• This record comes from PubMed

Multifaceted roles for BCL3 in cancer: a proto-oncogene comes of age

. 2024 Jan 09 ; 23 (1) : 7. [epub] 20240109

Language English Country Great Britain, England Media electronic

Document type Journal Article, Review

Links

PubMed 38195591
PubMed Central PMC10775530
DOI 10.1186/s12943-023-01922-8
PII: 10.1186/s12943-023-01922-8
Knihovny.cz E-resources

In the early 1990's a group of unrelated genes were identified from the sites of recurring translocations in B-cell lymphomas. Despite sharing the nomenclature 'Bcl', and an association with blood-borne cancer, these genes have unrelated functions. Of these genes, BCL2 is best known as a key cancer target involved in the regulation of caspases and other cell viability mechanisms. BCL3 on the other hand was originally identified as a non-canonical regulator of NF-kB transcription factor pathways - a signaling mechanism associated with important cell outcomes including many of the hallmarks of cancer. Most of the early investigations into BCL3 function have since focused on its role in NF-kB mediated cell proliferation, inflammation/immunity and cancer. However, recent evidence is coming to light that this protein directly interacts with and modulates a number of other signaling pathways including DNA damage repair, WNT/β-catenin, AKT, TGFβ/SMAD3 and STAT3 - all of which have key roles in cancer development, metastatic progression and treatment of solid tumours. Here we review the direct evidence demonstrating BCL3's central role in a transcriptional network of signaling pathways that modulate cancer biology and treatment response in a range of solid tumour types and propose common mechanisms of action of BCL3 which may be exploited in the future to target its oncogenic effects for patient benefit.

See more in PubMed

McKeithan TW, Takimoto GS, Ohno H, Bjorling VS, Morgan R, Hecht BK, Dubé I, Sandberg AA, Rowley JD. BCL3 rearrangements and t(14;19) in chronic lymphocytic leukemia and other B-cell malignancies: a molecular and cytogenetic study. Genes Chromosomes Cancer. 1997;20:64–72. doi: 10.1002/(SICI)1098-2264(199709)20:1<64::AID-GCC10>3.0.CO;2-F. PubMed DOI

Michaux L, Dierlamm J, Wlodarska I, Bours V, Van den Berghe H, Hagemeijer A. T(14;19)/BCL3 rearrangements in lymphoproliferative disorders: a review of 23 cases. Cancer Genet Cytogenet. 1997;94:36–43. doi: 10.1016/S0165-4608(96)00247-6. PubMed DOI

Ohno H, Takimoto G, McKeithan TW. The candidate proto-oncogene bcl-3 is related to genes implicated in cell lineage determination and cell cycle control. Cell. 1990;60:991–997. doi: 10.1016/0092-8674(90)90347-H. PubMed DOI

Gauwerky CE, Huebner K, Isobe M, Nowell PC, Croce CM. Activation of MYC in a masked t(8;17) translocation results in an aggressive B-cell leukemia. Proc Natl Acad Sci U S A. 1989;86:8867–8871. doi: 10.1073/pnas.86.22.8867. PubMed DOI PMC

Yano T, Sander CA, Andrade RE, Gauwerky CE, Croce CM, Longo DL, Jaffe ES, Raffeld M. Molecular analysis of the BCL-3 locus at chromosome 17q22 in B-cell neoplasms. Blood. 1993;82:1813–1819. doi: 10.1182/blood.V82.6.1813.1813. PubMed DOI

Franzoso G, Bours V, Park S, Tomita-Yamaguchi M, Kelly K, Siebenlist U. The candidate oncoprotein Bcl-3 is an antagonist of p50/NF-kappa B-mediated inhibition. Nature. 1992;359:339–342. doi: 10.1038/359339a0. PubMed DOI

Wulczyn FG, Naumann M, Scheidereit C. Candidate proto-oncogene bcl-3 encodes a subunit-specific inhibitor of transcription factor NF-kappa B. Nature. 1992;358:597–599. doi: 10.1038/358597a0. PubMed DOI

