine practice.
Zobrazit více v PubMed
Angerstein W., Baracca G., Dejonckere P., Echternach M., Eysholdt U., Fussi F., Geneid A., Hacki T., Karmelita-Katulska K., Haubrich R., et al. Diagnosis and Differential Diagnosis of Voice Disorders. In: Zehnhoff-Dinnesen A.A., Wiskirska-Woznica B., Neumann K., Nawka T., editors. Phoniatrics I: Fundamentals–Voice Disorders–Disorders of Language and Hearing Development. Springer; Berlin/Heidelberg, Germany: 2020. pp. 349–430.
Woo P. Objective Measures of Laryngeal Imaging: What Have We Learned Since Dr. Paul Moore. J. Voice. 2014;28:69–81. doi: 10.1016/j.jvoice.2013.02.001. PubMed DOI
Bless D.M., Patel R.R., Connor N. Laryngeal Imaging: Stroboscopy, High-Speed Digital Imaging, and Kymography. In: Fried M.P., Ferlito A., editors. The Larynx. Plural Publishing; San Diego, CA, USA: 2009. pp. 181–210.
Švec J.G., Schutte H.K. Kymographic Imaging of Laryngeal Vibrations. Curr. Opin. Otolaryngol. Head Neck Surg. 2012;20:458–465. doi: 10.1097/MOO.0b013e3283581feb. PubMed DOI
Woo P. Objective Measures of Stroboscopy and High-Speed Video. Adv. Oto-Rhino-Laryngol. 2020;85:25–44. doi: 10.1159/000456681. PubMed DOI
Kumar S.P., Švec J.G. A Simple Method to Obtain Basic Acoustic Measures from Video Recordings as Subtitles. J. Speech Lang. Hear. Res. 2018;61:2196–2204. doi: 10.1044/2018_JSLHR-S-17-0472. PubMed DOI
Patel R.R., Awan S.N., Barkmeier-Kraemer J., Courey M., Deliyski D., Eadie T., Paul D., Švec J.G., Hillman R. Recommended Protocols for Instrumental Assessment of Voice: American Speech-Language-Hearing Association Expert Panel to Develop a Protocol for Instrumental Assessment of Vocal Function. Am. J. Speech Lang. Pathol. 2018;27:887–905. doi: 10.1044/2018_AJSLP-17-0009. PubMed DOI
Švec J.G., Granqvist S. Tutorial and Guidelines on Measurement of Sound Pressure Level in Voice and Speech. J. Speech Lang. Hear. Res. 2018;61:441–461. doi: 10.1044/2017_JSLHR-S-17-0095. PubMed DOI
Wendler J. Stroboscopy. J. Voice. 1992;6:149–154. doi: 10.1016/S0892-1997(05)80129-8. DOI
Shao J., Stern J., Wang Z.-M., Hanson D., Jiang J. Clinical Evaluation of 70° and 90° Laryngeal Telescopes. Arch. Otolaryngol. Neck Surg. 2002;128:941. doi: 10.1001/archotol.128.8.941. PubMed DOI
Junaid M., Roohullah M., Uddin I., Hussain A., Khan M.A. Comparative Evaluation of 70° And 90° Rigid Endoscope In Successful Visualization of The Hidden Areas of Larynx. J. Med. Sci. 2021;29:243–246. doi: 10.52764/jms.21.29.4.6. DOI
Holm S. A Simple Sequentially Rejective Multiple Test Prodecure. Scand. J. Stat. 1979;6:65–70.
Valášková D. Bachelor’s Thesis. Palacký University; Olomouc, Czechia: 2018. Variability of Distance of a Laryngoscope-Attached Microphone from the Mouth in Laryngoscopic Examinations.
Valášková D. Master’s Thesis. Palacký University; Olomouc, Czechia: 2020. Depth of Laryngoscope Insertion in the Mouth during Laryngoscopic Examinations: Implications for Measurements of Sound Pressure Level by a Microphone Attached to the Laryngoscope.
Fitch W.T., Giedd J. Morphology and Development of the Human Vocal Tract: A Study Using Magnetic Resonance Imaging. J. Acoust. Soc. Am. 1999;106:1511–1522. doi: 10.1121/1.427148. PubMed DOI
Barbier G., Boë L.-J., Captier G., Laboissière R. Human Vocal Tract Growth: A Longitudinal Study of the Development of Various Anatomical Structures; Proceedings of the Interspeech 2015-16th Annual Conference of the International Speech Communication Association; Dresden, Germany. 10 September 2015; pp. 364–368.
Vorperian H.K., Wang S., Michael Schimek E., Durtschi R.B., Kent R.D., Gentry L.R., Chung M.K. Developmental Sexual Dimorphism of the Oral and Pharyngeal Portions of the Vocal Tract: An Imaging Study. J. Speech Lang. Hear. Res. 2011;54:995–1010. doi: 10.1044/1092-4388(2010/10-0097). PubMed DOI PMC
Vorperian H.K., Wang S., Chung M.K., Schimek E.M., Durtschi R.B., Kent R.D., Ziegert A.J., Gentry L.R. Anatomic Development of the Oral and Pharyngeal Portions of the Vocal Tract: An Imaging Study. J. Acoust. Soc. Am. 2009;125:1666–1678. doi: 10.1121/1.3075589. PubMed DOI PMC
Vorperian H.K., Schimek E.M., Wang S., Chung M.K., Kent R.D., Ziegert A.J., Gentry L.R. Anatomic Development of the Vocal Tract during the First Two Decades of Life: Evidence on Prepubertal Sexual Dimorphism from MRI and CT Studies. J. Acoust. Soc. Am. 2007;122:3031. doi: 10.1121/1.2942843. DOI
Goldstein U.G. Doctoral Dissertation. Massachusetts Institue of Technology; Cambridge, MA, USA: 1980. An Articulatory Model for the Vocal Tracts of Growing Children.
Guide to the Expression of Uncertainty in Measurement (GUM) International Organization for Standardization; Geneva, Switzerland: 1993.
Xue S.A., Hao G.J.P., Mayo R. Volumetric Measurements of Vocal Tracts for Male Speakers from Different Races. Clin. Linguist. Phon. 2006;20:691–702. doi: 10.1080/02699200500297716. PubMed DOI
Xue S.A., Hao J.G. Normative Standards for Vocal Tract Dimensions by Race as Measured by Acoustic Pharyngometry. J. Voice. 2006;20:391–400. doi: 10.1016/j.jvoice.2005.05.001. PubMed DOI
Wolf M., Primov-Fever A., Amir O., Jedwab D. The Feasibility of Rigid Stroboscopy in Children. Int. J. Pediatr. Otorhinolaryngol. 2005;69:1077–1079. doi: 10.1016/j.ijporl.2005.03.004. PubMed DOI