• This record comes from PubMed

Simultaneous Immobilization of Heavy Metals in MKPC-Based Mortar-Experimental Assessment

. 2023 Dec 06 ; 16 (24) : . [epub] 20231206

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
23-04744S Czech Science Foundation

Heavy metal contamination, associated with the increase in industrial production and the development of the population in general, poses a significant risk in terms of the contamination of soil, water, and, consequently, industrial plants and human health. The presence of ecotoxic heavy metals (HMs) thus significantly limits the sustainable development of society and contributes to the deterioration of the quality of the environment as a whole. For this reason, the stabilization and immobilization of heavy metals is a very topical issue. This paper deals with the possibility of the simultaneous immobilization of heavy metals (Ba2+, Pb2+, and Zn2+) in mortar based on magnesium potassium phosphate cement (MKPC). The structural, mechanical, and hygric parameters of mortars artificially contaminated with heavy metals in the form of salt solutions were investigated together with the formed hydration products. In the leachates of the prepared samples, the content of HMs was measured and the immobilization ratio of each HM was determined. The immobilization rate of all the investigated HMs was >98.7%, which gave information about the effectiveness of the MKPC-based matrix for HM stabilization. Furthermore, the content of HMs in the leachates was below the prescribed limits for non-hazardous waste that can be safely treated without any environmental risks. Although the presence of heavy metals led to a reduction in the strength of the prepared mortar (46.5% and 57.3% in compressive and flexural strength, respectively), its mechanical resistance remained high enough for many construction applications. Moreover, the low values of the parameters characterizing the water transport (water absorption coefficient Aw = 4.26 × 10-3 kg·m-2·s-1/2 and sorptivity S = 4.0 × 10-6 m·s-1/2) clearly demonstrate the limited possibility of the leaching of heavy metals from the MKPC matrix structure.

See more in PubMed

Yang Q., Li Z., Duan Q., Huang L., Bi J. A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment. J. Sci. Total Environ. 2018;642:690–700. doi: 10.1016/j.scitotenv.2018.06.068. PubMed DOI

Muradoglu F., Gundogdu M., Ercisli S., Encu T., Balta F., Jaafar H.Z.E., Zia-Ul-Haq M. Cadmium toxicity affects chlorophyll a and b content, antioxidant enzyme activities and mineral nutrient accumulation in strawberry. Biol. Res. 2015;48:11. doi: 10.1186/s40659-015-0001-3. PubMed DOI PMC

Marchant B.P., Saby N.P.A., Arrouays D. A survey of topsoil arsenic and mercury concentrations across France. Chemosphere. 2017;181:635–644. doi: 10.1016/j.chemosphere.2017.04.106. PubMed DOI

Toth G., Hermann T., Da Silva M.R., Montanarella L. Heavy metals in agricultural soils of the European Union with implications for food safety. Environ. Int. 2016;88:299–330. doi: 10.1016/j.envint.2015.12.017. PubMed DOI

Gao J., Han H., Gao C., Wang Y., Dong B., Xu Z. Organic amendments for in situ immobilization of heavy metals in soil: A review. Chemosphere. 2023;335:139088. doi: 10.1016/j.chemosphere.2023.139088. PubMed DOI

Palansooriya K.N., Shaheen S.M., Chen S.S., Tsang D.C.W., Hashimoto Y., Hou D., Bolan N.S., Rinklebe J., Ok Y.S. Soil amendments for immobilization of potentially toxic elements in contaminated soils: A critical review. Environ. Int. 2020;134:105046. doi: 10.1016/j.envint.2019.105046. PubMed DOI

Zhu Z., Huang Y., Yu M., Cheng H., Li Z., Xu W. Mineral phase evolution and heavy metals migration during the hydrothermal treatment of municipal solid waste incineration fly ash. Fuel. 2024;357:129790. doi: 10.1016/j.fuel.2023.129790. DOI

Briffa J., Sinagra E., Blundell R. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon. 2020;6:e04691. doi: 10.1016/j.heliyon.2020.e04691. PubMed DOI PMC

Wu Y., Li X., Yu L., Wang T., Wang J., Liu T. Review of soil heavy metal pollution in China: Spatial distribution, primary sources, and remediation alternatives. Res. Conserv. Manag. 2022;1:106261. doi: 10.1016/j.resconrec.2022.106261. DOI

