Enhancing oral squamous cell carcinoma prediction: the prognostic power of the worst pattern of invasion and the limited impact of molecular resection margins
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
Grantová podpora
R01 DE027809
NIDCR NIH HHS - United States
PubMed
38188288
PubMed Central
PMC10766711
DOI
10.3389/fonc.2023.1287650
Knihovny.cz E-zdroje
- Klíčová slova
- biomarkers, mutation, orofacial oncology, squamous cell carcinoma, surgical margins,
- Publikační typ
- časopisecké články MeSH
OBJECTIVE: Oral squamous cell carcinoma (OSCC) originates from the mucosal lining of the oral cavity. Almost half of newly diagnosed cases are classified as advanced stage IV disease, which makes resection difficult. In this study, we investigated the pathological features and mutation profiles of tumor margins in OSCC. METHODS: We performed hierarchical clustering of principal components to identify distinct patterns of tumor growth and their association with patient prognosis. We also used next-generation sequencing to analyze somatic mutations in tumor and marginal tissue samples. RESULTS: Our analyses uncovered that the grade of worst pattern of invasion (WPOI) is strongly associated with depth of invasion and patient survival in multivariable analysis. Mutations were primarily detected in the DNA isolated from tumors, but several mutations were also identified in marginal tissue. In total, we uncovered 29 mutated genes, mainly tumor suppressor genes involved in DNA repair including BRCA genes; however none of these mutations significantly correlated with a higher chance of relapse in our medium-size cohort. Some resection margins that appeared histologically normal harbored tumorigenic mutations in TP53 and CDKN2A genes. CONCLUSION: Even histologically normal margins may contain molecular alterations that are not detectable by conventional histopathological methods, but NCCN classification system still outperforms other methods in the prediction of the probability of disease relapse.
Department of Craniofacial Surgery Faculty of Medicine Ostrava University Ostrava Ostrava Czechia
Department of Environmental Engineering VSB Technical University of Ostrava Ostrava Czechia
Department of Experimental Biology Faculty of Science Masaryk University Brno Czechia
Department of Hematooncology University Hospital Ostrava Ostrava Czechia
Department of Histology and Embryology Faculty of Medicine Masaryk University Brno Czechia
Department of Oncology University Hospital Ostrava Ostrava Czechia
Department of Oral and Maxillofacial Surgery University Hospital Ostrava Ostrava Czechia
Department of Otorhinolaryngology University Hospital Ostrava Ostrava Czechia
Institute for Genome Sciences University of Maryland School of Medicine Baltimore MD United States
Institute of Animal Physiology and Genetics Czech Academy of Sciences Brno Czechia
Institute of Clinical and Molecular Pathology University Hospital Ostrava Ostrava Czechia
Zobrazit více v PubMed
Vigneswaran N, Williams MD. Epidemiologic trends in head and neck cancer and aids in diagnosis. Oral Maxillofac Surg Clinics North America (2014) 26:123–41. doi: 10.1016/j.coms.2014.01.001 PubMed DOI PMC