Kerr LD, Duckett CS, Wamsley P, Zhang Q, Chiao P, Nabel G, McKeithan TW, Baeuerle PA, Verma IM. The proto-oncogene bcl-3 encodes an I kappa B protein. Genes Dev. 1992;6:2352–2363. doi: 10.1101/gad.6.12a.2352. PubMed DOI

Nolan GP, Fujita T, Bhatia K, Huppi C, Liou HC, Scott ML, Baltimore D. The bcl-3 proto-oncogene encodes a nuclear I kappa B-like molecule that preferentially interacts with NF-kappa B p50 and p52 in a phosphorylation-dependent manner. Mol Cell Biol. 1993;13:3557–3566. PubMed PMC

Michel F, Soler-Lopez M, Petosa C, Cramer P, Siebenlist U, Müller CW. Crystal structure of the ankyrin repeat domain of Bcl-3: a unique member of the IkappaB protein family. EMBO J. 2001;20:6180–6190. doi: 10.1093/emboj/20.22.6180. PubMed DOI PMC

Liu Z, Jiang Y, Hou Y, Hu Y, Cao X, Tao Y, Xu C, Liu S, Wang S, Wang L, Shi Y, Siebenlist U, Zhang X. The IκB family member Bcl-3 stabilizes c-Myc in colorectal cancer. J Mol Cell Biol. 2013;5:280–282. doi: 10.1093/jmcb/mjt020. PubMed DOI

Urban BC, Collard TJ, Eagle CJ, Southern SL, Greenhough A, Hamdollah-Zadeh M, Ghosh A, Poulsom R, Paraskeva C, Silver A, Williams AC. BCL-3 expression promotes colorectal tumorigenesis through activation of AKT signaling. Gut. 2016;65:1151–1164. doi: 10.1136/gutjnl-2014-308270. PubMed DOI PMC

Legge DN, Shephard AP, Collard TJ, Greenhough A, Chambers AC, Clarkson RW, et al. BCL-3 promotes a cancer stem cell phenotype by enhancing β-catenin signaling in colorectal tumour cells. Dis Model Mech. 2019;12 PubMed PMC

Chen X, Cao X, Sun X, Lei R, Chen P, Zhao Y, Jiang Y, Yin J, Chen R, Ye D, Wang Q, Liu Z, Liu S, Cheng C, Mao J, Hou Y, Wang M, Siebenlist U, Eugene Chin Y, Wang Y, Cao L, Hu G, Zhang X. Bcl-3 regulates TGFβ signaling by stabilizing Smad3 during breast cancer pulmonary metastasis. Cell Death Dis. 2016;7:e2508. doi: 10.1038/cddis.2016.405. PubMed DOI PMC

Wu J, Li L, Jiang G, Zhan H, Wang N. B-cell CLL/lymphoma 3 promotes glioma cell proliferation and inhibits apoptosis through the oncogenic STAT3 pathway. Int J Oncol. 2016;49:2471–2479. doi: 10.3892/ijo.2016.3729. PubMed DOI

Legge DN, Chambers AC, Parker CT, Timms P, Collard TJ, Williams AC. The role of B-cell Lymphoma-3 (BCL-3) in enabling the hallmarks of cancer: implications for the treatment of colorectal carcinogenesis. Carcinogenesis. 2020;41:249–256. doi: 10.1093/carcin/bgaa003. PubMed DOI PMC

Maldonado V, Melendez-Zajgla J. Role of Bcl-3 in solid tumors. Mol Cancer. 2011;10:152. doi: 10.1186/1476-4598-10-152. PubMed DOI PMC

Liu H, Zeng L, Yang Y, Guo C, Wang H. Bcl-3: a double-edged sword in immune cells and inflammation. Front Immunol. 2022;13:847699. doi: 10.3389/fimmu.2022.847699. PubMed DOI PMC

Mirzaei S, Saghari S, Bassiri F, Raesi R, Zarrabi A, Hushmandi K, Sethi G, Tergaonkar V. NF-κB as a regulator of cancer metastasis and therapy response: a focus on epithelial-mesenchymal transition. J Cell Physiol. 2022;237:2770–2795. doi: 10.1002/jcp.30759. PubMed DOI

