Isoform-Directed Control of c-Myc Functions: Understanding the Balance from Proliferation to Growth Arrest
Language English Country Switzerland Media electronic
Document type Journal Article, Review
Grant support
LM2018133
Ministry of Youth, School, Education and Sport of the Czech Republic
LX22NPO5102
Ministry of Youth, School, Education and Sport of the Czech Republic
PubMed
38139353
PubMed Central
PMC10743581
DOI
10.3390/ijms242417524
PII: ijms242417524
Knihovny.cz E-resources
- Keywords
- MycHex1, c-Myc S, c-Myc locus structure, mrtl, p64 isoform, p67 isoform,
- MeSH
- Apoptosis MeSH
- RNA, Messenger MeSH
- Cell Proliferation MeSH
- Protein Isoforms genetics MeSH
- Proto-Oncogene Proteins c-myc * genetics MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- RNA, Messenger MeSH
- Protein Isoforms MeSH
- Proto-Oncogene Proteins c-myc * MeSH
The transcription factor c-Myc, a key regulator of cellular processes, has long been associated with roles in cell proliferation and apoptosis. This review analyses the multiple functions of c-Myc by examining the different c-Myc isoforms in detail. The impact of different c-Myc isoforms, in particular p64 and p67, on fundamental biological processes remains controversial. It is necessary to investigate the different isoforms in the context of proto-oncogenesis. The current knowledge base suggests that neoplastic lesions may possess the means for self-destruction via increased c-Myc activity. This review presents the most relevant information on the c-Myc locus and focuses on a number of isoforms, including p64 and p67. This compilation provides a basis for the development of therapeutic approaches that target the potent growth arresting and pro-apoptotic functions of c-Myc. This information can then be used to develop targeted interventions against specific isoforms with the aim of shifting the oncogenic effects of c-Myc from pro-proliferative to pro-apoptotic. The research summarised in this review can deepen our understanding of how c-Myc activity contributes to different cellular responses, which will be crucial in developing effective therapeutic strategies; for example, isoform-specific approaches may allow for precise modulation of c-Myc function.
See more in PubMed
Amati B., Frank S.R., Donjerkovic D., Taubert S. Function of the C-Myc Oncoprotein in Chromatin Remodeling and Transcription. Biochim. Biophys. Acta. 2001;1471:M135–M145. doi: 10.1016/S0304-419X(01)00020-8. PubMed DOI
Dang C.V., O’Donnell K.A., Zeller K.I., Nguyen T., Osthus R.C., Li F. The C-Myc Target Gene Network. Semin. Cancer Biol. 2006;16:253–264. doi: 10.1016/j.semcancer.2006.07.014. PubMed DOI
Yang W., Shen J., Wu M., Arsura M., FitzGerald M., Suldan Z., Kim D.W., Hofmann C.S., Pianetti S., Romieu-Mourez R., et al. Repression of Transcription of the P27(Kip1) Cyclin-Dependent Kinase Inhibitor Gene by c-Myc. Oncogene. 2001;20:1688–1702. doi: 10.1038/sj.onc.1204245. PubMed DOI
Xiao L., Wang Y., Liang W., Liu L., Pan N., Deng H., Li L., Zou C., Chan F.L., Zhou Y. LRH-1 Drives Hepatocellular Carcinoma Partially through Induction of c-Myc and Cyclin E1, and Suppression of P21. Cancer Manag. Res. 2018;10:2389–2400. doi: 10.2147/CMAR.S162887. PubMed DOI PMC
