Microbiological insight into various underground gas storages in Vienna Basin focusing on methanogenic Archaea
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38188570
PubMed Central
PMC10771303
DOI
10.3389/fmicb.2023.1293506
Knihovny.cz E-zdroje
- Klíčová slova
- Archaea, hydrogen storage, methanation, methane, methanogens,
- Publikační typ
- časopisecké články MeSH
In recent years, there has been a growing interest in extending the potential of underground gas storage (UGS) facilities to hydrogen and carbon dioxide storage. However, this transition to hydrogen storage raises concerns regarding potential microbial reactions, which could convert hydrogen into methane. It is crucial to gain a comprehensive understanding of the microbial communities within any UGS facilities designated for hydrogen storage. In this study, underground water samples and water samples from surface technologies from 7 different UGS objects located in the Vienna Basin were studied using both molecular biology methods and cultivation methods. Results from 16S rRNA sequencing revealed that the proportion of archaea in the groundwater samples ranged from 20 to 58%, with methanogens being the predominant. Some water samples collected from surface technologies contained up to 87% of methanogens. Various species of methanogens were isolated from individual wells, including Methanobacterium sp., Methanocalculus sp., Methanolobus sp. or Methanosarcina sp. We also examined water samples for the presence of sulfate-reducing bacteria known to be involved in microbially induced corrosion and identified species of the genus Desulfovibrio in the samples. In the second part of our study, we contextualized our data by comparing it to available sequencing data from terrestrial subsurface environments worldwide. This allowed us to discern patterns and correlations between different types of underground samples based on environmental conditions. Our findings reveal presence of methanogens in all analyzed groups of underground samples, which suggests the possibility of unintended microbial hydrogen-to-methane conversion and the associated financial losses. Nevertheless, the prevalence of methanogens in our results also highlights the potential of the UGS environment, which can be effectively leveraged as a bioreactor for the conversion of hydrogen into methane, particularly in the context of Power-to-Methane technology.
Department of Biochemistry Faculty of Science Masaryk University Brno Czechia
Zobrazit více v PubMed
Aftab A., Hassanpouryouzband A., Xie Q., Machuca L. L., Sarmadivaleh M. (2022). Toward a fundamental understanding of geological hydrogen storage. Ind. Eng. Chem. Res. 61, 3233–3253. doi: 10.1021/acs.iecr.1c04380 DOI
Apprill A., McNally S., Parsons R., Weber L. (2015). Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat. Microb. Ecol. 75, 129–137. doi: 10.3354/ame01753 DOI
Belyakova E. V., Rozanova E. P., Borzenkov I. A., Tourova T. P., Pusheva M. A., Lysenko A. M., et al. . (2006). The new facultatively chemolithoautotrophic, moderately halophilic, sulfate-reducing bacterium Desulfovermiculus halophilus gen. Nov., sp. Nov., isolated from an oil field. Microbiology 75, 161–171. doi: 10.1134/S0026261706020093 PubMed DOI
Bian Z., Chen Y., Zhi Z., Wei L., Wu H., Wu Y. (2023). Comparison of microbial community structures between oil and water phases in a low-permeability reservoir after water flooding. Energy Rep. 9, 1054–1061. doi: 10.1016/j.egyr.2022.12.026 DOI