Inoue J, Gohda J, Akiyama T, Semba K. NF-kappaB activation in development and progression of cancer. Cancer Sci. 2007;98:268–274. doi: 10.1111/j.1349-7006.2007.00389.x. PubMed DOI PMC

Zhang Q, Lenardo MJ, Baltimore D. 30 years of NF-κB: a blossoming of relevance to human pathobiology. Cell. 2017;168:37–57. doi: 10.1016/j.cell.2016.12.012. PubMed DOI PMC

Dechend R, Hirano F, Lehmann K, Heissmeyer V, Ansieau S, Wulczyn FG, Scheidereit C, Leutz A. The Bcl-3 oncoprotein acts as a bridging factor between NF-kappaB/Rel and nuclear co-regulators. Oncogene. 1999;18:3316–3323. doi: 10.1038/sj.onc.1202717. PubMed DOI

Bours V, Franzoso G, Azarenko V, Park S, Kanno T, Brown K, Siebenlist U. The oncoprotein Bcl-3 directly transactivates through kappa B motifs via association with DNA-binding p50B homodimers. Cell. 1993;72:729–739. doi: 10.1016/0092-8674(93)90401-B. PubMed DOI

Fujita T, Nolan GP, Liou HC, Scott ML, Baltimore D. The candidate proto-oncogene bcl-3 encodes a transcriptional coactivator that activates through NF-kappa B p50 homodimers. Genes Dev. 1993;7:1354–1363. doi: 10.1101/gad.7.7b.1354. PubMed DOI

Inoue J, Takahara T, Akizawa T, Hino O. Bcl-3, a member of the I kappa B proteins, has distinct specificity towards the Rel family of proteins. Oncogene. 1993;8:2067–2073. PubMed

Franzoso G, Bours V, Azarenko V, Park S, Tomita-Yamaguchi M, Kanno T, Brown K, Siebenlist U. The oncoprotein Bcl-3 can facilitate NF-kappa B-mediated transactivation by removing inhibiting p50 homodimers from select kappa B sites. EMBO J. 1993;12:3893–3901. doi: 10.1002/j.1460-2075.1993.tb06067.x. PubMed DOI PMC

Miyazaki I, Simizu S, Okumura H, Takagi S, Osada H. A small-molecule inhibitor shows that pirin regulates migration of melanoma cells. Nat Chem Biol. 2010;6:667–673. doi: 10.1038/nchembio.423. PubMed DOI

Zhang Q, Didonato JA, Karin M, McKeithan TW. BCL3 encodes a nuclear protein which can alter the subcellular location of NF-kappa B proteins. Mol Cell Biol. 1994;14:3915–3926. PubMed PMC

Viatour P, Dejardin E, Warnier M, Lair F, Claudio E, Bureau F, Marine JC, Merville MP, Maurer U, Green D, Piette J, Siebenlist U, Bours V, Chariot A. GSK3-mediated BCL-3 phosphorylation modulates its degradation and its oncogenicity. Mol Cell. 2004;16:35–45. doi: 10.1016/j.molcel.2004.09.004. PubMed DOI

Carmody RJ, Ruan Q, Palmer S, Hilliard B, Chen YH. Negative regulation of toll-like receptor signaling by NF-kappaB p50 ubiquitination blockade. Science. 2007;317:675–678. doi: 10.1126/science.1142953. PubMed DOI

Viatour P, Merville MP, Bours V, Chariot A. Protein phosphorylation as a key mechanism for the regulation of BCL-3 activity. Cell Cycle. 2004;3:1498–1501. doi: 10.4161/cc.3.12.1328. PubMed DOI

Wang VY, Huang W, Asagiri M, Spann N, Hoffmann A, Glass C, Ghosh G. The transcriptional specificity of NF-κB dimers is coded within the κB DNA response elements. Cell Rep. 2012;2:824–839. doi: 10.1016/j.celrep.2012.08.042. PubMed DOI PMC

Keutgens A, Zhang X, Shostak K, Robert I, Olivier S, Vanderplasschen A, Chapelle JP, Viatour P, Merville MP, Bex F, Gothot A, Chariot A. BCL-3 degradation involves its polyubiquitination through a FBW7-independent pathway and its binding to the proteasome subunit PSMB1. J Biol Chem. 2010;285:25831–25840. doi: 10.1074/jbc.M110.112128. PubMed DOI PMC

