Ecological filtering shapes the impacts of agricultural deforestation on biodiversity
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
32122057
National Natural Science Foundation of China (National Science Foundation of China)
3198810
National Natural Science Foundation of China (National Science Foundation of China)
PubMed
38182682
DOI
10.1038/s41559-023-02280-w
PII: 10.1038/s41559-023-02280-w
Knihovny.cz E-zdroje
- MeSH
- biodiverzita * MeSH
- fylogeneze MeSH
- lesy MeSH
- zachování přírodních zdrojů * MeSH
- zemědělství MeSH
- Publikační typ
- časopisecké články MeSH
The biodiversity impacts of agricultural deforestation vary widely across regions. Previous efforts to explain this variation have focused exclusively on the landscape features and management regimes of agricultural systems, neglecting the potentially critical role of ecological filtering in shaping deforestation tolerance of extant species assemblages at large geographical scales via selection for functional traits. Here we provide a large-scale test of this role using a global database of species abundance ratios between matched agricultural and native forest sites that comprises 71 avian assemblages reported in 44 primary studies, and a companion database of 10 functional traits for all 2,647 species involved. Using meta-analytic, phylogenetic and multivariate methods, we show that beyond agricultural features, filtering by the extent of natural environmental variability and the severity of historical anthropogenic deforestation shapes the varying deforestation impacts across species assemblages. For assemblages under greater environmental variability-proxied by drier and more seasonal climates under a greater disturbance regime-and longer deforestation histories, filtering has attenuated the negative impacts of current deforestation by selecting for functional traits linked to stronger deforestation tolerance. Our study provides a previously largely missing piece of knowledge in understanding and managing the biodiversity consequences of deforestation by agricultural deforestation.
Ashoka Trust for Research in Ecology and the Environment Bengaluru India
British Trust for Ornithology Norfolk UK
Centre for Biodiversity Information Development Strathmore University Nairobi Kenya
Centre for Ecological Sciences Indian Institute of Science Bangalore India
Centre for Nature based Climate Solutions National University of Singapore Singapore Singapore
Centre of Biological Diversity University of St Andrews St Andrews Scotland
College of Life Science University of Chinese Academy of Sciences Beijing China
Department of Behavioural Ecology Faculty of Biology Adam Mickiewicz University Poznań Poland
Department of Biological Applications and Technology University of Ioannina Ioannina Greece
Department of Bird Migration Swiss Ornithological Institute Sempach Switzerland
Department of Botany State Museum of Natural History Stuttgart Stuttgart Germany
Department of Ecological and Biological Sciences University of Tuscia Viterbo Italy
Department of Health and Environmental Science Xi'an Jiaotong Liverpool University Suzhou China
Department of Life and Environmental Sciences Bournemouth University Poole UK
Division of Biological Sciences University of Montana Missoula MT USA
Faculty of Environmental Sciences Czech University of Life Sciences Prague Prague Czech Republic
Global Conservation Program Wildlife Conservation Society Bronx NY USA
Group for Conservation Biology DOPPS BirdLife Slovenia Ljubljana Slovenia
HUN REN DE Anthropocene Ecology Research Group University of Debrecen Debrecen Hungary
Institute of Applied Ecology Fujian University of Agriculture and Forestry Fuzhou China
Institute of Eastern Himalaya Biodiversity Research Dali University Dali China
Institute of Zoology Chinese Academy of Sciences Beijing China
Instituto de Ecología Regional CONICET Universidad Nacional de Tucumán Tucumán Argentina
MED Department of Biology School of Sciences and Technology University of Évora Évora Portugal
MED University of Évora Évora Portugal
National Parks Board Singapore Singapore