Bo Z., Zeng L., Chen Y., Xie Q. (2021). Geochemical reactions-induced hydrogen loss during underground hydrogen storage in sandstone reservoirs. Int. J. Hydrog. Energy 46, 19998–20009. doi: 10.1016/j.ijhydene.2021.03.116 DOI
Burggraf S., Fricke H., Neuner A., Kristjansson J., Rouvier P., Mandelco L., et al. . (1990). Methanococcus igneus sp. Nov., a novel hyperthermophilic methanogen from a shallow submarine hydrothermal system. Syst. Appl. Microbiol. 13, 263–269. doi: 10.1016/S0723-2020(11)80197-9 PubMed DOI
Buriánková I., Molíková A., Vítězová M., Onderka V., Vítěz T., Urbanová I., et al. . (2022). Microbial communities in underground gas reservoirs offer promising biotechnological potential. Fermentation 8, 1–16. doi: 10.3390/fermentation8060251 DOI
Buzek F., Onderka V., Vancura P., Wolf I. (1994). Carbon isotope study of methane production in a town gas storage reservoir. Fuel 73, 747–752. doi: 10.1016/0016-2361(94)90019-1 DOI
Casamayor E. O., Massana R., Benlloch S., Ovreas L., Diez B., Goddard V. J., et al. . (2002). Changes in archaeal, bacterial and eukaryal assemblages along a salinity gradient by comparison of genetic fingerprinting methods in a multipond solar saltern. Environ. Microbiol. 4, 338–348. doi: 10.1046/j.1462-2920.2002.00297.x PubMed DOI
Cheng L., Qiu T.-L., Li X., Wang W.-D., Deng Y., Yin X.-B., et al. . (2008). Isolation and characterization of Methanoculleus receptaculi sp. Nov. from Shengli oil field, China. FEMS Microbiol. Lett. 285, 65–71. doi: 10.1111/j.1574-6968.2008.01212.x PubMed DOI
Cristello J. B., Yang J. M., Hugo R., Lee Y., Park S. S. (2023). Feasibility analysis of blending hydrogen into natural gas networks. Int. J. Hydrog. Energy 48, 17605–17629. doi: 10.1016/j.ijhydene.2023.01.156 DOI
Dinh H. T., Kuever J., Mussmann M., Hassel A. W., Stratmann M., Widdel F. (2004). Iron corrosion by novel anaerobic microorganisms. Nature 427, 829–832. doi: 10.1038/nature02321 PubMed DOI
Dohrmann A. B., Krüger M. (2023). Microbial H2 consumption by a formation fluid from a natural gas field at high-pressure conditions relevant for underground H2 storage. Environ. Sci. Technol. 57, 1092–1102. doi: 10.1021/acs.est.2c07303 PubMed DOI
Dopffel N., Jansen S., Gerritse J. (2021). Microbial side effects of underground hydrogen storage – knowledge gaps, risks and opportunities for successful implementation. Int. J. Hydrog. Energy 46, 8594–8606. doi: 10.1016/j.ijhydene.2020.12.058 DOI
Douglas G. M., Maffei V. J., Zaneveld J. R., Yurgel S. N., Brown J. R., Taylor C. M., et al. . (2020). PICRUSt2 for prediction of metagenome functions. Nat. Biotechnol. 38, 685–688. doi: 10.1038/s41587-020-0548-6 PubMed DOI PMC
Dutta A., Dutta Gupta S., Gupta A., Sarkar J., Roy S., Mukherjee A., et al. . (2018). Exploration of deep terrestrial subsurface microbiome in late cretaceous Deccan traps and underlying Archean basement, India. Sci. Rep. 8:17459. doi: 10.1038/s41598-018-35940-0, PMID: PubMed DOI PMC
Eder W., Ludwig W., Huber R. (1999). Novel 16S rRNA gene sequences retrieved from highly saline brine sediments of Kebrit Deep, Red Sea. Arch. Microbiol. 172, 213–218. doi: 10.1007/s002030050762 PubMed DOI
Enning D., Venzlaff H., Garrelfs J., Dinh H. T., Meyer V., Mayrhofer K., et al. . (2012). Marine sulfate-reducing bacteria cause serious corrosion of iron under electroconductive biogenic mineral crust. Environ. Microbiol. 14, 1772–1787. doi: 10.1111/j.1462-2920.2012.02778.x PubMed DOI PMC
Falzolgher F., Altieri G. (2005). “Underground storage of natural gas” in Encyclopaedia of hydrocarbons: Exploration, production and transport. eds. In P. F., Barnaba G. B., Mazzei R. (Rome: ENI; ), 879–910.
