Ecological filtering shapes the impacts of agricultural deforestation on biodiversity

. 2024 Feb ; 8 (2) : 251-266. [epub] 20240105

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38182682

Grantová podpora
32122057 National Natural Science Foundation of China (National Science Foundation of China)
3198810 National Natural Science Foundation of China (National Science Foundation of China)

Odkazy

PubMed 38182682
DOI 10.1038/s41559-023-02280-w
PII: 10.1038/s41559-023-02280-w
Knihovny.cz E-zdroje

The biodiversity impacts of agricultural deforestation vary widely across regions. Previous efforts to explain this variation have focused exclusively on the landscape features and management regimes of agricultural systems, neglecting the potentially critical role of ecological filtering in shaping deforestation tolerance of extant species assemblages at large geographical scales via selection for functional traits. Here we provide a large-scale test of this role using a global database of species abundance ratios between matched agricultural and native forest sites that comprises 71 avian assemblages reported in 44 primary studies, and a companion database of 10 functional traits for all 2,647 species involved. Using meta-analytic, phylogenetic and multivariate methods, we show that beyond agricultural features, filtering by the extent of natural environmental variability and the severity of historical anthropogenic deforestation shapes the varying deforestation impacts across species assemblages. For assemblages under greater environmental variability-proxied by drier and more seasonal climates under a greater disturbance regime-and longer deforestation histories, filtering has attenuated the negative impacts of current deforestation by selecting for functional traits linked to stronger deforestation tolerance. Our study provides a previously largely missing piece of knowledge in understanding and managing the biodiversity consequences of deforestation by agricultural deforestation.

Ashoka Trust for Research in Ecology and the Environment Bengaluru India

British Trust for Ornithology Norfolk UK

Center for Integrative Conservation Xishuangbanna Tropical Botanical Garden Chinese Academy of Sciences Menglun China

Centre for Biodiversity Information Development Strathmore University Nairobi Kenya

Centre for Ecological Sciences Indian Institute of Science Bangalore India

Centre for Nature based Climate Solutions National University of Singapore Singapore Singapore

Centre of Biological Diversity University of St Andrews St Andrews Scotland

College of Life Science University of Chinese Academy of Sciences Beijing China

Department of Behavioural Ecology Faculty of Biology Adam Mickiewicz University Poznań Poland

Department of Biological Applications and Technology University of Ioannina Ioannina Greece

Department of Bird Migration Swiss Ornithological Institute Sempach Switzerland

Department of Botany State Museum of Natural History Stuttgart Stuttgart Germany

Department of Earth System Science Ministry of Education Key Laboratory for Earth System Modeling Institute for Global Change Studies Tsinghua University Beijing China

Department of Ecological and Biological Sciences University of Tuscia Viterbo Italy

Department of Environmental Science Policy and Management University of California Berkeley Berkeley CA USA

Department of Health and Environmental Science Xi'an Jiaotong Liverpool University Suzhou China

Department of Life and Environmental Sciences Bournemouth University Poole UK

Department of Life Sciences Faculty of Science and Technology University of the West Indies St Augustine Trinidad and Tobago

Division of Biological Sciences University of Montana Missoula MT USA

Ecosystems and Environment Research Programme Faculty of Biological and Environmental Sciences University of Helsinki Lahti Finland

Evolution and Ecology Research Centre and School of Biological Earth and Environmental Sciences University of New South Wales Sydney New South Wales Australia

Faculty of Environmental Sciences Czech University of Life Sciences Prague Prague Czech Republic

Fenner School of Environment and Society Australian National University Canberra Australian Capital Territory Australia

Global Conservation Program Wildlife Conservation Society Bronx NY USA

Group for Conservation Biology DOPPS BirdLife Slovenia Ljubljana Slovenia

HUN REN DE Anthropocene Ecology Research Group University of Debrecen Debrecen Hungary