Northern Research Station USDA Forest Service Amherst MA USA
Ornithology Section Zoology Department National Museums of Kenya Nairobi Kenya
School of Environment and Science Griffith University Brisbane Queensland Australia
School of Natural Sciences University of Tasmania Hobart Tasmania Australia
Shikoku Research Center Forestry and Forest Products Research Institute Kochi Japan
Warnell School of Forestry and Natural Resources University of Georgia Athens GA USA
Zobrazit více v PubMed
Ellis, E. C. et al. People have shaped most of terrestrial nature for at least 12,000 years. Proc. Natl Acad. Sci. USA 118, e2023483118 (2021). PubMed DOI PMC
Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011). PubMed DOI
Springmann, M. et al. Options for keeping the food system within environmental limits. Nature 562, 519–525 (2018). PubMed DOI
Maxwell, S., Fuller, R. A., Brooks, T. M. & Watson, J. E. M. The ravages of guns, nets and bulldozers. Nature 536, 143–145 (2016). PubMed DOI
Gibson, L. et al. Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478, 378–381 (2011). PubMed DOI
Kehoe, L. et al. Biodiversity at risk under future cropland expansion and intensification. Nat. Ecol. Evol. 1, 1129–1135 (2017). PubMed DOI
Outhwaite, C. L., Ortiz, A. M. D., Spooner, F. E. B., Dalin, C. & Newbold, T. Availability and proximity of natural habitat influence cropland biodiversity in forest biomes globally. Glob. Ecol. Biogeogr. 31, 1589–1602 (2022). DOI
Socolar, J. B., Valderrama Sandoval, E. H. & Wilcove, D. S. Overlooked biodiversity loss in tropical smallholder agriculture. Conserv. Biol. 33, 1338–1349 (2019). PubMed DOI
Elsen, P. R., Kalyanaraman, R., Ramesh, K. & Wilcove, D. S. The importance of agricultural lands for Himalayan birds in winter. Conserv. Biol. 31, 416–426 (2017). PubMed DOI
Potapov, P. et al. Global maps of cropland extent and change show accelerated cropland expansion in the twenty-first century. Nat. Food 3, 19–28 (2022). PubMed DOI
Sayer, J. et al. Ten principles for a landscape approach to reconciling agriculture, conservation, and other competing land uses. Proc. Natl Acad. Sci. USA 110, 8349–8356 (2013). PubMed DOI PMC
Gonthier, D. J. et al. Biodiversity conservation in agriculture requires a multi-scale approach. Proc. Biol. Sci. 281, 9–14 (2014).
Estrada-Carmona, N., Sánchez, A. C., Remans, R. & Jones, S. K. Complex agricultural landscapes host more biodiversity than simple ones: a global meta-analysis. Proc. Natl Acad. Sci. USA 119, e2203385119 (2022). PubMed DOI PMC
Lichtenberg, E. M. et al. A global synthesis of the effects of diversified farming systems on arthropod diversity within fields and across agricultural landscapes. Glob. Chang. Biol. 23, 4946–4957 (2017). PubMed DOI
Sirami, C. et al. Increasing crop heterogeneity enhances multitrophic diversity across agricultural regions. Proc. Natl Acad. Sci. USA 116, 16442–16447 (2019). PubMed DOI PMC
McLaughlin, A. & Mineau, P. The impact of agricultural practices on biodiversity. Agric. Ecosyst. Environ. 55, 201–212 (1995). DOI
Arroyo-Rodríguez, V. et al. Designing optimal human-modified landscapes for forest biodiversity conservation. Ecol. Lett. 23, 1404–1420 (2020). PubMed DOI
Amiot, C., Ji, W., Ellis, E. C. & Anderson, M. G. Temporal and sociocultural effects of human colonisation on native biodiversity: filtering and rates of adaptation. Oikos 130, 1035–1045 (2021). DOI
Andermann, T., Faurby, S., Turvey, S. T., Antonelli, A. & Silvestro, D. The past and future human impact on mammalian diversity. Sci. Adv. 6, eabb2313 (2020). PubMed DOI PMC
Kraft, N. J. B. et al. Community assembly, coexistence and the environmental filtering metaphor. Funct. Ecol. 29, 592–599 (2015). DOI
Le Provost, G. et al. Land-use history impacts functional diversity across multiple trophic groups. Proc. Natl Acad. Sci. USA 117, 1573–1579 (2020). PubMed DOI PMC
Rapacciuolo, G. et al. The signature of human pressure history on the biogeography of body mass in tetrapods. Glob. Ecol. Biogeogr. 26, 1022–1034 (2017). DOI
Cadotte, M. W. & Tucker, C. M. Should environmental filtering be abandoned? Trends Ecol. Evol. 32, 429–437 (2017). PubMed DOI