Elaiwy O, El Ansari W, AlKhalil M, Ammar A. Epidemiology and pathology of oral squamous cell carcinoma in a multi-ethnic population: Retrospective study of 154 cases over 7 years in Qatar. Ann Med Surg (2020) 60:195–200. doi: 10.1016/j.amsu.2020.10.029 PubMed DOI PMC
Chikui T, Yuasa K, Inagaki M, Ohishi M, Shirasuna K, Kanda S. Tumor recurrence criteria for postoperative contrast-enhanced computed tomography after surgical treatment of oral cancer and flap repair. Oral Surgery Oral Medicine Oral Pathology Oral Radiology Endodontology (2000) 90:369–76. doi: 10.1067/moe.2000.107355 PubMed DOI
Ooms M, Ponke L, Winnand P, Heitzer M, Peters F, Steiner T, et al. . Predictive factors and repetition numbers for intraoperative additional resection of initially involved soft tissue resection margins in oral squamous cell carcinoma: a retrospective study. World J Surg Oncol (2023) 21:308. doi: 10.1186/s12957-023-03192-6 PubMed DOI PMC
Min A, Zhu C, Peng S, Rajthala S, Costea DE, Sapkota D. MicroRNAs as important players and biomarkers in oral carcinogenesis. BioMed Res Int (2015) 2015:1–10. doi: 10.1155/2015/186904 PubMed DOI PMC
Stoeckli SJ, Pfaltz M, Steinert H, Schmid S. Histopathological features of occult metastasis detected by sentinel lymph node biopsy in oral and oropharyngeal squamous cell carcinoma. Laryngoscope (2002) 112:111–5. doi: 10.1097/00005537-200201000-00019 PubMed DOI
Schilling C, Stoeckli SJ, Haerle SK, Broglie MA, Huber GF, Sorensen JA, et al. . Sentinel European Node Trial (SENT): 3-year results of sentinel node biopsy in oral cancer. Eur J Cancer (2015) 51:2777–84. doi: 10.1016/j.ejca.2015.08.023 PubMed DOI
Cho J, Lee Y, Sun D, Kim M, Cho K, Nam I, et al. . Prognostic impact of lymph node micrometastasis in oral and oropharyngeal squamous cell carcinomas. Head Neck (2016) 38:E1777–E1782. doi: 10.1002/hed.24314 PubMed DOI
Dik EA, Ipenburg NA, Adriaansens SO, Kessler PA, Van Es RJ, Willems SM. Poor correlation of histologic parameters between biopsy and resection specimen in early stage oral squamous cell carcinoma. Am J Clin Pathol (2015) 144:659–66. doi: 10.1309/AJCPFIVHHH7Q3BLX PubMed DOI
Lengauer C, Kinzler KW, Vogelstein B. Genetic instabilities in human cancers. Nature (1998) 396:643–9. doi: 10.1038/25292 PubMed DOI
Khurshid Z, Zafar MS, Khan RS, Najeeb S, Slowey PD, Rehman IU. Role of salivary biomarkers in oral cancer detection, in: advances in clinical chemistry. Elsevier (2018) 86:23–70. doi: 10.1016/bs.acc.2018.05.002 PubMed DOI
Stepan KO, Li MM, Kang SY, Puram SV. Molecular margins in head and neck cancer: Current techniques and future directions. Oral Oncol (2020) 110:104893. doi: 10.1016/j.oraloncology.2020.104893 PubMed DOI PMC
Sultania M, Chaudhary I, Jain P, Ghalige H, Rajan D, G S, et al. . Margin to depth of invasion ratio: A significant predictor of survival in patients with oral cancer. JCO Glob Oncol (2023) 9:e2300144. doi: 10.1200/GO.23.00144 PubMed DOI PMC
Kim Y, Lee C, Heo Y, Jung SH, Kang YJ, Park SY, et al. . Impact of dysplasia at resection margin on oncologic outcome after curative resection of oral tongue squamous cell carcinoma: significance of high-grade dysplastic resection margin. Eur Arch Otorhinolaryngol (2023). doi: 10.1007/s00405-023-08233-0 PubMed DOI
Shimizu S, Miyazaki A, Sonoda T, Koike K, Ogi K, Kobayashi J, et al. . Tumor budding is an independent prognostic marker in early stage oral squamous cell carcinoma: With special reference to the mode of invasion and worst pattern of invasion. PloS One (2018) 13:e0195451. doi: 10.1371/journal.pone.0195451 PubMed DOI PMC