Frank Y. A., Kadnikov V. V., Gavrilov S. N., Banks D., Gerasimchuk A. L., Podosokorskaya O. A., et al. . (2016). Stable and variable parts of microbial community in Siberian deep subsurface thermal aquifer system revealed in a long-term monitoring study. Front. Microbiol. 7:2101. doi: 10.3389/fmicb.2016.02101 PubMed DOI PMC
Galyas A. B., Kis L., Tihanyi L., Szunyog I., Vadaszi M., Koncz A. (2023). Effect of hydrogen blending on the energy capacity of natural gas transmission networks. Int. J. Hydrog. Energy 48, 14795–14807. doi: 10.1016/j.ijhydene.2022.12.198 DOI
Gao P., Li Y., Tan L., Guo F., Ma T. (2019). Composition of bacterial and archaeal communities in an alkali-surfactant-polyacrylamide-flooded oil reservoir and the responses of microcosms to nutrients. Front. Microbiol. 10:2197. doi: 10.3389/fmicb.2019.02197 PubMed DOI PMC
Gay P., Chalumeau H., Steinmetz M. (1983). Chromosomal localization of gut, fruC, and pfk mutations affecting genes involved in Bacillus subtilis D-glucitol catabolism. J. Bacteriol. 153, 1133–1137. doi: 10.1128/jb.153.3.1133-1137.1983 PubMed DOI PMC
GIE (2021). Gas Infrastructure Europe. Available at: https://www.gie.eu/
Gniese C., Bombach P., Rakoczy J., Hoth N., Schlömann M., Richnow H.-H., et al. . (2014). “Relevance of deep-subsurface microbiology for underground gas storage and geothermal energy production” in Geobiotechnology II: energy resources, subsurface technologies, organic pollutants and mining legal principles. eds. Schippers A., Glombitza F., Sand W. (Berlin/Heidelberg: Springer; ), 95–121. PubMed
Godsy E. M. (1980). Isolation of Methanobacterium bryantii from a deep aquifer by using a novel broth-antibiotic disk method. Appl. Environ. Microbiol. 39, 1074–1075. doi: 10.1128/AEM.39.5.1074-1075.1980 PubMed DOI PMC
Gomila M., Mulet M., García-Valdés E., Lalucat J. (2022). Genome-based taxonomy of the genus Stutzerimonas and proposal of S. frequens sp. Nov. and S. degradans sp. Nov. and emended descriptions of S. perfectomarina and S. chloritidismutans. Microorganisms 10:1363. doi: 10.3390/microorganisms10071363 PubMed DOI PMC
Haddad P. G., Ranchou-Peyruse M., Guignard M., Mura J., Casteran F., Ronjon-Magand L., et al. . (2022). Geological storage of hydrogen in deep aquifers – an experimental multidisciplinary study. Energy Environ. Sci. 15, 3400–3415. doi: 10.1039/D2EE00765G DOI
Hanišáková N., Vítězová M., Rittmann S. K.-M. R. (2022). The historical development of cultivation techniques for methanogens and other strict anaerobes and their application in modern microbiology. Microorganisms 10:412. doi: 10.3390/microorganisms10020412 PubMed DOI PMC
Heinemann N., Alcalde J., Miocic J. M., Hangx S. J. T., Kallmeyer J., Ostertag-Henning C., et al. . (2021). Enabling large-scale hydrogen storage in porous media – the scientific challenges. Energy Environ. Sci. 14, 853–864. doi: 10.1039/D0EE03536J DOI
Higashioka Y., Kojima H., Watanabe M., Fukui M. (2013). Desulfatitalea tepidiphila gen. Nov., sp. Nov., a sulfate-reducing bacterium isolated from tidal flat sediment. Int. J. Syst. Evol. Microbiol. 63, 761–765. doi: 10.1099/ijs.0.043356-0 PubMed DOI
Hiller H., Reimert R., Marschner F., Renner H.-J., Boll W., Supp E., et al. . (2006). “Gas production. In Wiley-VCH Verlag GmbH & Co. KGaA” in Ullmann’s encyclopedia of industrial chemistry (Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; ).