Zhang J., Song N., Zang D., Yu J., Li J., Di W., Guo R., Zhao W., Wang H. C-Myc Promotes Tumor Proliferation and Anti-apoptosis by Repressing P21 in Rhabdomyosarcomas. Mol. Med. Rep. 2017;16:4089–4094. doi: 10.3892/mmr.2017.7101. PubMed DOI
Gruszka R., Zakrzewski K., Liberski P.P., Zakrzewska M. mRNA and miRNA Expression Analyses of the MYC/E2F/miR-17-92 Network in the Most Common Pediatric Brain Tumors. Int. J. Mol. Sci. 2021;22:543. doi: 10.3390/ijms22020543. PubMed DOI PMC
Bretones G., Delgado M.D., León J. Myc and Cell Cycle Control. Biochim. Biophys. Acta. 2015;1849:506–516. doi: 10.1016/j.bbagrm.2014.03.013. PubMed DOI
Spencer C.A., Groudine M. Control of C-Myc Regulation in Normal and Neoplastic Cells. Adv. Cancer Res. 1991;56:1–48. doi: 10.1016/s0065-230x(08)60476-5. PubMed DOI
Dhanasekaran R., Deutzmann A., Mahauad-Fernandez W.D., Hansen A.S., Gouw A.M., Felsher D.W. The MYC Oncogene—The Grand Orchestrator of Cancer Growth and Immune Evasion. Nat. Rev. Clin. Oncol. 2022;19:23–36. doi: 10.1038/s41571-021-00549-2. PubMed DOI PMC
Gao F.Y., Li X.T., Xu K., Wang R.T., Guan X.X. C-MYC Mediates the Crosstalk between Breast Cancer Cells and Tumor Microenvironment. Cell Commun. Signal. 2023;21:28. doi: 10.1186/s12964-023-01043-1. PubMed DOI PMC
Chanvorachote P., Sriratanasak N., Nonpanya N. C-Myc Contributes to Malignancy of Lung Cancer: A Potential Anticancer Drug Target. Anticancer Res. 2020;40:609–618. doi: 10.21873/anticanres.13990. PubMed DOI
Di Y., Jing X., Hu K., Wen X., Ye L., Zhang X., Qin J., Ye J., Lin R., Wang Z., et al. The C-MYC-WDR43 Signalling Axis Promotes Chemoresistance and Tumour Growth in Colorectal Cancer by Inhibiting P53 Activity. Drug Resist. Updat. 2023;66:100909. doi: 10.1016/j.drup.2022.100909. PubMed DOI
Evan G.I., Wyllie A.H., Gilbert C.S., Littlewood T.D., Land H., Brooks M., Waters C.M., Penn L.Z., Hancock D.C. Induction of Apoptosis in Fibroblasts by C-Myc Protein. Cell. 1992;69:119–128. doi: 10.1016/0092-8674(92)90123-T. PubMed DOI
McMahon S.B. MYC and the Control of Apoptosis. Cold Spring Harb. Perspect. Med. 2014;4:a014407. doi: 10.1101/cshperspect.a014407. PubMed DOI PMC
Kotulova J., Lonova K., Kubickova A., Vrbkova J., Kourilova P., Hajduch M., Dzubak P. 2-Cl-IB-MECA Regulates the Proliferative and Drug Resistance Pathways, and Facilitates Chemosensitivity in Pancreatic and Liver Cancer Cell Lines. Int. J. Mol. Med. 2022;49:31. doi: 10.3892/ijmm.2022.5086. PubMed DOI PMC
Yoshida G.J. Emerging Roles of Myc in Stem Cell Biology and Novel Tumor Therapies. J. Exp. Clin. Cancer Res. 2018;37:173. doi: 10.1186/s13046-018-0835-y. PubMed DOI PMC
Macečková Z., Kubíčková A., Sanctis J.B.D., Hajdúch M. Effect of Glucocorticosteroids in Diamond-Blackfan Anaemia: Maybe Not as Elusive as It Seems. Int. J. Mol. Sci. 2022;23:1886. doi: 10.3390/ijms23031886. PubMed DOI PMC
Kubickova A., Maceckova Z., Vojta P., Ondra M., Volejnikova J., Koralkova P., Jungova A., Jahoda O., Mojzikova R., Hadacova I., et al. Missense Mutation in RPS7 Causes Diamond-Blackfan Anemia via Alteration of Erythrocyte Metabolism, Protein Translation and Induction of Ribosomal Stress. Blood Cells Mol. Dis. 2022;97:102690. doi: 10.1016/j.bcmd.2022.102690. PubMed DOI