Institut de Recherche pour le Développement UMR SENS IRD CIRAD Université Paul Valéry Montpellier 3 Université de Montpellier Montpellier France

Institute of Animal Ecology and Systematic Zoology Justus Liebig University of Gießen Giessen Germany

Institute of Applied Ecology Fujian University of Agriculture and Forestry Fuzhou China

Institute of Eastern Himalaya Biodiversity Research Dali University Dali China

Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education College of Urban and Environmental Sciences Peking University Beijing China

Institute of Zoology Chinese Academy of Sciences Beijing China

Instituto de Ecología Regional CONICET Universidad Nacional de Tucumán Tucumán Argentina

Investigadoras e Investigadores por México del Consejo Nacional de Ciencia y Tecnología Dirección Regional Occidente Mexico City Mexico

Kunming Natural History Museum of Zoology Kunming Institute of Zoology Chinese Academy of Sciences Kunming China

Laboratorio de Ecología de Organismos Escuela de Ciencias Biológicas Universidad Pedagógica y Tecnológica de Colombia Tunja Colombia

MED Department of Biology School of Sciences and Technology University of Évora Évora Portugal

MED University of Évora Évora Portugal

Ministry of Education Ecological Field Station for East Asia Migratory Birds Tsinghua University Beijing China

National Parks Board Singapore Singapore

NCX San Francisco CA USA

Northern Research Station USDA Forest Service Amherst MA USA

Ornithology Section Zoology Department National Museums of Kenya Nairobi Kenya

School of Environment and Science Griffith University Brisbane Queensland Australia

School of Natural Sciences University of Tasmania Hobart Tasmania Australia

School of Public and International Affairs and Department of Ecology and Evolutionary Biology Princeton University Princeton NJ USA

Shikoku Research Center Forestry and Forest Products Research Institute Kochi Japan

Tsinghua University Xi'an Institute of Surveying and Mapping Joint Research Center for Next Generation Smart Mapping Beijing China

Warnell School of Forestry and Natural Resources University of Georgia Athens GA USA

Zobrazit více v PubMed

Ellis, E. C. et al. People have shaped most of terrestrial nature for at least 12,000 years. Proc. Natl Acad. Sci. USA 118, e2023483118 (2021). PubMed DOI PMC

Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011). PubMed DOI

Springmann, M. et al. Options for keeping the food system within environmental limits. Nature 562, 519–525 (2018). PubMed DOI

Maxwell, S., Fuller, R. A., Brooks, T. M. & Watson, J. E. M. The ravages of guns, nets and bulldozers. Nature 536, 143–145 (2016). PubMed DOI

Gibson, L. et al. Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478, 378–381 (2011). PubMed DOI

Kehoe, L. et al. Biodiversity at risk under future cropland expansion and intensification. Nat. Ecol. Evol. 1, 1129–1135 (2017). PubMed DOI

Outhwaite, C. L., Ortiz, A. M. D., Spooner, F. E. B., Dalin, C. & Newbold, T. Availability and proximity of natural habitat influence cropland biodiversity in forest biomes globally. Glob. Ecol. Biogeogr. 31, 1589–1602 (2022). DOI

Socolar, J. B., Valderrama Sandoval, E. H. & Wilcove, D. S. Overlooked biodiversity loss in tropical smallholder agriculture. Conserv. Biol. 33, 1338–1349 (2019). PubMed DOI

Elsen, P. R., Kalyanaraman, R., Ramesh, K. & Wilcove, D. S. The importance of agricultural lands for Himalayan birds in winter. Conserv. Biol. 31, 416–426 (2017). PubMed DOI

Potapov, P. et al. Global maps of cropland extent and change show accelerated cropland expansion in the twenty-first century. Nat. Food 3, 19–28 (2022). PubMed DOI

Sayer, J. et al. Ten principles for a landscape approach to reconciling agriculture, conservation, and other competing land uses. Proc. Natl Acad. Sci. USA 110, 8349–8356 (2013). PubMed DOI PMC

Gonthier, D. J. et al. Biodiversity conservation in agriculture requires a multi-scale approach. Proc. Biol. Sci. 281, 9–14 (2014).