Srinivasan, U., Elsen, P. R. & Wilcove, D. S. Annual temperature variation influences the vulnerability of montane bird communities to land-use change. Ecography 42, 2084–2094 (2019). DOI
Frishkoff, L. et al. Climate change and habitat conversion favour the same species. Ecol. Lett. 19, 1081–1090 (2016). PubMed DOI
Balmford, A. Extinction filters and current resilience: the significance of past selection pressures for conservation biology. Trends Ecol. Evol. 11, 193–196 (1996). PubMed DOI
Cartwright, S. J., Nicoll, M. A. C., Jones, C. G., Tatayah, V. & Norris, K. Anthropogenic natal environmental effects on life histories in a wild bird population. Curr. Biol. 24, 536–540 (2014). PubMed DOI PMC
Betts, M. G. et al. Extinction filters mediate the global effects of habitat fragmentation on animals. Science 366, 1236–1239 (2019). PubMed DOI
Weeks, T. L. et al. Climate-driven variation in dispersal ability predicts responses to forest fragmentation in birds. Nat. Ecol. Evol. 7, 1079–1091 (2023). PubMed DOI
Barlow, J. et al. Quantifying the biodiversity value of tropical primary, secondary, and plantation forests. Proc. Natl Acad. Sci. USA 104, 18555–18560 (2007). PubMed DOI PMC
Hua, F. & Wang, W. Ecological filtering shapes the impacts of agricultural deforestation on biodiversity. Zenodo https://doi.org/10.5281/zenodo.10031327 (2023).
Tobias, J. A. & Pigot, A. L. Integrating behaviour and ecology into global biodiversity conservation strategies. Phil. Trans. R. Soc. B 374, 20190012 (2019). PubMed DOI PMC
Newbold, T. et al. Ecological traits affect the response of tropical forest bird species to land-use intensity. Proc. Biol. Sci. 280, 20122131 (2013). PubMed PMC
Lee, T. M. & Jetz, W. Unravelling the structure of species extinction risk for predictive conservation science. Proc. Biol. Sci. 278, 1329–1338 (2011). PubMed
Keinath, D. A. et al. A global analysis of traits predicting species sensitivity to habitat fragmentation. Glob. Ecol. Biogeogr. 26, 115–127 (2017). DOI
Bueno, A. S., Dantas, S. M., Henriques, L. M. P. & Peres, C. A. Ecological traits modulate bird species responses to forest fragmentation in an Amazonian anthropogenic archipelago. Divers. Distrib. 24, 387–402 (2018). DOI
Iglesias, M., del, R., Barchuk, A. & Grilli, M. P. Carbon storage, community structure and canopy cover: a comparison along a precipitation gradient. For. Ecol. Manag. 265, 218–229 (2012). DOI
Boivin, N. L., Zeder, M. A., Fuller, D. Q., Crowther, A. & Larson, G. Ecological consequences of human niche construction: examining long-term anthropogenic shaping of global species distributions. Proc. Natl Acad. Sci. USA 113, 6388–6396 (2016). PubMed DOI PMC
Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017). DOI
Goldewijk, K. K., Beusen, A., Doelman, J. & Stehfest, E. Anthropogenic land use estimates for the Holocene – HYDE 3.2. Earth Syst. Sci. Data 9, 927–953 (2017). DOI
Borenstein, M., Hedges, L. V., Higgins, J. P. T. & Rothstein, H. R. in Introduction to Meta-Analysis 1st edn (eds Borenstein, M., Hedges, L. V., Higgins, J. P. T. & Rothstein, H. R.) Ch. 30 (Wiley, 2009).
Villeger, S., Mason, N. W. H. & Mouillot, D. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89, 2290–2301 (2008). PubMed DOI
Laliberte, E. & Legendre, P. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91, 299–305 (2010). PubMed DOI
Ricotta, C. et al. Measuring the functional redundancy of biological communities: a quantitative guide. Methods Ecol. Evol. 7, 1386–1395 (2016). DOI
Williams, D. R. et al. Proactive conservation to prevent habitat losses to agricultural expansion. Nat. Sustain. 4, 314–322 (2021). DOI
Balmford, A. Concentrating vs. spreading our footprint: how to meet humanity’s needs at least cost to nature. J. Zool. 315, 79–109 (2021). DOI
Beyer, R. M., Hua, F., Martin, P. A., Manica, A. & Rademacher, T. Relocating croplands could drastically reduce the environmental impacts of global food production. Commun. Earth Environ. 3, 49 (2022). DOI
Crawford, C., Yin, H., Radeloff, V. & Wilcove, D. Rural land abandonment is too ephemeral to provide major benefits for biodiversity and climate. Sci. Adv. 8999, 1–14 (2022).