Okita K., Ichisaka T., Yamanaka S. Generation of Germline-Competent Induced Pluripotent Stem Cells. Nature. 2007;448:313–317. doi: 10.1038/nature05934. PubMed DOI
Llombart V., Mansour M.R. Therapeutic Targeting of “Undruggable” MYC. EBioMedicine. 2022;75:103756. doi: 10.1016/j.ebiom.2021.103756. PubMed DOI PMC
Cole M.D. The Myc Oncogene: Its Role in Transformation and Differentiation. Annu. Rev. Genet. 1986;20:361–384. doi: 10.1146/annurev.ge.20.120186.002045. PubMed DOI
Henriksson M., Lüscher B. Proteins of the Myc Network: Essential Regulators of Cell Growth and Differentiation. Adv. Cancer Res. 1996;68:109–182. doi: 10.1016/s0065-230x(08)60353-x. PubMed DOI
Lüscher B., Eisenman R.N. New Light on Myc and Myb. Part I. Myc. Genes Dev. 1990;4:2025–2035. doi: 10.1101/gad.4.12a.2025. PubMed DOI
Ryan K.M., Birnie G.D. Myc Oncogenes: The Enigmatic Family. Pt 3Biochem. J. 1996;314:713–721. doi: 10.1042/bj3140713. PubMed DOI PMC
Hann S.R., Eisenman R.N. Proteins Encoded by the Human C-Myc Oncogene: Differential Expression in Neoplastic Cells. Mol. Cell. Biol. 1984;4:2486–2497. doi: 10.1128/mcb.4.11.2486-2497.1984. PubMed DOI PMC
Ramsay G., Evan G.I., Bishop J.M. The Protein Encoded by the Human Proto-Oncogene c-Myc. Proc. Natl. Acad. Sci. USA. 1984;81:7742–7746. doi: 10.1073/pnas.81.24.7742. PubMed DOI PMC
Blackwood E.M., Eisenman R.N. Max: A Helix-Loop-Helix Zipper Protein That Forms a Sequence-Specific DNA-Binding Complex with Myc. Science. 1991;251:1211–1217. doi: 10.1126/science.2006410. PubMed DOI
Blackwell T.K., Kretzner L., Blackwood E.M., Eisenman R.N., Weintraub H. Sequence-Specific DNA Binding by the c-Myc Protein. Science. 1990;250:1149–1151. doi: 10.1126/science.2251503. PubMed DOI
Prendergast G.C., Ziff E.B. Methylation-Sensitive Sequence-Specific DNA Binding by the c-Myc Basic Region. Science. 1991;251:186–189. doi: 10.1126/science.1987636. PubMed DOI
Amati B., Brooks M.W., Levy N., Littlewood T.D., Evan G.I., Land H. Oncogenic Activity of the C-Myc Protein Requires Dimerization with Max. Cell. 1993;72:233–245. doi: 10.1016/0092-8674(93)90663-B. PubMed DOI
Amin C., Wagner A.J., Hay N. Sequence-Specific Transcriptional Activation by Myc and Repression by Max. Mol. Cell. Biol. 1993;13:383–390. doi: 10.1128/mcb.13.1.383-390.1993. PubMed DOI PMC
Kretzner L., Blackwood E.M., Eisenman R.N. Myc and Max Proteins Possess Distinct Transcriptional Activities. Nature. 1992;359:426–429. doi: 10.1038/359426a0. PubMed DOI
Kato G.J., Barrett J., Villa-Garcia M., Dang C.V. An Amino-Terminal c-Myc Domain Required for Neoplastic Transformation Activates Transcription. Mol. Cell. Biol. 1990;10:5914–5920. doi: 10.1128/mcb.10.11.5914-5920.1990. PubMed DOI PMC
Gu W., Bhatia K., Magrath I.T., Dang C.V., Dalla-Favera R. Binding and Suppression of the Myc Transcriptional Activation Domain by P107. Science. 1994;264:251–254. doi: 10.1126/science.8146655. PubMed DOI
Maheswaran S., Lee H., Sonenshein G.E. Intracellular Association of the Protein Product of the C-Myc Oncogene with the TATA-Binding Protein. Mol. Cell. Biol. 1994;14:1147–1152. doi: 10.1128/mcb.14.2.1147-1152.1994. PubMed DOI PMC