Estrada-Carmona, N., Sánchez, A. C., Remans, R. & Jones, S. K. Complex agricultural landscapes host more biodiversity than simple ones: a global meta-analysis. Proc. Natl Acad. Sci. USA 119, e2203385119 (2022). PubMed DOI PMC

Lichtenberg, E. M. et al. A global synthesis of the effects of diversified farming systems on arthropod diversity within fields and across agricultural landscapes. Glob. Chang. Biol. 23, 4946–4957 (2017). PubMed DOI

Sirami, C. et al. Increasing crop heterogeneity enhances multitrophic diversity across agricultural regions. Proc. Natl Acad. Sci. USA 116, 16442–16447 (2019). PubMed DOI PMC

McLaughlin, A. & Mineau, P. The impact of agricultural practices on biodiversity. Agric. Ecosyst. Environ. 55, 201–212 (1995). DOI

Arroyo-Rodríguez, V. et al. Designing optimal human-modified landscapes for forest biodiversity conservation. Ecol. Lett. 23, 1404–1420 (2020). PubMed DOI

Amiot, C., Ji, W., Ellis, E. C. & Anderson, M. G. Temporal and sociocultural effects of human colonisation on native biodiversity: filtering and rates of adaptation. Oikos 130, 1035–1045 (2021). DOI

Andermann, T., Faurby, S., Turvey, S. T., Antonelli, A. & Silvestro, D. The past and future human impact on mammalian diversity. Sci. Adv. 6, eabb2313 (2020). PubMed DOI PMC

Kraft, N. J. B. et al. Community assembly, coexistence and the environmental filtering metaphor. Funct. Ecol. 29, 592–599 (2015). DOI

Le Provost, G. et al. Land-use history impacts functional diversity across multiple trophic groups. Proc. Natl Acad. Sci. USA 117, 1573–1579 (2020). PubMed DOI PMC

Rapacciuolo, G. et al. The signature of human pressure history on the biogeography of body mass in tetrapods. Glob. Ecol. Biogeogr. 26, 1022–1034 (2017). DOI

Cadotte, M. W. & Tucker, C. M. Should environmental filtering be abandoned? Trends Ecol. Evol. 32, 429–437 (2017). PubMed DOI

Srinivasan, U., Elsen, P. R. & Wilcove, D. S. Annual temperature variation influences the vulnerability of montane bird communities to land-use change. Ecography 42, 2084–2094 (2019). DOI

Frishkoff, L. et al. Climate change and habitat conversion favour the same species. Ecol. Lett. 19, 1081–1090 (2016). PubMed DOI

Balmford, A. Extinction filters and current resilience: the significance of past selection pressures for conservation biology. Trends Ecol. Evol. 11, 193–196 (1996). PubMed DOI

Cartwright, S. J., Nicoll, M. A. C., Jones, C. G., Tatayah, V. & Norris, K. Anthropogenic natal environmental effects on life histories in a wild bird population. Curr. Biol. 24, 536–540 (2014). PubMed DOI PMC

Betts, M. G. et al. Extinction filters mediate the global effects of habitat fragmentation on animals. Science 366, 1236–1239 (2019). PubMed DOI

Weeks, T. L. et al. Climate-driven variation in dispersal ability predicts responses to forest fragmentation in birds. Nat. Ecol. Evol. 7, 1079–1091 (2023). PubMed DOI

Barlow, J. et al. Quantifying the biodiversity value of tropical primary, secondary, and plantation forests. Proc. Natl Acad. Sci. USA 104, 18555–18560 (2007). PubMed DOI PMC

Hua, F. & Wang, W. Ecological filtering shapes the impacts of agricultural deforestation on biodiversity. Zenodo https://doi.org/10.5281/zenodo.10031327 (2023).