Schwarz EM, Krimpenfort P, Berns A, Verma IM. Immunological defects in mice with a targeted disruption in Bcl-3. Genes Dev. 1997;11:187–197. doi: 10.1101/gad.11.2.187. PubMed DOI

Franzoso G, Carlson L, Scharton-Kersten T, Shores EW, Epstein S, Grinberg A, Tran T, Shacter E, Leonardi A, Anver M, Love P, Sher A, Siebenlist U. Critical roles for the Bcl-3 oncoprotein in T cell-mediated immunity, splenic microarchitecture, and germinal center reactions. Immunity. 1997;6:479–490. doi: 10.1016/S1074-7613(00)80291-5. PubMed DOI

Gerondakis S, Grossmann M, Nakamura Y, Pohl T, Grumont R. Genetic approaches in mice to understand Rel/NF-kappaB and IkappaB function: transgenics and knockouts. Oncogene. 1999;18:6888–6895. doi: 10.1038/sj.onc.1203236. PubMed DOI

Dang CV, O'Donnell KA, Zeller KI, Nguyen T, Osthus RC, Li F. The c-Myc target gene network. Semin Cancer Biol. 2006;16:253–264. doi: 10.1016/j.semcancer.2006.07.014. PubMed DOI

Dang CV. C-Myc target genes involved in cell growth, apoptosis, and metabolism. Mol Cell Biol. 1999;19:1–11. doi: 10.1128/MCB.19.1.1. PubMed DOI PMC

Yada M, Hatakeyama S, Kamura T, Nishiyama M, Tsunematsu R, Imaki H, Ishida N, Okumura F, Nakayama K, Nakayama KI. Phosphorylation-dependent degradation of c-Myc is mediated by the F-box protein Fbw7. EMBO J. 2004;23:2116–2125. doi: 10.1038/sj.emboj.7600217. PubMed DOI PMC

Huo J, Chen X, Zhang H, Hu Y, Jiang Y, Liu S, Zhang X. Bcl-3 promotes proliferation and chemosensitivity in BL1 subtype of TNBC cells. Acta Biochim Biophys Sin Shanghai. 2018;50:1141–1149. doi: 10.1093/abbs/gmy117. PubMed DOI

Hashimoto S, Hashimoto A, Muromoto R, Kitai Y, Oritani K, Matsuda T. Central roles of STAT3-mediated signals in onset and development of cancers: tumorigenesis and Immunosurveillance. Cells. 2022;11 PubMed PMC

Brocke-Heidrich K, Ge B, Cvijic H, Pfeifer G, Löffler D, Henze C, McKeithan TW, Horn F. BCL3 is induced by IL-6 via Stat3 binding to intronic enhancer HS4 and represses its own transcription. Oncogene. 2006;25:7297–7304. doi: 10.1038/sj.onc.1209711. PubMed DOI

Maldonado V, Espinosa M, Pruefer F, Patiño N, Ceballos-Canciono G, Urzua U, Juretic N, Melendez-Zajgla J. Gene regulation by BCL3 in a cervical cancer cell line. Folia Biol (Praha). 2010;56:183–193. PubMed

Wakefield A, Soukupova J, Montagne A, Ranger J, French R, Muller WJ, Clarkson RW. Bcl3 selectively promotes metastasis of ERBB2-driven mammary tumors. Cancer Res. 2013;73:745–755. doi: 10.1158/0008-5472.CAN-12-1321. PubMed DOI

Zhao H, Wang W, Zhao Q, Hu G, Deng K, Liu Y. BCL3 exerts an oncogenic function by regulating STAT3 in human cervical cancer. Onco Targets Ther. 2016;9:6619–6629. doi: 10.2147/OTT.S118184. PubMed DOI PMC