Grandori C., Mac J., Siëbelt F., Ayer D.E., Eisenman R.N. Myc-Max Heterodimers Activate a DEAD Box Gene and Interact with Multiple E Box-Related Sites in Vivo. EMBO J. 1996;15:4344–4357. doi: 10.1002/j.1460-2075.1996.tb00808.x. PubMed DOI PMC
Boyd K.E., Farnham P.J. Myc versus USF: Discrimination at the Cad Gene Is Determined by Core Promoter Elements. Mol. Cell. Biol. 1997;17:2529–2537. doi: 10.1128/MCB.17.5.2529. PubMed DOI PMC
O’Connell B.C., Cheung A.F., Simkevich C.P., Tam W., Ren X., Mateyak M.K., Sedivy J.M. A Large Scale Genetic Analysis of C-Myc-Regulated Gene Expression Patterns. J. Biol. Chem. 2003;278:12563–12573. doi: 10.1074/jbc.M210462200. PubMed DOI
Hölzel M., Kohlhuber F., Schlosser I., Hölzel D., Lüscher B., Eick D. Myc/Max/Mad Regulate the Frequency but Not the Duration of Productive Cell Cycles. EMBO Rep. 2001;2:1125–1132. doi: 10.1093/embo-reports/kve251. PubMed DOI PMC
Choi H., Jackson N.L., Shaw D.R., Emanuel P.D., Liu Y.L., Tousson A., Meng Z., Blume S.W. Mrtl-A Translation/Localization Regulatory Protein Encoded within the Human c-Myc Locus and Distributed throughout the Endoplasmic and Nucleoplasmic Reticular Network. J. Cell Biochem. 2008;105:1092–1108. doi: 10.1002/jcb.21909. PubMed DOI PMC
Arabi A., Wu S., Ridderstråle K., Bierhoff H., Shiue C., Fatyol K., Fahlén S., Hydbring P., Söderberg O., Grummt I., et al. C-Myc Associates with Ribosomal DNA and Activates RNA Polymerase I Transcription. Nat. Cell Biol. 2005;7:303–310. doi: 10.1038/ncb1225. PubMed DOI
Grandori C., Gomez-Roman N., Felton-Edkins Z.A., Ngouenet C., Galloway D.A., Eisenman R.N., White R.J. C-Myc Binds to Human Ribosomal DNA and Stimulates Transcription of rRNA Genes by RNA Polymerase I. Nat. Cell Biol. 2005;7:311–318. doi: 10.1038/ncb1224. PubMed DOI
Gomez-Roman N., Grandori C., Eisenman R.N., White R.J. Direct Activation of RNA Polymerase III Transcription by C-Myc. Nature. 2003;421:290–294. doi: 10.1038/nature01327. PubMed DOI
Frye M., Gardner C., Li E.R., Arnold I., Watt F.M. Evidence That Myc Activation Depletes the Epidermal Stem Cell Compartment by Modulating Adhesive Interactions with the Local Microenvironment. Development. 2003;130:2793–2808. doi: 10.1242/dev.00462. PubMed DOI
Shiio Y., Donohoe S., Yi E.C., Goodlett D.R., Aebersold R., Eisenman R.N. Quantitative Proteomic Analysis of Myc Oncoprotein Function. EMBO J. 2002;21:5088–5096. doi: 10.1093/emboj/cdf525. PubMed DOI PMC
Mateyak M.K., Obaya A.J., Adachi S., Sedivy J.M. Phenotypes of C-Myc-Deficient Rat Fibroblasts Isolated by Targeted Homologous Recombination. Cell Growth Differ. 1997;8:1039–1048. PubMed
Sakamuro D., Eviner V., Elliott K.J., Showe L., White E., Prendergast G.C. C-Myc Induces Apoptosis in Epithelial Cells by Both P53-Dependent and P53-Independent Mechanisms. Oncogene. 1995;11:2411–2418. PubMed
Blume S.W., Miller D.M., Guarcello V., Shrestha K., Meng Z., Snyder R.C., Grizzle W.E., Ruppert J.M., Gartland G.L., Stockard C.R., et al. Inhibition of Tumorigenicity by the 5′-Untranslated RNA of the Human c-Myc P0 Transcript. Exp. Cell Res. 2003;288:131–142. doi: 10.1016/S0014-4827(03)00182-4. PubMed DOI
Marin M.C., Hsu B., Stephens L.C., Brisbay S., McDonnell T.J. The Functional Basis of C-Myc and Bcl-2 Complementation during Multistep Lymphomagenesis in Vivo. Exp. Cell Res. 1995;217:240–247. doi: 10.1006/excr.1995.1083. PubMed DOI