Tobias, J. A. & Pigot, A. L. Integrating behaviour and ecology into global biodiversity conservation strategies. Phil. Trans. R. Soc. B 374, 20190012 (2019). PubMed DOI PMC

Newbold, T. et al. Ecological traits affect the response of tropical forest bird species to land-use intensity. Proc. Biol. Sci. 280, 20122131 (2013). PubMed PMC

Lee, T. M. & Jetz, W. Unravelling the structure of species extinction risk for predictive conservation science. Proc. Biol. Sci. 278, 1329–1338 (2011). PubMed

Keinath, D. A. et al. A global analysis of traits predicting species sensitivity to habitat fragmentation. Glob. Ecol. Biogeogr. 26, 115–127 (2017). DOI

Bueno, A. S., Dantas, S. M., Henriques, L. M. P. & Peres, C. A. Ecological traits modulate bird species responses to forest fragmentation in an Amazonian anthropogenic archipelago. Divers. Distrib. 24, 387–402 (2018). DOI

Iglesias, M., del, R., Barchuk, A. & Grilli, M. P. Carbon storage, community structure and canopy cover: a comparison along a precipitation gradient. For. Ecol. Manag. 265, 218–229 (2012). DOI

Boivin, N. L., Zeder, M. A., Fuller, D. Q., Crowther, A. & Larson, G. Ecological consequences of human niche construction: examining long-term anthropogenic shaping of global species distributions. Proc. Natl Acad. Sci. USA 113, 6388–6396 (2016). PubMed DOI PMC

Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017). DOI

Goldewijk, K. K., Beusen, A., Doelman, J. & Stehfest, E. Anthropogenic land use estimates for the Holocene – HYDE 3.2. Earth Syst. Sci. Data 9, 927–953 (2017). DOI

Borenstein, M., Hedges, L. V., Higgins, J. P. T. & Rothstein, H. R. in Introduction to Meta-Analysis 1st edn (eds Borenstein, M., Hedges, L. V., Higgins, J. P. T. & Rothstein, H. R.) Ch. 30 (Wiley, 2009).

Villeger, S., Mason, N. W. H. & Mouillot, D. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89, 2290–2301 (2008). PubMed DOI

Laliberte, E. & Legendre, P. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91, 299–305 (2010). PubMed DOI

Ricotta, C. et al. Measuring the functional redundancy of biological communities: a quantitative guide. Methods Ecol. Evol. 7, 1386–1395 (2016). DOI

Williams, D. R. et al. Proactive conservation to prevent habitat losses to agricultural expansion. Nat. Sustain. 4, 314–322 (2021). DOI

Balmford, A. Concentrating vs. spreading our footprint: how to meet humanity’s needs at least cost to nature. J. Zool. 315, 79–109 (2021). DOI

Beyer, R. M., Hua, F., Martin, P. A., Manica, A. & Rademacher, T. Relocating croplands could drastically reduce the environmental impacts of global food production. Commun. Earth Environ. 3, 49 (2022). DOI

Crawford, C., Yin, H., Radeloff, V. & Wilcove, D. Rural land abandonment is too ephemeral to provide major benefits for biodiversity and climate. Sci. Adv. 8999, 1–14 (2022).

Neate-clegg, M. H. C. et al. Traits shaping urban tolerance in birds differ around the world. Curr. Biol. 33, 1677–1688 (2023). PubMed DOI

Cardillo, M. et al. Multiple causes of high extinction risk in large mammal species. Science 309, 1239–1241 (2005). PubMed DOI

HilleRisLambers, J., Adler, P. B., Harpole, W. S., Levine, J. M. & Mayfield, M. M. Rethinking community assembly through the lens of coexistence theory. Annu. Rev. Ecol. Evol. Syst. 43, 227–248 (2012). DOI