Hirano S., Ihara S., Wakai S., Dotsuta Y., Otani K., Kitagaki T., et al. . (2022). Novel Methanobacterium strain induces severe corrosion by retrieving electrons from Fe0 under a freshwater environment. Microorganisms 10:270. doi: 10.3390/microorganisms10020270 PubMed DOI PMC
Hogeweg S., Strobel G., Hagemann B. (2022). Benchmark study for the simulation of underground hydrogen storage operations. Comput. Geosci. 26, 1367–1378. doi: 10.1007/s10596-022-10163-5 DOI
IGU (2023). IGU. Available at:http://ugs.igu.org/index.php/ugs_list/get_list# (Accessed July 10, 2023).
Ivanova A. E., Borzenkov I. A., Tarasov A. L., Milekhina E. I., Belyaev S. S. (2007). A microbiological study of an underground gas storage in the process of gas extraction. Microbiology 76, 461–468. doi: 10.1134/S0026261707040121 PubMed DOI
Jakobsen T. F., Kjeldsen K. U., Ingvorsen K. (2006). Desulfohalobium utahense sp. Nov., a moderately halophilic, sulfate-reducing bacterium isolated from great salt Lake. Int. J. Syst. Evol. Microbiol. 56, 2063–2069. doi: 10.1099/ijs.0.64323-0 PubMed DOI
Jones W. J., Leigh J. A., Mayer F., Woese C. R., Wolfe R. S. (1983). Methanococcus jannaschii sp. Nov., an extremely thermophilic methanogen from a submarine hydrothermal vent. Arch. Microbiol. 136, 254–261. doi: 10.1007/BF00425213 DOI
Kato S., Yumoto I., Kamagata Y. (2015). Isolation of Acetogenic bacteria that induce biocorrosion by utilizing metallic iron as the sole electron donor. Appl. Environ. Microbiol. 81, 67–73. doi: 10.1128/AEM.02767-14 PubMed DOI PMC
Khomyakova M. A., Merkel A. Y., Segliuk V. S., Slobodkin A. I. (2023). Desulfatitalea alkaliphila sp. Nov., an alkalipilic sulfate- and arsenate- reducing bacterium isolated from a terrestrial mud volcano. Extremophiles Life Under Extreme Condit. 27:12. doi: 10.1007/s00792-023-01297-0 PubMed DOI
Kotelnikova S., Macario A. J. L., Pedersen K. (1998). Methanobacterium subterraneum sp. Nov., a new alkaliphilic, eurythermic and halotolerant methanogen isolated from deep granitic groundwater. Int. J. Syst. Evol. Microbiol. 48, 357–367. doi: 10.1099/00207713-48-2-357 PubMed DOI
Kurr M., Huber R., König H., Jannasch H. W., Fricke H., Trincone A., et al. . (1991). Methanopyrus kandleri, gen. And sp. Nov. represents a novel group of hyperthermophilic methanogens, growing at 110°C. Arch. Microbiol. 156, 239–247. doi: 10.1007/BF00262992 DOI
Lai M.-C., Chen S.-C., Shu C.-M., Chiou M.-S., Wang C.-C., Chuang M.-J., et al. . (2002). Methanocalculus taiwanensis sp. Nov., isolated from an estuarine environment. Int. J. Syst. Evol. Microbiol. 52, 1799–1806. doi: 10.1099/00207713-52-5-1799 PubMed DOI
Lalucat J., Bennasar A., Bosch R., García-Valdés E., Palleroni N. J. (2006). Biology of Pseudomonas stutzeri. Microbiol. Mol. Biol. Rev. 70, 510–547. doi: 10.1128/MMBR.00047-05 PubMed DOI PMC
Li Y., Xu D., Chen C., Li X., Jia R., Zhang D., et al. . (2018). Anaerobic microbiologically influenced corrosion mechanisms interpreted using bioenergetics and bioelectrochemistry: a review. J. Mater. Sci. Technol. 34, 1713–1718. doi: 10.1016/j.jmst.2018.02.023 DOI