Neate-clegg, M. H. C. et al. Traits shaping urban tolerance in birds differ around the world. Curr. Biol. 33, 1677–1688 (2023). PubMed DOI
Cardillo, M. et al. Multiple causes of high extinction risk in large mammal species. Science 309, 1239–1241 (2005). PubMed DOI
HilleRisLambers, J., Adler, P. B., Harpole, W. S., Levine, J. M. & Mayfield, M. M. Rethinking community assembly through the lens of coexistence theory. Annu. Rev. Ecol. Evol. Syst. 43, 227–248 (2012). DOI
Moran, E. V., Hartig, F. & Bell, D. M. Intraspecific trait variation across scales: implications for understanding global change responses. Glob. Chang. Biol. 22, 137–150 (2016). PubMed DOI
Cowie, R. H., Bouchet, P. & Fontaine, B. The sixth mass extinction: fact, fiction or speculation? Biol. Rev. 97, 640–663 (2022). PubMed DOI
Hua, F. et al. The biodiversity and ecosystem service contributions and trade-offs of forest restoration approaches. Science 844, 839–844 (2022). DOI
Rozendaal, D. M. A. et al. Biodiversity recovery of Neotropical secondary forests. Sci. Adv. 5, eaau3114 (2019). PubMed DOI PMC
Lindenmayer, D. B. et al. Novel bird responses to successive, large-scale, landscape transformations. Ecol. Monogr. 89, e01362 (2019). DOI
O’Brien, T. G., Baillie, J. E. M., Krueger, L. & Cuke, M. The wildlife picture index: monitoring top trophic levels. Anim. Conserv. 13, 335–343 (2010). DOI
Yu, L. et al. FROM-GLC Plus: toward near real-time and multi-resolution land cover mapping. GISci. Remote Sens. 59, 1026–1047 (2022). DOI
Copernicus Climate Change Service. Land Cover Classification Gridded Maps from 1992 to Present Derived from Satellite Observation (Climate Data Store (CDS), 2019); https://doi.org/10.24381/cds.006f2c9a
Haddad, N. M. et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 1, 1–10 (2015). DOI
Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012). PubMed DOI
Sheard, C. et al. Ecological drivers of global gradients in avian dispersal inferred from wing morphology. Nat. Commun. 11, 2463 (2020). PubMed DOI PMC
Nakagawa, S. & Santos, E. S. A. Methodological issues and advances in biological meta-analysis. Evol. Ecol. 26, 1253–1274 (2012). DOI
Pinheiro, J., Bates, D., DebRoy, S. & Sarkar, D. nlme: linear and nonlinear mixed effects models. R version 3.1-152 (2021).
R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2022).
Gomes, D. G. E. Should I use fixed effects or random effects when I have fewer than five levels of a grouping factor in a mixed-effects model? PeerJ 10, e12794 (2022). PubMed DOI PMC
Burnham, K. P. & Anderson, D. R. Model Selection and Multi-Model Inference (Springer, 2004).
Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R DOI
Bartoń, K. MuMIn: multi-model inference. R version 1.46.0 (2020).