Zindy F., Eischen C.M., Randle D.H., Kamijo T., Cleveland J.L., Sherr C.J., Roussel M.F. Myc Signaling via the ARF Tumor Suppressor Regulates P53-Dependent Apoptosis and Immortalization. Genes Dev. 1998;12:2424–2433. doi: 10.1101/gad.12.15.2424. PubMed DOI PMC
Klein G. Dysregulation of Lymphocyte Proliferation by Chromosomal Translocations and Sequential Genetic Changes. Bioessays. 2000;22:414–422. doi: 10.1002/(SICI)1521-1878(200005)22:5<414::AID-BIES3>3.0.CO;2-5. PubMed DOI
Ge K., Duhadaway J., Sakamuro D., Wechsler-Reya R., Reynolds C., Prendergast G.C. Losses of the Tumor Suppressor BIN1 in Breast Carcinoma Are Frequent and Reflect Deficits in Programmed Cell Death Capacity. Int. J. Cancer. 2000;85:376–383. PubMed
Martin S.J., Green D.R. Protease Activation during Apoptosis: Death by a Thousand Cuts? Cell. 1995;82:349–352. doi: 10.1016/0092-8674(95)90422-0. PubMed DOI
Fearnhead H.O., McCurrach M.E., O’Neill J., Zhang K., Lowe S.W., Lazebnik Y.A. Oncogene-Dependent Apoptosis in Extracts from Drug-Resistant Cells. Genes Dev. 1997;11:1266–1276. doi: 10.1101/gad.11.10.1266. PubMed DOI
Armstrong D.K., Isaacs J.T., Ottaviano Y.L., Davidson N.E. Programmed Cell Death in an Estrogen-Independent Human Breast Cancer Cell Line, MDA-MB-468. Cancer Res. 1992;52:3418–3424. PubMed
Fukasawa K., Wiener F., Vande Woude G.F., Mai S. Genomic Instability and Apoptosis Are Frequent in P53 Deficient Young Mice. Oncogene. 1997;15:1295–1302. doi: 10.1038/sj.onc.1201482. PubMed DOI
Quelle D.E., Zindy F., Ashmun R.A., Sherr C.J. Alternative Reading Frames of the INK4a Tumor Suppressor Gene Encode Two Unrelated Proteins Capable of Inducing Cell Cycle Arrest. Cell. 1995;83:993–1000. doi: 10.1016/0092-8674(95)90214-7. PubMed DOI
Sherr C.J. Tumor Surveillance via the ARF-P53 Pathway. Genes Dev. 1998;12:2984–2991. doi: 10.1101/gad.12.19.2984. PubMed DOI
Watt R., Nishikura K., Sorrentino J., ar-Rushdi A., Croce C.M., Rovera G. The Structure and Nucleotide Sequence of the 5′ End of the Human c-Myc Oncogene. Proc. Natl. Acad. Sci. USA. 1983;80:6307–6311. doi: 10.1073/pnas.80.20.6307. PubMed DOI PMC
Bentley D.L., Groudine M. Novel Promoter Upstream of the Human C-Myc Gene and Regulation of c-Myc Expression in B-Cell Lymphomas. Mol. Cell. Biol. 1986;6:3481–3489. doi: 10.1128/mcb.6.10.3481-3489.1986. PubMed DOI PMC
Ray D., Robert-Lézénès J. Coexistence of a C-Myc mRNA Initiated in Intron 1 with the Normal c-Myc mRNA and Similar Regulation of Both Transcripts in Mammalian Cells. Oncogene Res. 1989;5:73–78. PubMed
Nanbru C., Prats A.C., Droogmans L., Defrance P., Huez G., Kruys V. Translation of the Human C-Myc P0 Tricistronic mRNA Involves Two Independent Internal Ribosome Entry Sites. Oncogene. 2001;20:4270–4280. doi: 10.1038/sj.onc.1204548. PubMed DOI
Hann S.R., King M.W., Bentley D.L., Anderson C.W., Eisenman R.N. A Non-AUG Translational Initiation in c-Myc Exon 1 Generates an N-Terminally Distinct Protein Whose Synthesis Is Disrupted in Burkitt’s Lymphomas. Cell. 1988;52:185–195. doi: 10.1016/0092-8674(88)90507-7. PubMed DOI
Marcu K.B., Bossone S.A., Patel A.J. Myc Function and Regulation. Annu. Rev. Biochem. 1992;61:809–860. doi: 10.1146/annurev.bi.61.070192.004113. PubMed DOI