Liang R., Davidova I., Hirano S., Duncan K. E., Suflita J. M. (2019). Community succession in an anaerobic long-chain paraffin-degrading consortium and impact on chemical and electrical microbially influenced iron corrosion. FEMS Microbiol. Ecol. 95:fiz111. doi: 10.1093/femsec/fiz111 PubMed DOI
Liu C., Cui Y., Li X., Yao M. (2021). microeco: an R package for data mining in microbial community ecology. FEMS Microbiol. Ecol. 97:fiaa255. doi: 10.1093/femsec/fiaa255 PubMed DOI
Louca S., Parfrey L. W., Doebeli M. (2016). Decoupling function and taxonomy in the global ocean microbiome. Science 353, 1272–1277. doi: 10.1126/science.aaf4507 PubMed DOI
Maestrojuan G. M., Boone D. R. (1991). Characterization of Methanosarcina barkeri MST and 227, Methanosarcina mazei S-6T, and Methanosarcina vacuolata Z-761T. Int. J. Syst. Bacteriol. 41, 267–274. doi: 10.1099/00207713-41-2-267 DOI
Magnabosco C., Tekere M., Lau M. C. Y., Linage B., Kuloyo O., Erasmus M., et al. . (2014). Comparisons of the composition and biogeographic distribution of the bacterial communities occupying South African thermal springs with those inhabiting deep subsurface fracture water. Front. Microbiol. 5:679. doi: 10.3389/fmicb.2014.00679 PubMed DOI PMC
Matsushita M., Magara K., Sato Y., Shinzato N., Kimura H. (2018). Geochemical and microbiological evidence for microbial methane production in deep aquifers of the cretaceous Accretionary prism. Microbes Environ. 33, 205–213. doi: 10.1264/jsme2.ME17199 PubMed DOI PMC
Mauerhofer L.-M., Zwirtmayr S., Pappenreiter P., Bernacchi S., Seifert A. H., Reischl B., et al. . (2021). Hyperthermophilic methanogenic archaea act as high-pressure CH4 cell factories. Commun. Biol. 4:289. doi: 10.1038/s42003-021-01828-5 PubMed DOI PMC
McMurdie P. J., Holmes S. (2013). phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8:e61217. doi: 10.1371/journal.pone.0061217 PubMed DOI PMC
Meda U. S., Bhat N., Pandey A., Subramanya K. N., Lourdu Antony Raj M. A. (2023). Challenges associated with hydrogen storage systems due to the hydrogen embrittlement of high strength steels. Int. J. Hydrog. Energy 48, 17894–17913. doi: 10.1016/j.ijhydene.2023.01.292 DOI
Molíková A., Vítězová M., Vítěz T., Buriánková I., Huber H., Dengler L., et al. . (2022). Underground gas storage as a promising natural methane bioreactor and reservoir? J. Energy Storage 47:103631. doi: 10.1016/j.est.2021.103631 DOI
Mori K., Harayama S. (2011). Methanobacterium petrolearium sp. Nov. and Methanobacterium ferruginis sp. Nov., mesophilic methanogens isolated from salty environments. Int. J. Syst. Evol. Microbiol. 61, 138–143. doi: 10.1099/ijs.0.022723-0 PubMed DOI
Morozova D., Wandrey M., Alawi M., Zimmer M., Vieth A., Zettlitzer M., et al. . (2010). Monitoring of the microbial community composition in saline aquifers during CO2 storage by fluorescence in situ hybridisation. Int. J. Greenhouse Gas Control 4, 981–989. doi: 10.1016/j.ijggc.2009.11.014 DOI
Morozova D., Zettlitzer M., Let D., Würdemann H. (2011). Monitoring of the microbial community composition in deep subsurface saline aquifers during CO2 storage in Ketzin, Germany. Energy Procedia 4, 4362–4370. doi: 10.1016/j.egypro.2011.02.388 DOI