Yun S, Yun CW, Lee JH, Kim S, Lee SH. Cripto enhances proliferation and survival of mesenchymal stem cells by up-regulating JAK2/STAT3 pathway in a GRP78-dependent manner. Biomol Ther (Seoul). 2018;26:464–473. doi: 10.4062/biomolther.2017.099. PubMed DOI PMC

Derynck R, Zhang YE. Smad-dependent and Smad-independent pathways in TGF-beta family signaling. Nature. 2003;425:577–584. doi: 10.1038/nature02006. PubMed DOI

Li K, Cui M, Zhang K, Wang G, Zhai S. LncRNA CRNDE affects the proliferation and apoptosis of vascular smooth muscle cells in abdominal aortic aneurysms by regulating the expression of Smad3 by Bcl-3. Cell Cycle. 2020;19:1036–1047. doi: 10.1080/15384101.2020.1743915. PubMed DOI PMC

Zhao K, Cui X, Wang Q, Fang C, Tan Y, Wang Y, Yi K, Yang C, You H, Shang R, Wang J, Kang C. RUNX1 contributes to the mesenchymal subtype of glioblastoma in a TGFβ pathway-dependent manner. Cell Death Dis. 2019;10:877. doi: 10.1038/s41419-019-2108-x. PubMed DOI PMC

Noorolyai S, Shajari N, Baghbani E, Sadreddini S, Baradaran B. The relation between PI3K/AKT signaling pathway and cancer. Gene. 2019;698:120–128. doi: 10.1016/j.gene.2019.02.076. PubMed DOI

Li W, Yang W, Yang C. Knockdown of Bcl-3 alleviates psoriasis and dyslipidemia comorbidity by regulating Akt pathway. Allergol Immunopathol (Madr). 2022;50:115–121. doi: 10.15586/aei.v50i6.683. PubMed DOI

Wang VY, Li Y, Kim D, Zhong X, Du Q, Ghassemian M, Ghosh G. Bcl3 phosphorylation by Akt, Erk2, and IKK is required for its transcriptional activity. Mol Cell. 2017;67:484–497.e485. doi: 10.1016/j.molcel.2017.06.011. PubMed DOI PMC

Anastas JN, Moon RT. WNT signaling pathways as therapeutic targets in cancer. Nat Rev Cancer. 2013;13:11–26. doi: 10.1038/nrc3419. PubMed DOI

Reya T, Clevers H. Wnt signaling in stem cells and cancer. Nature. 2005;434:843–850. doi: 10.1038/nature03319. PubMed DOI

Chen CY, Lee DS, Yan YT, Shen CN, Hwang SM, Lee ST, Hsieh PC. Bcl3 bridges LIF-STAT3 to Oct4 signaling in the maintenance of Naïve pluripotency. Stem Cells. 2015;33:3468–3480. doi: 10.1002/stem.2201. PubMed DOI

Chen X, Wang C, Jiang Y, Wang Q, Tao Y, Zhang H, Zhao Y, Hu Y, Li C, Ye D, Liu D, Jiang W, Chin EY, Chen S, Liu Y, Wang M, Liu S, Zhang X. Bcl-3 promotes Wnt signaling by maintaining the acetylation of β-catenin at lysine 49 in colorectal cancer. Signal Transduct Target Ther. 2020;5:52. doi: 10.1038/s41392-020-0138-6. PubMed DOI PMC

Valenta T, Lukas J, Korinek V. HMG box transcription factor TCF-4's interaction with CtBP1 controls the expression of the Wnt target Axin2/Conductin in human embryonic kidney cells. Nucleic Acids Res. 2003;31:2369–2380. doi: 10.1093/nar/gkg346. PubMed DOI PMC

Choi HJ, Lee JM, Kim H, Nam HJ, Shin HJ, Kim D, Ko E, Noh DY, Kim KI, Kim JH, Baek SH. Bcl3-dependent stabilization of CtBP1 is crucial for the inhibition of apoptosis and tumor progression in breast cancer. Biochem Biophys Res Commun. 2010;400:396–402. doi: 10.1016/j.bbrc.2010.08.084. PubMed DOI

Collard TJ, Fallatah HM, Greenhough A, Paraskeva C, Williams AC. BCL-3 promotes cyclooxygenase-2/prostaglandin E2 signaling in colorectal cancer. Int J Oncol. 2020;56:1304–1313. PubMed