Moran, E. V., Hartig, F. & Bell, D. M. Intraspecific trait variation across scales: implications for understanding global change responses. Glob. Chang. Biol. 22, 137–150 (2016). PubMed DOI

Cowie, R. H., Bouchet, P. & Fontaine, B. The sixth mass extinction: fact, fiction or speculation? Biol. Rev. 97, 640–663 (2022). PubMed DOI

Hua, F. et al. The biodiversity and ecosystem service contributions and trade-offs of forest restoration approaches. Science 844, 839–844 (2022). DOI

Rozendaal, D. M. A. et al. Biodiversity recovery of Neotropical secondary forests. Sci. Adv. 5, eaau3114 (2019). PubMed DOI PMC

Lindenmayer, D. B. et al. Novel bird responses to successive, large-scale, landscape transformations. Ecol. Monogr. 89, e01362 (2019). DOI

O’Brien, T. G., Baillie, J. E. M., Krueger, L. & Cuke, M. The wildlife picture index: monitoring top trophic levels. Anim. Conserv. 13, 335–343 (2010). DOI

Yu, L. et al. FROM-GLC Plus: toward near real-time and multi-resolution land cover mapping. GISci. Remote Sens. 59, 1026–1047 (2022). DOI

Copernicus Climate Change Service. Land Cover Classification Gridded Maps from 1992 to Present Derived from Satellite Observation (Climate Data Store (CDS), 2019); https://doi.org/10.24381/cds.006f2c9a

Haddad, N. M. et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 1, 1–10 (2015). DOI

Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012). PubMed DOI

Sheard, C. et al. Ecological drivers of global gradients in avian dispersal inferred from wing morphology. Nat. Commun. 11, 2463 (2020). PubMed DOI PMC

Nakagawa, S. & Santos, E. S. A. Methodological issues and advances in biological meta-analysis. Evol. Ecol. 26, 1253–1274 (2012). DOI

Pinheiro, J., Bates, D., DebRoy, S. & Sarkar, D. nlme: linear and nonlinear mixed effects models. R version 3.1-152 (2021).

R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2022).

Gomes, D. G. E. Should I use fixed effects or random effects when I have fewer than five levels of a grouping factor in a mixed-effects model? PeerJ 10, e12794 (2022). PubMed DOI PMC

Burnham, K. P. & Anderson, D. R. Model Selection and Multi-Model Inference (Springer, 2004).

Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R DOI

Bartoń, K. MuMIn: multi-model inference. R version 1.46.0 (2020).

Schielzeth, H. et al. Robustness of linear mixed-effects models to violations of distributional assumptions. Methods Ecol. Evol. 11, 1141–1152 (2020). DOI

Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 36, 1–48 (2010). DOI

Nakagawa, S. et al. Methods for testing publication bias in ecological and evolutionary meta-analyses. Methods Ecol. Evol. 13, 4–21 (2022). DOI

Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J. Stat. Softw. 33, 1–22 (2010). DOI

Nakagawa, S. & De Villemereuil, P. A general method for simultaneously accounting for phylogenetic and species sampling uncertainty via Rubin’s rules in comparative analysis. Syst. Biol. 68, 632–641 (2019). PubMed DOI

Magneville, C. et al. mFD: an R package to compute and illustrate the multiple facets of functional diversity. Ecography 2022, e05904 (2022). DOI

Cooke, R. S. C., Bates, A. E. & Eigenbrod, F. Global trade-offs of functional redundancy and functional dispersion for birds and mammals. Glob. Ecol. Biogeogr. 28, 484–495 (2019). DOI

Estrada, A., Coates-Estrada, R. & Meritt, D. A. Jr Anthropogenic landscape changes and avian diversity at Los Tuxtlas, Mexico. Biodivers. Conserv. 6, 19–43 (1997). DOI

Li, N. et al. Bird species diversity in Altai riparian landscapes: wood cover plays a key role for avian abundance. Ecol. Evol. 9, 9634–9643 (2019). PubMed DOI PMC