Nazina T. N., Abukova L. A., Tourova T. P., Babich T. L., Bidzhieva S. K., Loiko N. G., et al. . (2023). Biodiversity and potential activity of microorganisms in underground gas storage horizons. Sustainability 15, 1–20. doi: 10.3390/su15139945 DOI
Ollivier B., Fardeau M.-L., Cayol J.-L., Magot M., Patel B. K. C., Prensier G., et al. . (1998). Methanocalculus halotolerans gen. Nov., sp. Nov., isolated from an oil-producing well. Int. J. Syst. Bacteriol. 48, 821–828. doi: 10.1099/00207713-48-3-821 PubMed DOI
Osburn M. R., LaRowe D. E., Momper L. M., Amend J. P. (2014). Chemolithotrophy in the continental deep subsurface: Sanford underground research facility (SURF), USA. Front. Microbiol. 5:610. doi: 10.3389/fmicb.2014.00610 PubMed DOI PMC
Perera M. S. A. (2023). A review of underground hydrogen storage in depleted gas reservoirs: insights into various rock-fluid interaction mechanisms and their impact on the process integrity. Fuel 334:126677. doi: 10.1016/j.fuel.2022.126677 DOI
Philips J., Monballyu E., Georg S., De Paepe K., Prévoteau A., Rabaey K., et al. . (2019). An Acetobacterium strain isolated with metallic iron as electron donor enhances iron corrosion by a similar mechanism as Sporomusa sphaeroides. FEMS Microbiol. Ecol. 95, 1–13. doi: 10.1093/femsec/fiy222 PubMed DOI
Pichler M., Coskun Ö. K., Ortega-Arbulú A., Conci N., Wörheide G., Vargas S., et al. . (2018). A 16S rRNA gene sequencing and analysis protocol for the Illumina MiniSeq platform. MicrobiologyOpen 7:e00611. doi: 10.1002/mbo3.611 PubMed DOI PMC
Postgate J. R. (1984). The sulphate-reducing bacteria 2nd ed. Cambridge: Cambridge University Press.
Procópio L. (2022). Microbially induced corrosion impacts on the oil industry. Arch. Microbiol. 204:138. doi: 10.1007/s00203-022-02755-7 PubMed DOI
Purkamo L., Kietäväinen R., Miettinen H., Sohlberg E., Kukkonen I., Itävaara M., et al. . (2018). Diversity and functionality of archaeal, bacterial and fungal communities in deep Archaean bedrock groundwater. FEMS Microbiol. Ecol. 94:fiy116. doi: 10.1093/femsec/fiy116 PubMed DOI
Ranchou-Peyruse M., Guignard M., Casteran F., Abadie M., Defois C., Peyret P., et al. . (2021). Microbial diversity under the influence of natural gas storage in a deep aquifer. Front. Microbiol. 12:688929. doi: 10.3389/fmicb.2021.688929 PubMed DOI PMC
Rempfert K. R., Miller H. M., Bompard N., Nothaft D., Matter J. M., Kelemen P., et al. . (2017). Geological and geochemical controls on subsurface microbial life in the Samail Ophiolite, Oman. Front. Microbiol. 8:56. doi: 10.3389/fmicb.2017.00056 PubMed DOI PMC
Sansupa C., Wahdan S. F. M., Hossen S., Disayathanoowat T., Wubet T., Purahong W. (2021). Can we use functional annotation of prokaryotic taxa (FAPROTAX) to assign the ecological functions of soil bacteria? Appl. Sci. 11:688. doi: 10.3390/app11020688 DOI
Schwab L., Popp D., Nowack G., Bombach P., Vogt C., Richnow H. H. (2022). Structural analysis of microbiomes from salt caverns used for underground gas storage. Int. J. Hydrog. Energy 47, 20684–20694. doi: 10.1016/j.ijhydene.2022.04.170 DOI