Hann S.R., Dixit M., Sears R.C., Sealy L. The Alternatively Initiated C-Myc Proteins Differentially Regulate Transcription through a Noncanonical DNA-Binding Site. Genes Dev. 1994;8:2441–2452. doi: 10.1101/gad.8.20.2441. PubMed DOI
Cory S. Activation of Cellular Oncogenes in Hemopoietic Cells by Chromosome Translocation. Adv. Cancer Res. 1986;47:189–234. doi: 10.1016/s0065-230x(08)60200-6. PubMed DOI
Battey J., Moulding C., Taub R., Murphy W., Stewart T., Potter H., Lenoir G., Leder P. The Human C-Myc Oncogene: Structural Consequences of Translocation into the IgH Locus in Burkitt Lymphoma. Cell. 1983;34:779–787. doi: 10.1016/0092-8674(83)90534-2. PubMed DOI
Bernard O., Cory S., Gerondakis S., Webb E., Adams J.M. Sequence of the Murine and Human Cellular Myc Oncogenes and Two Modes of Myc Transcription Resulting from Chromosome Translocation in B Lymphoid Tumours. EMBO J. 1983;2:2375–2383. doi: 10.1002/j.1460-2075.1983.tb01749.x. PubMed DOI PMC
Bentley D.L., Groudine M. A Block to Elongation Is Largely Responsible for Decreased Transcription of C-Myc in Differentiated HL60 Cells. Nature. 1986;321:702–706. doi: 10.1038/321702a0. PubMed DOI
Nepveu A., Marcu K.B. Intragenic Pausing and Anti-Sense Transcription within the Murine c-Myc Locus. EMBO J. 1986;5:2859–2865. doi: 10.1002/j.1460-2075.1986.tb04580.x. PubMed DOI PMC
Yang J.Q., Remmers E.F., Marcu K.B. The First Exon of the C-Myc Proto-Oncogene Contains a Novel Positive Control Element. EMBO J. 1986;5:3553–3562. doi: 10.1002/j.1460-2075.1986.tb04682.x. PubMed DOI PMC
Nerlov C. The C/EBP Family of Transcription Factors: A Paradigm for Interaction between Gene Expression and Proliferation Control. Trends Cell Biol. 2007;17:318–324. doi: 10.1016/j.tcb.2007.07.004. PubMed DOI
Baluapuri A., Wolf E., Eilers M. Target Gene-Independent Functions of MYC Oncoproteins. Nat. Rev. Mol. Cell Biol. 2020;21:255–267. doi: 10.1038/s41580-020-0215-2. PubMed DOI PMC
Philipp A., Schneider A., Väsrik I., Finke K., Xiong Y., Beach D., Alitalo K., Eilers M. Repression of Cyclin D1: A Novel Function of MYC. Mol. Cell. Biol. 1994;14:4032–4043. doi: 10.1128/mcb.14.6.4032-4043.1994. PubMed DOI PMC
Freytag S.O., Geddes T.J. Reciprocal Regulation of Adipogenesis by Myc and C/EBP Alpha. Science. 1992;256:379–382. doi: 10.1126/science.256.5055.379. PubMed DOI
Hann S.R., Sloan-Brown K., Spotts G.D. Translational Activation of the Non-AUG-Initiated c-Myc 1 Protein at High Cell Densities Due to Methionine Deprivation. Genes Dev. 1992;6:1229–1240. doi: 10.1101/gad.6.7.1229. PubMed DOI
Blalock W.L., Piazzi M., Bavelloni A., Raffini M., Faenza I., D’Angelo A., Cocco L. Identification of the PKR Nuclear Interactome Reveals Roles in Ribosome Biogenesis, mRNA Processing and Cell Division. J. Cell Physiol. 2014;229:1047–1060. doi: 10.1002/jcp.24529. PubMed DOI
Umek R.M., Friedman A.D., McKnight S.L. CCAAT-Enhancer Binding Protein: A Component of a Differentiation Switch. Science. 1991;251:288–292. doi: 10.1126/science.1987644. PubMed DOI
Xiao Q., Claassen G., Shi J., Adachi S., Sedivy J., Hann S.R. Transactivation-Defective c-MycS Retains the Ability to Regulate Proliferation and Apoptosis. Genes Dev. 1998;12:3803–3808. doi: 10.1101/gad.12.24.3803. PubMed DOI PMC