Kmecl, P. & Denac, K. The effects of forest succession and grazing intensity on bird diversity and the conservation value of a Northern Adriatic karstic landscape. Biodivers. Conserv. 27, 2003–2020 (2018). DOI

Arias-Sosa, L. A., Salamanca-Reyes, J. R. & Ramos-Montaño, C. The role of different natural and human-related habitats for the conservation of birds in a high Andean Lake. Wetl. Ecol. Manag. 29, 897–913 (2021). DOI

Mazoyer, M. & Roudart, L. A History of World Agriculture: from the Neolithic Age to the Current Crisis (Monthly Review Press, 2006).

De Beenhouwer, M., Aerts, R. & Honnay, O. A global meta-analysis of the biodiversity and ecosystem service benefits of coffee and cacao agroforestry. Agric. Ecosyst. Environ. 175, 1–7 (2013). DOI

Dunn, R. R. Managing the tropical landscape: a comparison of the effects of logging and forest conversion to agriculture on ants, birds, and lepidoptera. For. Ecol. Manag. 191, 215–224 (2004). DOI

Norris, K. et al. Biodiversity in a forest-agriculture mosaic—the changing face of West African rainforests. Biol. Conserv. 143, 2341–2350 (2010). DOI

Philpott, S. M. et al. Biodiversity loss in Latin American coffee landscapes: review of the evidence on ants, birds, and trees. Conserv. Biol. 22, 1093–1105 (2008). PubMed DOI

Plexida, S., Solomou, A., Poirazidis, K. & Sfougaris, A. Factors affecting biodiversity in agrosylvopastoral ecosystems with in the Mediterranean Basin: a systematic review. J. Arid Environ. 151, 125–133 (2018). DOI

Núñez-Regueiro, M. M., Siddiqui, S. F. & Fletcher, R. J. Jr Effects of bioenergy on biodiversity arising from land-use change and crop type. Conserv. Biol. 35, 77–87 (2019). DOI

Sekercioglu, C. H. Bird functional diversity and ecosystem services in tropical forests, agroforests and agricultural areas. J. Ornithol. 153, 153–161 (2012). DOI

Sodhi, N. S., Lee, T. M., Koh, L. P. & Brook, B. W. A meta-analysis of the impact of anthropogenic forest disturbance on Southeast Asia’s biotas. Biotropica 41, 103–109 (2009). DOI

Pfeifer, M. et al. BIOFRAG—a new database for analyzing BIOdiversity responses to forest FRAGmentation. Ecol. Evol. 4, 1524–1537 (2014). PubMed DOI PMC

Hudson, L. et al. The 2016 Release of the PREDICTS Database (Natural History Museum, 2016); https://doi.org/10.5519/0066354

Fischer, J. et al. Land sparing versus land sharing: moving forward. Conserv. Lett. 7, 149–157 (2014). DOI

Luskin, M. S., Lee, J. S. H., Edwards, D. P., Gibson, L. & Potts, M. D. Study context shapes recommendations of land-sparing and sharing; a quantitative review. Glob. Food Sec. 16, 29–35 (2018). DOI

Abrahamczyk, S., Kessler, M., Dwi Putra, D., Waltert, M. & Tscharntke, T. The value of differently managed cacao plantations for forest bird conservation in Sulawesi, Indonesia. Bird. Conserv. Int. 18, 349–362 (2008). DOI

Bongiorno, S. F. Land use and summer bird populations in northwestern Galicia, Spain. Ibis 124, 1–20 (1982). DOI

Chandler, R. B. et al. A small-scale land-sparing approach to conserving biological diversity in tropical agricultural landscapes. Conserv. Biol. 27, 785–795 (2013). PubMed DOI

Chiatante, G. & Meriggi, A. The importance of rotational crops for biodiversity conservation in Mediterranean areas. PLoS ONE 11, e0149323 (2016). PubMed DOI PMC