Schielzeth, H. et al. Robustness of linear mixed-effects models to violations of distributional assumptions. Methods Ecol. Evol. 11, 1141–1152 (2020). DOI
Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 36, 1–48 (2010). DOI
Nakagawa, S. et al. Methods for testing publication bias in ecological and evolutionary meta-analyses. Methods Ecol. Evol. 13, 4–21 (2022). DOI
Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J. Stat. Softw. 33, 1–22 (2010). DOI
Nakagawa, S. & De Villemereuil, P. A general method for simultaneously accounting for phylogenetic and species sampling uncertainty via Rubin’s rules in comparative analysis. Syst. Biol. 68, 632–641 (2019). PubMed DOI
Magneville, C. et al. mFD: an R package to compute and illustrate the multiple facets of functional diversity. Ecography 2022, e05904 (2022). DOI
Cooke, R. S. C., Bates, A. E. & Eigenbrod, F. Global trade-offs of functional redundancy and functional dispersion for birds and mammals. Glob. Ecol. Biogeogr. 28, 484–495 (2019). DOI
Estrada, A., Coates-Estrada, R. & Meritt, D. A. Jr Anthropogenic landscape changes and avian diversity at Los Tuxtlas, Mexico. Biodivers. Conserv. 6, 19–43 (1997). DOI
Li, N. et al. Bird species diversity in Altai riparian landscapes: wood cover plays a key role for avian abundance. Ecol. Evol. 9, 9634–9643 (2019). PubMed DOI PMC
Kmecl, P. & Denac, K. The effects of forest succession and grazing intensity on bird diversity and the conservation value of a Northern Adriatic karstic landscape. Biodivers. Conserv. 27, 2003–2020 (2018). DOI
Arias-Sosa, L. A., Salamanca-Reyes, J. R. & Ramos-Montaño, C. The role of different natural and human-related habitats for the conservation of birds in a high Andean Lake. Wetl. Ecol. Manag. 29, 897–913 (2021). DOI
Mazoyer, M. & Roudart, L. A History of World Agriculture: from the Neolithic Age to the Current Crisis (Monthly Review Press, 2006).
De Beenhouwer, M., Aerts, R. & Honnay, O. A global meta-analysis of the biodiversity and ecosystem service benefits of coffee and cacao agroforestry. Agric. Ecosyst. Environ. 175, 1–7 (2013). DOI
Dunn, R. R. Managing the tropical landscape: a comparison of the effects of logging and forest conversion to agriculture on ants, birds, and lepidoptera. For. Ecol. Manag. 191, 215–224 (2004). DOI
Norris, K. et al. Biodiversity in a forest-agriculture mosaic—the changing face of West African rainforests. Biol. Conserv. 143, 2341–2350 (2010). DOI
Philpott, S. M. et al. Biodiversity loss in Latin American coffee landscapes: review of the evidence on ants, birds, and trees. Conserv. Biol. 22, 1093–1105 (2008). PubMed DOI
Plexida, S., Solomou, A., Poirazidis, K. & Sfougaris, A. Factors affecting biodiversity in agrosylvopastoral ecosystems with in the Mediterranean Basin: a systematic review. J. Arid Environ. 151, 125–133 (2018). DOI
Núñez-Regueiro, M. M., Siddiqui, S. F. & Fletcher, R. J. Jr Effects of bioenergy on biodiversity arising from land-use change and crop type. Conserv. Biol. 35, 77–87 (2019). DOI
Sekercioglu, C. H. Bird functional diversity and ecosystem services in tropical forests, agroforests and agricultural areas. J. Ornithol. 153, 153–161 (2012). DOI
Sodhi, N. S., Lee, T. M., Koh, L. P. & Brook, B. W. A meta-analysis of the impact of anthropogenic forest disturbance on Southeast Asia’s biotas. Biotropica 41, 103–109 (2009). DOI
Pfeifer, M. et al. BIOFRAG—a new database for analyzing BIOdiversity responses to forest FRAGmentation. Ecol. Evol. 4, 1524–1537 (2014). PubMed DOI PMC
Hudson, L. et al. The 2016 Release of the PREDICTS Database (Natural History Museum, 2016); https://doi.org/10.5519/0066354
Fischer, J. et al. Land sparing versus land sharing: moving forward. Conserv. Lett. 7, 149–157 (2014). DOI
Luskin, M. S., Lee, J. S. H., Edwards, D. P., Gibson, L. & Potts, M. D. Study context shapes recommendations of land-sparing and sharing; a quantitative review. Glob. Food Sec. 16, 29–35 (2018). DOI
Abrahamczyk, S., Kessler, M., Dwi Putra, D., Waltert, M. & Tscharntke, T. The value of differently managed cacao plantations for forest bird conservation in Sulawesi, Indonesia. Bird. Conserv. Int. 18, 349–362 (2008). DOI
Bongiorno, S. F. Land use and summer bird populations in northwestern Galicia, Spain. Ibis 124, 1–20 (1982). DOI
Chandler, R. B. et al. A small-scale land-sparing approach to conserving biological diversity in tropical agricultural landscapes. Conserv. Biol. 27, 785–795 (2013). PubMed DOI