Chatterjee D, Bansal V, Malik V, Bhagat R, Punia RS, Handa U, et al. . Tumor budding and worse pattern of invasion can predict nodal metastasis in oral cancers and associated with poor survival in early-stage tumors. Ear Nose Throat J (2019) 98:E112–9. doi: 10.1177/0145561319848669 PubMed DOI
Wang B, Liang Z, Liu P. Functional aspects of primary cilium in signaling, assembly and microenvironment in cancer. J Cell Physiol (2021) 236:3207–19. doi: 10.1002/jcp.30117 PubMed DOI PMC
Al’Aldeen AA, Cartwright KA. Neisseria meningitidis: vaccines and vaccine candidates. J Infect (1996) 33:153–7. doi: 10.1016/s0163-4453(96)92081-2 PubMed DOI
Shippman S, Cohen KR. Relationship of heterophoria to stereopsis. Arch Ophthalmol (1983) 101:609–10. doi: 10.1001/archopht.1983.01040010609017 PubMed DOI
Tzourio C, Iglesias S, Hubert JB, Visy JM, Alpérovitch A, Tehindrazanarivelo A, et al. . Migraine and risk of ischaemic stroke: a case-control study. BMJ (1993) 307:289–92. doi: 10.1136/bmj.307.6899.289 PubMed DOI PMC
Müller S, Boy SC, Day TA, Magliocca KR, Richardson MS, Sloan P, et al. . Data set for the reporting of oral cavity carcinomas: explanations and recommendations of the guidelines from the international collaboration of cancer reporting. Arch Pathol Lab Med (2019) 143:439–46. doi: 10.5858/arpa.2018-0411-SA PubMed DOI
Brandwein-Gensler M, Smith RV, Wang B, Penner C, Theilken A, Broughel D, et al. . Validation of the histologic risk model in a new cohort of patients with head and neck squamous cell carcinoma. Am J Surg Pathol (2010) 34:676–88. doi: 10.1097/PAS.0b013e3181d95c37 PubMed DOI
Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics (2018) 34:i884–90. doi: 10.1093/bioinformatics/bty560 PubMed DOI PMC
Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. (2013). doi: 10.48550/ARXIV.1303.3997 DOI
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. . The sequence alignment/Map format and SAMtools. Bioinformatics (2009) 25:2078–9. doi: 10.1093/bioinformatics/btp352 PubMed DOI PMC
Tarasov A, Vilella AJ, Cuppen E, Nijman IJ, Prins P. Sambamba: fast processing of NGS alignment formats. Bioinformatics (2015) 31:2032–4. doi: 10.1093/bioinformatics/btv098 PubMed DOI PMC
Cibulskis K, Lawrence MS, Carter SL, Sivachenko A, Jaffe D, Sougnez C, et al. . Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat Biotechnol (2013) 31:213–9. doi: 10.1038/nbt.2514 PubMed DOI PMC
Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, et al. . A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w 1118; iso-2; iso-3. Fly (2012) 6:80–92. doi: 10.4161/fly.19695 PubMed DOI PMC
R Core Team . The R Project for Statistical Computing. (2021). Available at: https://www.r-project.org/.
Lê S, Josse J, Husson F. FactoMineR: An R Package for Multivariate Analysis. Journal of Statistical Software (2008) 25(1). doi: 10.18637/jss.v025.i01 DOI
Kassambara A, Mundt F. Factoextra: extract and visualize the results of multivariate data analyses. In: Version R package version 1.0.7 (2020).
Therneau TM, Grambsch PM. A package for survival analysis in R. In: Version R package version 3.5-3 (2020). Available at: https://CRAN.R-project.org/package=survival.