Chiatante, G., Porro, Z., Musacchio, A., Bazzocchi, A. & Meriggi, A. Multi-scale habitat requirements of forest bird species in a highly fragmented landscape. J. Ornithol. 160, 773–788 (2019). DOI

Chiatante, G., Pellitteri-Rosa, D., Torretta, E., Nonnis Marzano, F. & Meriggi, A. Indicators of biodiversity in an intensively cultivated and heavily human modified landscape. Ecol. Indic. 130, 108060 (2021). DOI

Chiawo, D. O., Kombe, W. N. & Craig, A. J. F. K. Bird responses to land use change: guild diversity in a Kenyan coastal forest and adjoining habitats. Emu 118, 281–292 (2018). DOI

Cresswell, W. et al. Densities and habitat preferences of Andean cloud-forest birds in pristine and degraded habitats in north-eastern Ecuador. Bird. Conserv. Int. 9, 129–145 (1999). DOI

Echeverri, A. et al. Precipitation and tree cover gradients structure avian alpha diversity in north-western Costa Rica. Divers. Distrib. 25, 1222–1233 (2019). DOI

Garcia, S., Finch, D. M. & Chávez León, G. Patterns of forest use and endemism in resident bird communities of north-central Michoacán, Mexico. For. Ecol. Manag. 110, 151–171 (1998). DOI

Hua, F. et al. Opportunities for biodiversity gains under the world’s largest reforestation programme. Nat. Commun. 7, 12717 (2016). PubMed DOI PMC

Huang, G. & Catterall, C. P. Effects of habitat transitions on rainforest bird communities across an anthropogenic landscape mosaic. Biotropica 53, 130–141 (2021). DOI

Hulme, M. F. et al. Conserving the birds of Uganda’s banana-coffee arc: land sparing and land sharing compared. PLoS ONE 8, e54597 (2013). PubMed DOI PMC

Hutto, R. L. Can patterns of habitat use by western Nearctic-Neotropical migratory landbirds in winter inform conservation priorities? Wilson J. Ornithol. 132, 45–60 (2020). DOI

Imboma, T. S., Ferrante, M., You, M.-S., You, S. & L, G. L. Diversity of bird communities in tea (Camellia sinensis) plantations in Fujian province, south-eastern China. Diversity 12, 457 (2020). DOI

Jarrett, C. et al. Bird communities in African cocoa agroforestry are diverse but lack specialized insectivores. J. Appl. Ecol. 58, 1237–1247 (2021). DOI

Kati, V. I. & Sekercioglu, C. H. Diversity, ecological structure, and conservation of the landbird community of Dadia reserve, Greece. Divers. Distrib. 12, 620–629 (2006). DOI

Kułaga, K. & Budka, M. Bird species detection by an observer and an autonomous sound recorder in two different environments: forest and farmland. PLoS ONE 14, e0211970 (2019). PubMed DOI PMC

Macchi, L. et al. Thresholds in forest bird communities along woody vegetation gradients in the South American Dry Chaco. J. Appl. Ecol. 56, 629–639 (2019). DOI

MacGregor-Fors, I. & Schondube, J. E. Use of tropical dry forests and agricultural areas by neotropical bird communities. Biotropica 43, 365–370 (2011). DOI

Martin, E. A., Viano, M., Ratsimisetra, L., Laloë, F. & Carrière, S. M. Maintenance of bird functional diversity in a traditional agroecosystem of Madagascar. Agric. Ecosyst. Environ. 149, 1–9 (2012). DOI

Morelli, F. et al. Landscape heterogeneity metrics as indicators of bird diversity: determining the optimal spatial scales in different landscapes. Ecol. Indic. 34, 372–379 (2013). DOI

Mulwa, R. K., Neuschulz, E. L., Böhning-Gaese, K. & Schleuning, M. Seasonal fluctuations of resource abundance and avian feeding guilds across forest-farmland boundaries in tropical Africa. Oikos 122, 524–532 (2013). DOI