Chiatante, G. & Meriggi, A. The importance of rotational crops for biodiversity conservation in Mediterranean areas. PLoS ONE 11, e0149323 (2016). PubMed DOI PMC
Chiatante, G., Porro, Z., Musacchio, A., Bazzocchi, A. & Meriggi, A. Multi-scale habitat requirements of forest bird species in a highly fragmented landscape. J. Ornithol. 160, 773–788 (2019). DOI
Chiatante, G., Pellitteri-Rosa, D., Torretta, E., Nonnis Marzano, F. & Meriggi, A. Indicators of biodiversity in an intensively cultivated and heavily human modified landscape. Ecol. Indic. 130, 108060 (2021). DOI
Chiawo, D. O., Kombe, W. N. & Craig, A. J. F. K. Bird responses to land use change: guild diversity in a Kenyan coastal forest and adjoining habitats. Emu 118, 281–292 (2018). DOI
Cresswell, W. et al. Densities and habitat preferences of Andean cloud-forest birds in pristine and degraded habitats in north-eastern Ecuador. Bird. Conserv. Int. 9, 129–145 (1999). DOI
Echeverri, A. et al. Precipitation and tree cover gradients structure avian alpha diversity in north-western Costa Rica. Divers. Distrib. 25, 1222–1233 (2019). DOI
Garcia, S., Finch, D. M. & Chávez León, G. Patterns of forest use and endemism in resident bird communities of north-central Michoacán, Mexico. For. Ecol. Manag. 110, 151–171 (1998). DOI
Hua, F. et al. Opportunities for biodiversity gains under the world’s largest reforestation programme. Nat. Commun. 7, 12717 (2016). PubMed DOI PMC
Huang, G. & Catterall, C. P. Effects of habitat transitions on rainforest bird communities across an anthropogenic landscape mosaic. Biotropica 53, 130–141 (2021). DOI
Hulme, M. F. et al. Conserving the birds of Uganda’s banana-coffee arc: land sparing and land sharing compared. PLoS ONE 8, e54597 (2013). PubMed DOI PMC
Hutto, R. L. Can patterns of habitat use by western Nearctic-Neotropical migratory landbirds in winter inform conservation priorities? Wilson J. Ornithol. 132, 45–60 (2020). DOI
Imboma, T. S., Ferrante, M., You, M.-S., You, S. & L, G. L. Diversity of bird communities in tea (Camellia sinensis) plantations in Fujian province, south-eastern China. Diversity 12, 457 (2020). DOI
Jarrett, C. et al. Bird communities in African cocoa agroforestry are diverse but lack specialized insectivores. J. Appl. Ecol. 58, 1237–1247 (2021). DOI
Kati, V. I. & Sekercioglu, C. H. Diversity, ecological structure, and conservation of the landbird community of Dadia reserve, Greece. Divers. Distrib. 12, 620–629 (2006). DOI
Kułaga, K. & Budka, M. Bird species detection by an observer and an autonomous sound recorder in two different environments: forest and farmland. PLoS ONE 14, e0211970 (2019). PubMed DOI PMC
Macchi, L. et al. Thresholds in forest bird communities along woody vegetation gradients in the South American Dry Chaco. J. Appl. Ecol. 56, 629–639 (2019). DOI
MacGregor-Fors, I. & Schondube, J. E. Use of tropical dry forests and agricultural areas by neotropical bird communities. Biotropica 43, 365–370 (2011). DOI
Martin, E. A., Viano, M., Ratsimisetra, L., Laloë, F. & Carrière, S. M. Maintenance of bird functional diversity in a traditional agroecosystem of Madagascar. Agric. Ecosyst. Environ. 149, 1–9 (2012). DOI
Morelli, F. et al. Landscape heterogeneity metrics as indicators of bird diversity: determining the optimal spatial scales in different landscapes. Ecol. Indic. 34, 372–379 (2013). DOI
Mulwa, R. K., Neuschulz, E. L., Böhning-Gaese, K. & Schleuning, M. Seasonal fluctuations of resource abundance and avian feeding guilds across forest-farmland boundaries in tropical Africa. Oikos 122, 524–532 (2013). DOI
Norfolk, O. et al. Birds in the matrix: the role of agriculture in avian conservation in the Taita Hills, Kenya. Afr. J. Ecol. 55, 530–540 (2017). DOI
O’Dea, N. & Whittaker, R. J. How resilient are Andean montane forest bird communities to habitat degradation? Biodivers. Conserv. 16, 1131–1159 (2007). DOI
Ortega-Álvarez, R. et al. Improving the sustainability of working landscapes in Latin America: an application of community-based monitoring data on bird populations to inform management guidelines. For. Ecol. Manag. 409, 56–66 (2018). DOI
Penteado, M., Yamashita, C., Marques, T. S. & Verdade, L. M. Biodiversity in Agricultural Landscapes of Southeastern Brazil (eds Gheler-Costa, C., Lyra-Jorge, M. C. & Verdade, L. M.) Ch. 15 (De Gruyter Open, 2016).