Yoshizawa T, Hong S, Jung D, Noë M, Kiemen A, Wu P, et al. . Three-dimensional analysis of extrahepatic cholangiocarcinoma and tumor budding. J Pathol (2020) 251:400–10. doi: 10.1002/path.5474 PubMed DOI PMC
Shu K-X, Li B, Wu L-X. The p53 network: p53 and its downstream genes. Colloids and Surfaces B: Biointerfaces (2007) 55:10–8. doi: 10.1016/j.colsurfb.2006.11.003 PubMed DOI
Xu B, Salama AM, Valero C, Yuan A, Khimraj A, Saliba M, et al. . The prognostic role of histologic grade, worst pattern of invasion, and tumor budding in early oral tongue squamous cell carcinoma: a comparative study. Virchows Arch (2021) 479:597–606. doi: 10.1007/s00428-021-03063-z PubMed DOI PMC
Hori Y, Kubota A, Yokose T, Furukawa M, Matsushita T, Oridate N. Association between pathological invasion patterns and late lymph node metastases in patients with surgically treated clinical No early oral tongue carcinoma. Head Neck (2020) 42:238–43. doi: 10.1002/hed.25994 PubMed DOI
Yue LE, Sharif KF, Sims JR, Sandler ML, Baik FM, Sobotka S, et al. . Oral squamous carcinoma: Aggressive tumor pattern of invasion predicts direct mandible invasion. Head Neck (2020) 42:3171–8. doi: 10.1002/hed.26360 PubMed DOI
Almangush A, Bello IO, Keski–Säntti H, Mäkinen LK, Kauppila JH, Pukkila M, et al. . Depth of invasion, tumor budding, and worst pattern of invasion: Prognostic indicators in early-stage oral tongue cancer. Head Neck (2014) 36:811–8. doi: 10.1002/hed.23380 PubMed DOI PMC
Köhler HF, Vartanian JG, Pinto CAL, Da Silva Rodrigues IFP, Kowalski LP. The impact of worst pattern of invasion on the extension of surgical margins in oral squamous cell carcinoma. Head Neck (2022) 44:691–7. doi: 10.1002/hed.26956 PubMed DOI
Kligerman MP, Moon PK, Tusty M, Cloutier JM, Ma Y, Holsinger CF, et al. . Impact of histologic risk factors on recurrence rates for oral cavity squamous cell carcinoma. Ann Otol Rhinol Laryngol (2023) 132:731–7. doi: 10.1177/00034894221111223 PubMed DOI
Pu Y, Ding L, Wang Y, Wang Y, Chen S, Huang X, et al. . Biopsy pattern of invasion type to determine the surgical approach in early-stage oral squamous cell carcinoma. Virchows Arch (2021) 479:109–19. doi: 10.1007/s00428-020-03008-y PubMed DOI
Cariati P, Cabello Serrano A, Mosalve Iglesias F, Torné Poyatos P, Fernandez Solis J, Ferrari S, et al. . What is the real prognostic value of close margins in oral oncology? Curr Problems Cancer (2019) 43:100500. doi: 10.1016/j.currproblcancer.2019.100500 PubMed DOI
Bajwa MS, Houghton D, Java K, Triantafyllou A, Khattak O, Bekiroglu F, et al. . The relevance of surgical margins in clinically early oral squamous cell carcinoma. Oral Oncol (2020) 110:104913. doi: 10.1016/j.oraloncology.2020.104913 PubMed DOI
He Y, Liu Z, Sheng S, Gao W, Tang X, Li X, et al. . Salvage surgery for patients with residual/persistent diseases after improper or insufficient treatment of oral squamous cell carcinoma: can we rectify these mistakes? BMC Cancer (2021) 21:878. doi: 10.1186/s12885-021-08600-2 PubMed DOI PMC
Král D, Pink R, Šašková L, Michálek J, Tvrdý P. Bone invasion by oral squamous cell carcinoma. Acta Chir Plast (2021) 63:139–44. doi: 10.48095/ccachp2021139 PubMed DOI