Silva-Sánchez N. Environmental Impact of Roman Mining and Metallurgy and Its Correlation with the Archaeological Evidence: A European Perspective. Environ. Archeol. 2023 doi: 10.1080/14614103.2023.2181295. DOI

Li C., Zhou K., Qin W., Tian C., Qi M., Yan X., Han W. A review on heavy metals contamination in soil: Effects, sources, and remediation techniques. Soil Sediment Contam. Int. J. 2019;28:380–394. doi: 10.1080/15320383.2019.1592108. DOI

Presser T.S., Sylvester M.A., Low W.H. Bioaccumulation of selenium from natural geologic sources in western states and its potential consequences. Environ. Manag. 1994;18:423–436. doi: 10.1007/BF02393871. DOI

Varicca D., Tamburo E., Dongarrà G., Sposito F. Trace elements in scalp hair of children chronically exposed to volcanic activity (Mt. Etna, Italy) Sci. Total Environ. 2014;470–471:117–126. doi: 10.1016/j.scitotenv.2013.09.058. PubMed DOI

Campos I., Vale C., Abrantes N., Keizer J.J., Pereira P. Effects of wildfire on mercury mobilisation in eucalypt and pine forests. Catena. 2015;131:149–159. doi: 10.1016/j.catena.2015.02.024. DOI

Zakari S., Jiang X., Zhu X., Liu W., Allakonon M.G.B., Singh A.K., Chen C., Zou X., Irénikatché Akponikpè P.B., Dossa G.G.O., et al. Influence of sulfur amendments on heavy metals phytoextraction from agricultural contaminated soils: A meta-analysis. Environ. Pollut. 2021;288:117820. doi: 10.1016/j.envpol.2021.117820. PubMed DOI

Xiao R., Wang S., Li R., Wang J.J., Zhang Z. Soil heavy metal contamination and health risks associated with artisanal gold mining in Tongguan, Shaanxi, China. Ecotoxicol. Environ. Saf. 2017;141:17–24. doi: 10.1016/j.ecoenv.2017.03.002. PubMed DOI

Wang D., Wang Q. Clarifying and quantifying the immobilization capacity of cement pastes on heavy metals. Cem. Concr. Res. 2022;161:106945. doi: 10.1016/j.cemconres.2022.106945. DOI

Li X. Heavy metal speciation and leaching behaviors in cement based solidified/stabilized waste material. J. Hazard. Mater. 2001;82:215–230. doi: 10.1016/S0304-3894(00)00360-5. PubMed DOI

Golman M.A.C., da Silva M.M., Masuero Ă.B. Stabilization and solidification of pb in cement matrices. J. Hazard. Mater. 2010;179:507–514. doi: 10.1016/j.jhazmat.2010.03.032. PubMed DOI

Guo B., Liu B., Zhang S. The mechanisms of heavy metal immobilization by cementitious material treatments and thermal treatments: A review. J. Environ. Manag. 2017;193:410–422. doi: 10.1016/j.jenvman.2017.02.026. PubMed DOI

Coruh S., Ergun O.N. Leaching characteristics of copper flotation waste before and after vitrification. J. Environ. Manag. 2006;81:333–338. doi: 10.1016/j.jenvman.2005.11.006. PubMed DOI

Liu Q., Wang X., Gao M., Guan Y., Wu C., Wang Q., Rao Y., Liu S. Heavy metal leaching behaviour and long-term environmental risk assessment of cement-solidified municipal solid waste incineration fly ash in sanitary landfill. Chemosphere. 2022;300:134571. doi: 10.1016/j.chemosphere.2022.134571. PubMed DOI

Gineys N., Aouad G., Damidot D. Managing trace elements in Portland cement—Part I: Interactions between cement paste and heavy metals added during mixing as soluble salts. Cem. Concr. Compos. 2010;32:563–570. doi: 10.1016/j.cemconcomp.2010.06.002. DOI

Yu Q., Nagataki S., Lin J., Saeki T., Hisada M. The leachability of heavy metals in hardened fly ash cement and cement-solidified fly ash. Cem. Concr. Res. 2005;35:1056–1063. doi: 10.1016/j.cemconres.2004.03.031. DOI