Shlimon A. G. (2004). Methanobacterium aarhusense sp. Nov., a novel methanogen isolated from a marine sediment (Aarhus Bay, Denmark). Int. J. Syst. Evol. Microbiol. 54, 759–763. doi: 10.1099/ijs.0.02994-0 PubMed DOI
Šmigáň P., Greksák M., Kozánková J., Buzek F., Onderka V., Wolf I. (1990). Methanogenic bacteria as a key factor involved in changes of town gas stored in an underground reservoir. FEMS Microbiol. Lett. 73, 221–224. doi: 10.1111/j.1574-6968.1990.tb03944.x DOI
Sokolova D. S., Semenova E. M., Grouzdev D. S., Bidzhieva S. K., Babich T. L., Loiko N. G., et al. . (2021). Sulfidogenic microbial communities of the Uzen high-temperature oil field in Kazakhstan. Microorganisms 9:1818. doi: 10.3390/microorganisms9091818 PubMed DOI PMC
Sorokin D. Y., Merkel A. Y. (2022). “Dethiobacteria class. Nov” in Bergey’s manual of systematics of Archaea and bacteria (1. Ed., p. 1–3). eds. Trujillo M. E., Dedysh S., DeVos P., Hedlund B., Kämpfer P., Rainey F. A., et al.. (Hoboken, New Jersey: Wiley; ).
Stetter K. O., Thomm M., Winter J., Wildgruber G., Huber H., Zillig W., et al. . (1981). Methanothermus fervidus, sp. Nov., a novel extremely thermophilic methanogen isolated from an Icelandic hot spring. Zentralblatt für Bakteriologie Mikrobiologie und Hygiene 2, 166–178. doi: 10.1016/S0721-9571(81)80038-5 DOI
Strobel G., Hagemann B., Lüddeke C. T., Ganzer L. (2023). Coupled model for microbial growth and phase mass transfer in pressurized batch reactors in the context of underground hydrogen storage. Front. Microbiol. 14:1150102. doi: 10.3389/fmicb.2023.1150102 PubMed DOI PMC
Suzuki D., Li Z., Cui X., Zhang C., Katayama A. (2014). Reclassification of Desulfobacterium anilini as Desulfatiglans anilini comb. Nov. within Desulfatiglans gen. Nov., and description of a 4-chlorophenol-degrading sulfate-reducing bacterium, Desulfatiglans parachlorophenolica sp. Nov. Int. J. Syst. Evol. Microbiol. 64, 3081–3086. doi: 10.1099/ijs.0.064360-0 PubMed DOI
Thaysen E. M., McMahon S., Strobel G. J., Butler I. B., Ngwenya B. T., Heinemann N., et al. . (2021). Estimating microbial growth and hydrogen consumption in hydrogen storage in porous media. Renew. Sust. Energ. Rev. 151:111481. doi: 10.1016/j.rser.2021.111481 DOI
Tremosa J., Jakobsen R., Le Gallo Y. (2023). Assessing and modeling hydrogen reactivity in underground hydrogen storage: a review and models simulating the Lobodice town gas storage. Front. Energy Res. 11:1145978. doi: 10.3389/fenrg.2023.1145978 DOI
Uchiyama T., Ito K., Mori K., Tsurumaru H., Harayama S. (2010). Iron-corroding methanogen isolated from a crude-oil storage tank. Appl. Environ. Microbiol. 76, 1783–1788. doi: 10.1128/AEM.00668-09 PubMed DOI PMC
Vigneron A., Alsop E. B., Lomans B. P., Kyrpides N. C., Head I. M., Tsesmetzis N. (2017b). Succession in the petroleum reservoir microbiome through an oil field production lifecycle. ISME J. 11, 2141–2154. doi: 10.1038/ismej.2017.78 PubMed DOI PMC