Norfolk, O. et al. Birds in the matrix: the role of agriculture in avian conservation in the Taita Hills, Kenya. Afr. J. Ecol. 55, 530–540 (2017). DOI

O’Dea, N. & Whittaker, R. J. How resilient are Andean montane forest bird communities to habitat degradation? Biodivers. Conserv. 16, 1131–1159 (2007). DOI

Ortega-Álvarez, R. et al. Improving the sustainability of working landscapes in Latin America: an application of community-based monitoring data on bird populations to inform management guidelines. For. Ecol. Manag. 409, 56–66 (2018). DOI

Penteado, M., Yamashita, C., Marques, T. S. & Verdade, L. M. Biodiversity in Agricultural Landscapes of Southeastern Brazil (eds Gheler-Costa, C., Lyra-Jorge, M. C. & Verdade, L. M.) Ch. 15 (De Gruyter Open, 2016).

Phalan, B., Onial, M., Balmford, A. & Green, R. E. Reconciling food production and biodiversity conservation: land sharing and land sparing compared. Science 333, 1289–1291 (2011). PubMed DOI

Raman, T. R. S., Gonsalves, C., Jeganathan, P. & Mudappa, D. Native shade trees aid bird conservation in tea plantations in southern India. Curr. Sci. 121, 294–305 (2021). DOI

Salgueiro, P. A., Mira, A., Rabaça, J. E. & Santos, S. M. Identifying critical thresholds to guide management practices in agro-ecosystems: insights from bird community response to an open grassland-to-forest gradient. Ecol. Indic. 88, 205–213 (2018). DOI

Shahabuddin, G., Goswami, R., Krishnadas, M. & Menon, T. Decline in forest bird species and guilds due to land use change in the Western Himalaya. Glob. Ecol. Conserv. 25, e01447 (2021).

Sidhu, S., Raman, T. R. S. & Goodale, E. Effects of plantations and home-gardens on tropical forest bird communities and mixed-species bird flocks in the Southern Western Ghats. J. Bombay Nat. Hist. Soc. 107, 91–108 (2010).

Soh, M. C. K., Sodhi, N. S. & Lim, S. L. H. High sensitivity of montane bird communities to habitat disturbance in Peninsular Malaysia. Biol. Conserv. 129, 149–166 (2006). DOI

Sreekar, R. et al. Horizontal and vertical species turnover in tropical birds in habitats with differing land use. Biol. Lett. 13, 20170186 (2017). PubMed DOI PMC

Yamaura, Y. et al. Biodiversity of man-made open habitats in an underused country: a class of multispecies abundance models for count data. Biodivers. Conserv. 21, 1365–1380 (2012). DOI

Yang, Y.-Q. et al. A preliminary study on breeding birds community diversity in Guanshan, Longxian county, Shaanxi province. J. Ecol. Rural Environ. 37, 597–602 (2021).

Zhou, L. et al. The response of mixed-species bird flocks to anthropogenic disturbance and elevational variation in southwest China. Condor 121, duz028 (2019). DOI

Wilman, H. et al. EltonTraits 1.0: species-level foraging attributes of the world’s birds and mammals. Ecology 95, 2027 (2014). DOI

Billerman, S. M., Keeney, B. K., Rodewald, P. G. & Schulenberg, T. S. (eds) Birds of the World (Cornell Laboratory of Ornithology, 2022); https://birdsoftheworld.org/bow/home

Bird, J. P. et al. Generation lengths of the world’s birds and their implications for extinction risk. Conserv. Biol. 34, 1252–1261 (2020). PubMed DOI

Morelli, F., Benedetti, Y., Møller, A. P. & Fuller, R. A. Measuring avian specialization. Ecol. Evol. 9, 8378–8386 (2019). PubMed DOI PMC

BirdLife International. IUCN red list for birds http://datazone.birdlife.org/species/search (2021).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...