Spotts G.D., Patel S.V., Xiao Q., Hann S.R. Identification of Downstream-Initiated c-Myc Proteins Which Are Dominant-Negative Inhibitors of Transactivation by Full-Length c-Myc Proteins. Mol. Cell. Biol. 1997;17:1459–1468. doi: 10.1128/MCB.17.3.1459. PubMed DOI PMC
Cazalla D., Zhu J., Manche L., Huber E., Krainer A.R., Cáceres J.F. Nuclear Export and Retention Signals in the RS Domain of SR Proteins. Mol. Cell. Biol. 2002;22:6871–6882. doi: 10.1128/MCB.22.19.6871-6882.2002. PubMed DOI PMC
Galmozzi E., Casalini P., Iorio M.V., Casati B., Olgiati C., Ménard S. HER2 Signaling Enhances 5′UTR-Mediated Translation of c-Myc mRNA. J. Cell Physiol. 2004;200:82–88. doi: 10.1002/jcp.20012. PubMed DOI
Notari M., Neviani P., Santhanam R., Blaser B.W., Chang J.-S., Galietta A., Willis A.E., Roy D.C., Caligiuri M.A., Marcucci G., et al. A MAPK/HNRPK Pathway Controls BCR/ABL Oncogenic Potential by Regulating MYC mRNA Translation. Blood. 2006;107:2507–2516. doi: 10.1182/blood-2005-09-3732. PubMed DOI PMC
Stoneley M., Paulin F.E., Le Quesne J.P., Chappell S.A., Willis A.E. C-Myc 5′ Untranslated Region Contains an Internal Ribosome Entry Segment. Oncogene. 1998;16:423–428. doi: 10.1038/sj.onc.1201763. PubMed DOI
Le Quesne J.P., Stoneley M., Fraser G.A., Willis A.E. Derivation of a Structural Model for the C-Myc IRES. J. Mol. Biol. 2001;310:111–126. doi: 10.1006/jmbi.2001.4745. PubMed DOI
Ji M.H., Kim S.-K., Kim C.-Y., Phi J.H., Jun H.J., Blume S.W., Choi H.S. Physiological Expression and Accumulation of the Products of Two Upstream Open Reading Frames Mrtl and MycHex1 Along With P64 and P67 Myc From the Human C-Myc Locus. J. Cell. Biochem. 2016;117:1407–1418. doi: 10.1002/jcb.25431. PubMed DOI
Thiry M., Lafontaine D.L.J. Birth of a Nucleolus: The Evolution of Nucleolar Compartments. Trends Cell Biol. 2005;15:194–199. doi: 10.1016/j.tcb.2005.02.007. PubMed DOI
Mao Y.S., Zhang B., Spector D.L. Biogenesis and Function of Nuclear Bodies. Trends Genet. 2011;27:295–306. doi: 10.1016/j.tig.2011.05.006. PubMed DOI PMC
Gazin C., Rigolet M., Briand J.P., Van Regenmortel M.H., Galibert F. Immunochemical Detection of Proteins Related to the Human C-Myc Exon 1. EMBO J. 1986;5:2241–2250. doi: 10.1002/j.1460-2075.1986.tb04491.x. PubMed DOI PMC
Fricker M., Hollinshead M., White N., Vaux D. Interphase Nuclei of Many Mammalian Cell Types Contain Deep, Dynamic, Tubular Membrane-Bound Invaginations of the Nuclear Envelope. J. Cell Biol. 1997;136:531–544. doi: 10.1083/jcb.136.3.531. PubMed DOI PMC
Broers J.L., Machiels B.M., van Eys G.J., Kuijpers H.J., Manders E.M., van Driel R., Ramaekers F.C. Dynamics of the Nuclear Lamina as Monitored by GFP-Tagged A-Type Lamins. Pt 20J. Cell Sci. 1999;112:3463–3475. doi: 10.1242/jcs.112.20.3463. PubMed DOI
Johnson N., Krebs M., Boudreau R., Giorgi G., LeGros M., Larabell C. Actin-Filled Nuclear Invaginations Indicate Degree of Cell de-Differentiation. Differentiation. 2003;71:414–424. doi: 10.1046/j.1432-0436.2003.7107003.x. PubMed DOI
Lagace T.A., Ridgway N.D. The Rate-Limiting Enzyme in Phosphatidylcholine Synthesis Regulates Proliferation of the Nucleoplasmic Reticulum. Mol. Biol. Cell. 2005;16:1120–1130. doi: 10.1091/mbc.e04-10-0874. PubMed DOI PMC