Phalan, B., Onial, M., Balmford, A. & Green, R. E. Reconciling food production and biodiversity conservation: land sharing and land sparing compared. Science 333, 1289–1291 (2011). PubMed DOI
Raman, T. R. S., Gonsalves, C., Jeganathan, P. & Mudappa, D. Native shade trees aid bird conservation in tea plantations in southern India. Curr. Sci. 121, 294–305 (2021). DOI
Salgueiro, P. A., Mira, A., Rabaça, J. E. & Santos, S. M. Identifying critical thresholds to guide management practices in agro-ecosystems: insights from bird community response to an open grassland-to-forest gradient. Ecol. Indic. 88, 205–213 (2018). DOI
Shahabuddin, G., Goswami, R., Krishnadas, M. & Menon, T. Decline in forest bird species and guilds due to land use change in the Western Himalaya. Glob. Ecol. Conserv. 25, e01447 (2021).
Sidhu, S., Raman, T. R. S. & Goodale, E. Effects of plantations and home-gardens on tropical forest bird communities and mixed-species bird flocks in the Southern Western Ghats. J. Bombay Nat. Hist. Soc. 107, 91–108 (2010).
Soh, M. C. K., Sodhi, N. S. & Lim, S. L. H. High sensitivity of montane bird communities to habitat disturbance in Peninsular Malaysia. Biol. Conserv. 129, 149–166 (2006). DOI
Sreekar, R. et al. Horizontal and vertical species turnover in tropical birds in habitats with differing land use. Biol. Lett. 13, 20170186 (2017). PubMed DOI PMC
Yamaura, Y. et al. Biodiversity of man-made open habitats in an underused country: a class of multispecies abundance models for count data. Biodivers. Conserv. 21, 1365–1380 (2012). DOI
Yang, Y.-Q. et al. A preliminary study on breeding birds community diversity in Guanshan, Longxian county, Shaanxi province. J. Ecol. Rural Environ. 37, 597–602 (2021).
Zhou, L. et al. The response of mixed-species bird flocks to anthropogenic disturbance and elevational variation in southwest China. Condor 121, duz028 (2019). DOI
Wilman, H. et al. EltonTraits 1.0: species-level foraging attributes of the world’s birds and mammals. Ecology 95, 2027 (2014). DOI
Billerman, S. M., Keeney, B. K., Rodewald, P. G. & Schulenberg, T. S. (eds) Birds of the World (Cornell Laboratory of Ornithology, 2022); https://birdsoftheworld.org/bow/home
Bird, J. P. et al. Generation lengths of the world’s birds and their implications for extinction risk. Conserv. Biol. 34, 1252–1261 (2020). PubMed DOI
Morelli, F., Benedetti, Y., Møller, A. P. & Fuller, R. A. Measuring avian specialization. Ecol. Evol. 9, 8378–8386 (2019). PubMed DOI PMC
BirdLife International. IUCN red list for birds http://datazone.birdlife.org/species/search (2021).