Li J., Wu D., Tan X., Yu P., Xu L. Review of the Interactions between Conventional Cementitious Materials and Heavy Metal Ions in Stabilization/Solidification Processing. Materials. 2023;16:3444. doi: 10.3390/ma16093444. PubMed DOI PMC

El-eswed B.I. Chemical evaluation of immobilization of wastes containing Pb, Cd, Cu and Zn in alkali-activated materials: A critical review. J. Environ. Chem. Eng. 2020;8:104194. doi: 10.1016/j.jece.2020.104194. DOI

Khater H.M., Ghareib M. Optimization of geopolymer mortar incorporating heavy metals in producing dense hybrid composites. J. Build. Eng. 2020;32:101684. doi: 10.1016/j.jobe.2020.101684. DOI

Fan J., Yan J., Zhou M., Xu Y., Lu Y., Duan P., Zhu Y., Zhang Z., Wang A., Sun D. Heavy metals immobilization of ternary geopolymer based on nickel slag, lithium slag and metakaolin. J. Hazard. Mater. 2023;453:131380. doi: 10.1016/j.jhazmat.2023.131380. PubMed DOI

Fan C., Wang B., Qi Y., Liu Z. Characteristics and leaching behavior of MSWI fly ash in novel solidification/stabilization binders. Waste Manag. 2021;131:277–285. doi: 10.1016/j.wasman.2021.06.011. PubMed DOI

Su Y., Yang J., Liu D., Zhen S., Lin N., Zhou Y. Solidification/stabilization of simulated cadmium-contaminated wastes with magnesium potassium phosphate cement. Environ. Eng. Res. 2016;21:15–21. doi: 10.4491/eer.2015.092. DOI

Cao X., Zhang Q., Yang W., Fang L., Liu S., Ma R., Guo K., Ma N. Lead-chlorine synergistic immobilization mechanism in municipal solid waste incineration fly ash (MSWIFA)-based magnesium potassium phosphate cement. J. Hazard. Mater. 2023;442:130038. doi: 10.1016/j.jhazmat.2022.130038. PubMed DOI

Tan Y., Zhang Z., Yang D., Dong J., Cheng X., Yu H. Immobilization of Zn(Ⅱ) and Cu(Ⅱ) in basic magnesium-sulfate-cementitious material system: Properties and mechanism. J. Hazard. Mater. 2023;446:130720. doi: 10.1016/j.jhazmat.2023.130720. PubMed DOI

Tan Y., Wu C., Yu H., Li Y., Wen J. Review of reactive magnesia-based cementitious materials: Current developments and potential applicability. J. Build. Eng. 2021;40:102342. doi: 10.1016/j.jobe.2021.102342. DOI

Marušiak Š., Kapicová A., Pivák A., Pavlíková M., Pavlík Z. Magnesium Potassium Phosphate Cement-Based Derivatives for Construction Use: Experimental Assessment. Materials. 2022;15:1896. doi: 10.3390/ma15051896. PubMed DOI PMC

Methods of Test for Mortar Masonry—Part 11: Determination of Compressive and Flexural Strength of Hardened Mortar. CEN; Brussels, Belgium: 2019.

Methods of Test for Mortar for Masonry—Part 18: Determination of Water Absorption Coefficient Due to Capillarity Action of Hardened Mortar. CEN; Brussels, Belgium: 2002.

Feng C., Guimaraes A.S., Ramos N., Sun L.X., Gawin D., Konca P., Hall C., Zhao J.H., Hirsch H., Grunewald J., et al. Hygric properties of porous building materials (VI): A round robin campaign. Build. Environ. 2020;185:107242. doi: 10.1016/j.buildenv.2020.107242. DOI

Characterisation of Waste—Leaching—Compliance Test for Leaching of Granular Waste Materials and Sludges—Part 2: One Stage Batch Test at a Liquid to Solid Ratio of 10 I/kg for Materials with Particle Size Below 4 mm (without or with Size Reduction) CEN; Brussels, Belgium: 2002.