Echevarría W., Leite M.F., Guerra M.T., Zipfel W.R., Nathanson M.H. Regulation of Calcium Signals in the Nucleus by a Nucleoplasmic Reticulum. Nat. Cell Biol. 2003;5:440–446. doi: 10.1038/ncb980. PubMed DOI PMC
Mickleburgh I., Burtle B., Hollås H., Campbell G., Chrzanowska-Lightowlers Z., Vedeler A., Hesketh J. Annexin A2 Binds to the Localization Signal in the 3′ Untranslated Region of c-Myc mRNA. FEBS J. 2005;272:413–421. doi: 10.1111/j.1742-4658.2004.04481.x. PubMed DOI
Zaidi S.K., Young D.W., Javed A., Pratap J., Montecino M., van Wijnen A., Lian J.B., Stein J.L., Stein G.S. Nuclear Microenvironments in Biological Control and Cancer. Nat. Rev. Cancer. 2007;7:454–463. doi: 10.1038/nrc2149. PubMed DOI
Marinkovic T., Marinkovic D. Obscure Involvement of MYC in Neurodegenerative Diseases and Neuronal Repair. Mol. Neurobiol. 2021;58:4169–4177. doi: 10.1007/s12035-021-02406-w. PubMed DOI
Madden S.K., de Araujo A.D., Gerhardt M., Fairlie D.P., Mason J.M. Taking the Myc out of Cancer: Toward Therapeutic Strategies to Directly Inhibit c-Myc. Mol. Cancer. 2021;20:3. doi: 10.1186/s12943-020-01291-6. PubMed DOI PMC
Ahmadi S.E., Rahimi S., Zarandi B., Chegeni R., Safa M. MYC: A Multipurpose Oncogene with Prognostic and Therapeutic Implications in Blood Malignancies. J. Hematol. Oncol. 2021;14:121. doi: 10.1186/s13045-021-01111-4. PubMed DOI PMC
Whitfield J.R., Soucek L. The Long Journey to Bring a Myc Inhibitor to the Clinic. J. Cell Biol. 2021;220:202103090. doi: 10.1083/jcb.202103090. PubMed DOI PMC
Vaklavas C., Meng Z., Choi H., Grizzle W.E., Zinn K.R., Blume S.W. Small Molecule Inhibitors of IRES-Mediated Translation. Cancer Biol. Ther. 2015;16:1471–1485. doi: 10.1080/15384047.2015.1071729. PubMed DOI PMC
Vaklavas C., Grizzle W.E., Choi H., Meng Z., Zinn K.R., Shrestha K., Blume S.W. IRES Inhibition Induces Terminal Differentiation and Synchronized Death in Triple-Negative Breast Cancer and Glioblastoma Cells. Tumour Biol. 2016;37:13247–13264. doi: 10.1007/s13277-016-5161-4. PubMed DOI PMC
Shi Y., Sun F., Cheng Y., Holmes B., Dhakal B., Gera J.F., Janz S., Lichtenstein A. Critical Role for Cap-Independent c-MYC Translation in Progression of Multiple Myeloma. Mol. Cancer Ther. 2022;21:502–510. doi: 10.1158/1535-7163.MCT-21-0016. PubMed DOI PMC
Holmes B., Lee J., Landon K.A., Benavides-Serrato A., Bashir T., Jung M.E., Lichtenstein A., Gera J. Mechanistic Target of Rapamycin (mTOR) Inhibition Synergizes with Reduced Internal Ribosome Entry Site (IRES)-Mediated Translation of Cyclin D1 and c-MYC mRNAs to Treat Glioblastoma. J. Biol. Chem. 2016;291:14146–14159. doi: 10.1074/jbc.M116.726927. PubMed DOI PMC
Piazzi M., Bavelloni A., Faenza I., Blalock W. Glycogen Synthase Kinase (GSK)-3 and the Double-Strand RNA-Dependent Kinase, PKR: When Two Kinases for the Common Good Turn Bad. Biochim. Biophys. Acta Mol. Cell Res. 2020;1867:118769. doi: 10.1016/j.bbamcr.2020.118769. PubMed DOI PMC
Vaklavas C., Zinn K.R., Samuel S.L., Meng Z., Grizzle W.E., Choi H., Blume S.W. Translational Control of the Undifferentiated Phenotype in ER-positive Breast Tumor Cells: Cytoplasmic Localization of ERα and Impact of IRES Inhibition. Oncol. Rep. 2018;39:2482–2498. doi: 10.3892/or.2018.6332. PubMed DOI PMC