Wong LS, McMahon J, Devine J, McLellan D, Thompson E, Farrow A, et al. . Influence of close resection margins on local recurrence and disease-specific survival in oral and oropharyngeal carcinoma. Br J Oral Maxillofac Surg (2012) 50:102–8. doi: 10.1016/j.bjoms.2011.05.008 PubMed DOI
Zanoni DK, Migliacci JC, Xu B, Katabi N, Montero PH, Ganly I, et al. . A proposal to redefine close surgical margins in squamous cell carcinoma of the oral tongue. JAMA Otolaryngol Head Neck Surg (2017) 143:555. doi: 10.1001/jamaoto.2016.4238 PubMed DOI PMC
Cho S, Sodnom-Ish B, Eo MY, Lee JY, Kwon IJ, Myoung H, et al. . Prognosis of tongue squamous cell carcinoma associated with individual surgical margin and pathological features. JKAOMS (2022) 48:249–58. doi: 10.5125/jkaoms.2022.48.5.249 PubMed DOI PMC
Subramaniam N, Balasubramanian D, Low T(, Murthy S, Anand A, Prasad C, et al. . Role of adverse pathological features in surgically treated early oral cavity carcinomas with adequate margins and the development of a scoring system to predict local control. Head Neck (2018) 40:2329–33. doi: 10.1002/hed.25163 PubMed DOI
Singh A, Qayyumi B, Chaturvedi P. An update on surgical margins in the head neck squamous cell carcinoma: assessment, clinical outcome, and future directions. Curr Oncol Rep (2020) 22:82. doi: 10.1007/s11912-020-00942-7 PubMed DOI
Zhong L, Liu Y, Wang K, He Z, Gong Z, Zhao Z, et al. . Biomarkers: paving stones on the road towards the personalized precision medicine for oral squamous cell carcinoma. BMC Cancer (2018) 18:911. doi: 10.1186/s12885-018-4806-7 PubMed DOI PMC
Fox SA, Vacher M, Farah CS. Transcriptomic biomarker signatures for discrimination of oral cancer surgical margins. Biomolecules (2022) 12:464. doi: 10.3390/biom12030464 PubMed DOI PMC
Saidak Z, Pascual C, Bouaoud J, Galmiche L, Clatot F, Dakpé S, et al. . A three-gene expression signature associated with positive surgical margins in tongue squamous cell carcinomas: Predicting surgical resectability from tumour biology? Oral Oncol (2019) 94:115–20. doi: 10.1016/j.oraloncology.2019.05.020 PubMed DOI
Roh J-L, Westra WH, Califano JA, Sidransky D, Koch WM. Tissue imprint for molecular mapping of deep surgical margins in patients with head and neck squamous cell carcinoma. Head Neck (2012) 34:1529–36. doi: 10.1002/hed.21982 PubMed DOI PMC
Van Houten VMM, Leemans CR, Kummer JA, Dijkstra J, Kuik DJ, Van Den Brekel MWM, et al. . Molecular diagnosis of surgical margins and local recurrence in head and neck cancer patients. Clin Cancer Res (2004) 10:3614–20. doi: 10.1158/1078-0432.CCR-03-0631 PubMed DOI
Zanaruddin SNS, Yee PS, Hor SY, Kong YH, Ghani WMNWA, Mustafa WMW, et al. . Common oncogenic mutations are infrequent in oral squamous cell carcinoma of asian origin. PloS One (2013) 8:e80229. doi: 10.1371/journal.pone.0080229 PubMed DOI PMC
Vettore AL, Ramnarayanan K, Poore G, Lim K, Ong CK, Huang KK, et al. . Mutational landscapes of tongue carcinoma reveal recurrent mutations in genes of therapeutic and prognostic relevance. Genome Med (2015) 7:98. doi: 10.1186/s13073-015-0219-2 PubMed DOI PMC
Ma J, Fu Y, Tu Y, Liu Y, Tan Y, Ju W, et al. . Mutation allele frequency threshold does not affect prognostic analysis using next-generation sequencing in oral squamous cell carcinoma. BMC Cancer (2018) 18:758. doi: 10.1186/s12885-018-4481-8 PubMed DOI PMC