Yang Q., Zhu B., Wu X. Characteristics and durability test of magnesium phosphate cement-based material for rapid repair of concrete. Mater. Struct. 2000;33:229–234. doi: 10.1007/BF02479332. DOI

Chukanov N.V. Infrared Spectra of Mineral Species. Volume 1 Springer; Berlin/Heidelberg, Germany: 2014. O29 brucite. Geochemistra/Mineralogy.

Zhang S., Hui-Seng S., Shao-Wen H., Zhang P. Dehydration characteristics of struvite-K pertaining to magnesium potassium phosphate cement system in non-isothermal condition. J. Therm. Anal. Calorim. 2013;111:35–40. doi: 10.1007/s10973-011-2170-9. DOI

Chukanov N.V. Infrared Spectra of Mineral Species. Volume 1 Springer; Berlin/Heidelberg, Germany: 2014. C94 magnesite. Geochemistra/Mineralogy.

Chukanov N.V. Infrared Spectra of Mineral Species. Volume 1 Springer; Berlin/Heidelberg, Germany: 2014. O168 periklas. Geochemistra/Mineralogy.

Dong H., Gao P., Ye G. Characterization and comparison of capillary pore structures of digital cement pastes. Mater. Struct. 2017;50:154. doi: 10.1617/s11527-017-1023-9. DOI

Vyhláška č. 8/2021 Sb. o Katalogu Odpadů a Posuzování Vlastností Odpadů (Katalog Odpadů), in Czech. [(accessed on 3 December 2023)]. Available online: https://www.zakonyprolidi.cz/cs/2021-8/zneni-20230101.

Cao X., Wang W., Ma R., Sun S., Lin J. Solidification/stabilization of Pb2+ and Zn2+ in the sludge incineration residue-based magnesium potassium phosphate cement: Physical and chemical mechanisms and competition between coexisting ions. Environ. Pollut. 2019;253:171–180. doi: 10.1016/j.envpol.2019.07.017. PubMed DOI

Rao A.J., Pagilla K.R., Wagh A.S. Stabilization and solidification of metal-laden wastes by compaction and magnesium phosphate-based binder. J. Air Waste Manag. Assoc. 2000;50:1623–1631. doi: 10.1080/10473289.2000.10464193. PubMed DOI

Buj I., Torras J., Rovira M., de Pablo J. Leaching behaviour of magnesium phosphate cements containing high quantities of heavy metals. J. Hazard. Mater. 2010;175:789–794. doi: 10.1016/j.jhazmat.2009.10.077. PubMed DOI

Wang Y.S., Dai J.-G., Wang L., Tsang D.C.W., Poon C.S. Influence of lead on stabilization/solidification by ordinary Portland cement and magnesium phosphate cement. Chemosphere. 2018;190:90–96. doi: 10.1016/j.chemosphere.2017.09.114. PubMed DOI

Du Y.-J., Wei M.-L., Reddy K.R., Jin F., Wu H.-L., Liu Z.-B. New phosphate-based binder for stabilization of soils contaminated with heavy metals: Leaching, strength and microstructure characterization. J. Environ. Manag. 2014;146:179–188. doi: 10.1016/j.jenvman.2014.07.035. PubMed DOI

Lai Z., Lai X., Shi J., Lu Z. Effect of Zn2+ on the early hydration behavior of potassium phosphate based magnesium phosphate cement. Constr. Build. Mater. 2016;129:70–78. doi: 10.1016/j.conbuildmat.2016.11.002. DOI

Jeon I.K., Qudoss A., Kim H.G. Influence of carbonation curing on hydration and microstructure of magnesium potassium phosphate cement concrete. J. Build. Eng. 2021;38:102203. doi: 10.1016/j.jobe.2021.102203. DOI

Vandaperre L., Al-Tabbaa A. Accelerated carbonation of reactive MgO cements. Adv. Cem. Res. 2007;19:67–79. doi: 10.1680/adcr.2007.19.2.67. DOI

Zhang R., Bassim N., Panesar D.K. Characterization of Mg components in reactive MgO—Portland cement blends during hydration and carbonation. J. CO2 Util. 2018;27:518–527. doi: 10.1016/j.jcou.2018.08.025. DOI

Newest 20 citations...

See more in
Medvik | PubMed

Mobility of Zn and Cu in Bentonites: Implications for Environmental Remediation

. 2024 Jun 17 ; 17 (12) : . [epub] 20240617

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...