Vigneron A., Bishop A., Alsop E. B., Hull K., Rhodes I., Hendricks R., et al. . (2017a). Microbial and isotopic evidence for methane cycling in hydrocarbon-containing groundwater from the Pennsylvania region. Front. Microbiol. 8:593. doi: 10.3389/fmicb.2017.00593 PubMed DOI PMC
Vítězová M., Onderka V., Urbanová I., Molíková A., Hanišáková N., Buriánková I., et al. . (2023). In situ field experiment shows the potential of methanogenic archaea for biomethane production from underground gas storage in natural rock environment. Environ. Technol. Innovat. 32:103253. doi: 10.1016/j.eti.2023.103253 DOI
Watanabe S., Hamano M., Kakeshita H., Bunai K., Tojo S., Yamaguchi H., et al. . (2003). Mannitol-1-phosphate dehydrogenase (MtlD) is required for Mannitol and Glucitol assimilation in Bacillus subtilis: possible cooperation of mtl and gut operons. J. Bacteriol. 185, 4816–4824. doi: 10.1128/JB.185.16.4816-4824.2003, PMID: PubMed DOI PMC
Weng C.-Y., Chen S.-C., Lai M.-C., Wu S.-Y., Lin S., Yang T. F., et al. . (2015). Methanoculleus taiwanensis sp. Nov., a methanogen isolated from deep marine sediment at the deformation front area near Taiwan. Int. J. Syst. Evol. Microbiol. 65, 1044–1049. doi: 10.1099/ijs.0.000062 PubMed DOI
Widdel F., Bak F. (1992). “Gram-negative Mesophilic sulfate-reducing bacteria” in The prokaryotes. eds. Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K.-H. (New York: Springer; ), s. 3352–3378.
Worakit S., Boone D. R., Mah R. A., Abdel-Samie M.-E., El-Halwagi M. M. (1986). Methanobacterium alcaliphilum sp. Nov., an H2-utilizing methanogen that grows at high pH values. Int. J. Syst. Bacteriol. 36, 380–382. doi: 10.1099/00207713-36-3-380 DOI
Wulf C., Zapp P., Schreiber A. (2020). Review of power-to-X demonstration projects in Europe. Front. Energy Res. 8:191. doi: 10.3389/fenrg.2020.00191 DOI
Xu X., Liu W., Tian S., Wang W., Qi Q., Jiang P., et al. . (2018). Petroleum hydrocarbon-degrading bacteria for the remediation of oil pollution under aerobic conditions: a perspective analysis. Front. Microbiol. 9:2885. doi: 10.3389/fmicb.2018.02885 PubMed DOI PMC
Yang C., Mai J., Cao X., Burberry A., Cominelli F., Zhang L. (2023). ggpicrust2: An R package for PICRUSt2 predicted functional profile analysis and visualization. arXiv [Preprint]. doi: 10.48550/arXiv.2303.10388 PubMed DOI PMC
Yang Z., Peng C., Cao H., Song J., Gong B., Li L., et al. . (2022). Microbial functional assemblages predicted by the FAPROTAX analysis are impacted by physicochemical properties, but C, N and S cycling genes are not in mangrove soil in the Beibu Gulf, China. Ecol. Indicat. 139:108887. doi: 10.1016/j.ecolind.2022.108887 DOI
Zhang Y., Dekas A. E., Hawkins A. J., Parada A. E., Gorbatenko O., Li K., et al. . (2019). Microbial community composition in deep-subsurface reservoir fluids reveals natural interwell connectivity. Water Resour. Res. 56:e2019WR025916. doi: 10.1029/2019WR025916 DOI
Zhilina T. N., Zavarzina D. G., Kevbrin V. V., Kolganov T. V. (2013). Methanocalculus natronophilus sp. Nov., a new alkaliphilic hydrogenotrophic methanogenic archaeon from a soda lake, and proposal of the new family Methanocalculaceae. Mikrobiologiia 82, 681–690. doi: 10.1134/S0026261713060131 PubMed DOI