Vossen DM, Verhagen CVM, Verheij M, Wessels LFA, Vens C, Van Den Brekel MWM. Comparative genomic analysis of oral versus laryngeal and pharyngeal cancer. Oral Oncol (2018) 81:35–44. doi: 10.1016/j.oraloncology.2018.04.006 PubMed DOI
Chai AWY, Yee PS, Price S, Yee SM, Lee HM, Tiong VK, et al. . Genome-wide CRISPR screens of oral squamous cell carcinoma reveal fitness genes in the Hippo pathway. eLife (2020) 9:e57761. doi: 10.7554/eLife.57761 PubMed DOI PMC
Koo K, Mouradov D, Angel CM, Iseli TA, Wiesenfeld D, McCullough MJ, et al. . Genomic signature of oral squamous cell carcinomas from non-smoking non-drinking patients. Cancers (2021) 13:1029. doi: 10.3390/cancers13051029 PubMed DOI PMC
Patel K, Bhat FA, Patil S, Routray S, Mohanty N, Nair B, et al. . Whole-exome sequencing analysis of oral squamous cell carcinoma delineated by tobacco usage habits. Front Oncol (2021) 11:660696. doi: 10.3389/fonc.2021.660696 PubMed DOI PMC
Jacquemin V, Rieunier G, Jacob S, Bellanger D, d’Enghien CD, Laugé A, et al. . Underexpression and abnormal localization of ATM products in ataxia telangiectasia patients bearing ATM missense mutations. Eur J Hum Genet (2012) 20:305–12. doi: 10.1038/ejhg.2011.196 PubMed DOI PMC
Nykamp K, Anderson M, Powers M, Garcia J, Herrera B, Ho Y-Y, et al. . Sherloc: a comprehensive refinement of the ACMG–AMP variant classification criteria. Genet Med (2017) 19:1105–17. doi: 10.1038/gim.2017.37 PubMed DOI PMC
Witt ED. Neuroanatomical consequences of thiamine deficiency: a comparative analysis. Alcohol Alcohol (1985) 20:201–21. PubMed
Rowan AJ, Lamlum H, Ilyas M, Wheeler J, Straub J, Papadopoulou A, et al. . APC mutations in sporadic colorectal tumors: A mutational “hotspot” and interdependence of the “two hits.”. Proc Natl Acad Sci USA (2000) 97:3352–7. doi: 10.1073/pnas.97.7.3352 PubMed DOI PMC
Ashktorab H, Mokarram P, Azimi H, Olumi H, Varma S, Nickerson ML, et al. . Targeted exome sequencing reveals distinct pathogenic variants in Iranians with colorectal cancer. Oncotarget (2017) 8:7852–66. doi: 10.18632/oncotarget.13977 PubMed DOI PMC
Kan Z, Zheng H, Liu X, Li S, Barber TD, Gong Z, et al. . Whole-genome sequencing identifies recurrent mutations in hepatocellular carcinoma. Genome Res (2013) 23:1422–33. doi: 10.1101/gr.154492.113 PubMed DOI PMC
Abida W, Armenia J, Gopalan A, Brennan R, Walsh M, Barron D, et al. . Prospective genomic profiling of prostate cancer across disease states reveals germline and somatic alterations that may affect clinical decision making. JCO Precis Oncol (2017) 1, 1–16. doi: 10.1200/PO.17.00029 PubMed DOI PMC
Zehir A, Benayed R, Shah RH, Syed A, Middha S, Kim HR, et al. . Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nat Med (2017) 23:703–13. doi: 10.1038/nm.4333 PubMed DOI PMC
The Cancer Genome Atlas Network . Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature (2015) 517:576–82. doi: 10.1038/nature14129 PubMed DOI PMC
Litton JK, Rugo HS, Ettl J, Hurvitz SA, Gonçalves A, Lee K-H, et al. . Talazoparib in patients with advanced breast cancer and a germline BRCA mutation. N Engl J Med (2018) 379:753–63. doi: 10.1056/NEJMoa1802905 PubMed DOI PMC
Sasaki K, Takahashi S, Ouchi K, Otsuki Y, Wakayama S, Ishioka C. Different impacts of TP53 mutations on cell cycle-related gene expression among cancer types. Sci Rep (2023) 13:4868. doi: 10.1038/s41598-023-32092-8 PubMed DOI PMC
Foulkes WD, Flanders TY, Pollock PM, Hayward NK. The CDKN2A (p16) gene and human cancer. Mol Med (1997) 3:5–20. doi: 10.1007/BF03401664 PubMed DOI PMC
Romagosa C, Simonetti S, López-Vicente L, Mazo A, Lleonart ME, Castellvi J, et al. . p16Ink4a overexpression in cancer: a tumor suppressor gene associated with senescence and high-grade tumors. Oncogene (2011) 30:2087–97. doi: 10.1038/onc.2010.614 PubMed DOI
Padhi SS, Roy S, Kar M, Saha A, Roy S, Adhya A, et al. . Role of CDKN2A/p16 expression in the prognostication of oral squamous cell carcinoma. Oral Oncol (2017) 73:27–35. doi: 10.1016/j.oraloncology.2017.07.030 PubMed DOI
Ai L, Stephenson KK, Ling W, Zuo C, Mukunyadzi P, Suen JY, et al. . The p16 (CDKN2a/INK4a) Tumor-Suppressor Gene in Head and Neck Squamous Cell Carcinoma: A Promoter Methylation and Protein Expression Study in 100 Cases. Modern Pathology (2003) 16:944–50. doi: 10.1097/01.MP.0000085760.74313.DD PubMed DOI
Jordan RCK, Catzavelos GC, Barrett AW, Speight PM. Differential expression of bcl-2 and bax in squamous cell carcinomas of the oral cavity. Eur J Cancer Part B: Oral Oncol (1996) 32:394–400. doi: 10.1016/S0964-1955(96)00033-4 PubMed DOI
Loro LL, Vintermyr OK, Liavaag PG, Jonsson R, Johannessen AC. Oral squamous cell carcinoma is associated with decreased bcl-2/bax expression ratio and increased apoptosis. Hum Pathol (1999) 30:1097–105. doi: 10.1016/S0046-8177(99)90229-0 PubMed DOI
Teni T, Pawar S, Sanghvi V, Saranath D. Expression of bcl-2 and bax in chewing tobacco-induced oral cancers and oral lesions from India. Pathol Oncol Res (2002) 8:109–14. doi: 10.1007/BF03033719 PubMed DOI
Chen Z, Chai Y, Zhao T, Li P, Zhao L, He F, et al. . Effect of PLK1 inhibition on cisplatin-resistant gastric cancer cells. J Cell Physiol (2019) 234:5904–14. doi: 10.1002/jcp.26777 PubMed DOI
Yu J, Zhang L. PUMA, a potent killer with or without p53. Oncogene (2008) 27:S71–83. doi: 10.1038/onc.2009.45 PubMed DOI PMC
Tajnik M, Stražišar M, Volavšek M, Boštjančič E, Glavač D. BBC3 is down-regulated with increased tumor size independently of p53 expression in head and neck cancer. CBM (2012) 11:197–208. doi: 10.3233/CBM-2012-00286 PubMed DOI
Han J, Flemington C, Houghton AB, Gu Z, Zambetti GP, Lutz RJ, et al. . Expression of bbc3 , a pro-apoptotic BH3-only gene, is regulated by diverse cell death and survival signals. Proc Natl Acad Sci USA (2001) 98:11318–23. doi: 10.1073/pnas.201208798 PubMed DOI PMC
Su TT. Non-apoptotic roles of apoptotic proteases: new tricks for an old dog. Open Biol (2020) 10:200130. doi: 10.1098/rsob.200130 PubMed DOI PMC
Cazzalini O, Scovassi AI, Savio M, Stivala LA, Prosperi E. Multiple roles of the cell cycle inhibitor p21CDKN1A in the DNA damage response. Mutat Research/Reviews Mutat Res (2010) 704:12–20. doi: 10.1016/j.mrrev.2010.01.009 PubMed DOI
Ohta K, Hoshino H, Wang J, Ono S, Iida Y, Hata K, et al. . MicroRNA-93 activates c-Met/PI3K/Akt pathway activity in hepatocellular carcinoma by directly inhibiting PTEN and CDKN1A. Oncotarget (2015) 6:3211–24. doi: 10.18632/oncotarget.3085 PubMed DOI PMC
Zhang M, Li J, Wang L, Tian Z, Zhang P, Xu Q, et al. . Prognostic significance of p21, p27 and survivin protein expression in patients with oral squamous cell carcinoma. Oncol Lett (2013) 6:381–6. doi: 10.3892/ol.2013.1381 PubMed DOI PMC