Tong D, Liu Q, Wang LA, Xie Q, Pang J, Huang Y, Wang L, Liu G, Zhang D, Lan W, Jiang J. The roles of the COX2/PGE2/EP axis in therapeutic resistance. Cancer Metastasis Rev. 2018;37:355–368. doi: 10.1007/s10555-018-9752-y. PubMed DOI

McKeithan TW, Ohno H, Diaz MO. Identification of a transcriptional unit adjacent to the breakpoint in the 14;19 translocation of chronic lymphocytic leukemia. Genes Chromosomes Cancer. 1990;1:247–255. doi: 10.1002/gcc.2870010310. PubMed DOI

Canoz O, Rassidakis GZ, Admirand JH, Medeiros LJ. Immunohistochemical detection of BCL-3 in lymphoid neoplasms: a survey of 353 cases. Mod Pathol. 2004;17:911–917. doi: 10.1038/modpathol.3800140. PubMed DOI

Rossi D, Deambrogi C, Monti S, Cresta S, De Paoli L, Fangazio M, Giardini I, Bernasconi P, Gaidano G. BCL3 translocation in CLL with typical phenotype: assessment of frequency, association with cytogenetic subgroups, and prognostic significance. Br J Haematol. 2010;150:702–704. doi: 10.1111/j.1365-2141.2010.08255.x. PubMed DOI

Soma LA, Gollin SM, Remstein ED, Ketterling RP, Flynn HC, Rajasenan KK, Swerdlow SH. Splenic small B-cell lymphoma with IGH/BCL3 translocation. Hum Pathol. 2006;37:218–230. doi: 10.1016/j.humpath.2005.09.025. PubMed DOI

Ohno H, Nishikori M, Maesako Y, Haga H. Reappraisal of BCL3 as a molecular marker of anaplastic large cell lymphoma. Int J Hematol. 2005;82:397–405. doi: 10.1532/IJH97.05045. PubMed DOI

Martin-Subero JI, Wlodarska I, Bastard C, Picquenot JM, Höppner J, Giefing M, Klapper W, Siebert R. Chromosomal rearrangements involving the BCL3 locus are recurrent in classical Hodgkin and peripheral T-cell lymphoma. Blood. 2006;108:401–402. doi: 10.1182/blood-2005-09-3843. PubMed DOI

Carbo-Meix A, Guijarro F, Wang L, Grau M, Royo R, Frigola G, et al. BCL3-rearrangements in B-cell lymphoid neoplasms occur in two breakpoint clusters associated with different diseases. Haematologica. 2023; 10.3324/haematol.2023.283209. PubMed PMC

Mathas S, Jöhrens K, Joos S, Lietz A, Hummel F, Janz M, Jundt F, Anagnostopoulos I, Bommert K, Lichter P, Stein H, Scheidereit C, Dörken B. Elevated NF-kappaB p50 complex formation and Bcl-3 expression in classical Hodgkin, anaplastic large-cell, and other peripheral T-cell lymphomas. Blood. 2005;106:4287–4293. doi: 10.1182/blood-2004-09-3620. PubMed DOI

Andrews N, Helliwell T, Walker C, Jones AS. Differing expression of bax and bcl-3 may influence the different cure rates in mouth and orophayrngeal cancer. Clin Otolaryngol Allied Sci. 2000;25:570–576. doi: 10.1046/j.1365-2273.2000.00422-12.x. PubMed DOI

Thornburg NJ, Pathmanathan R, Raab-Traub N. Activation of nuclear factor-kappaB p50 homodimer/Bcl-3 complexes in nasopharyngeal carcinoma. Cancer Res. 2003;63:8293–8301. PubMed

Mishra A, Bharti AC, Varghese P, Saluja D, Das BC. Differential expression and activation of NF-kappaB family proteins during oral carcinogenesis: role of high risk human papillomavirus infection. Int J Cancer. 2006;119:2840–2850. doi: 10.1002/ijc.22262. PubMed DOI

Chung GT, Lou WP, Chow C, To KF, Choy KW, Leung AW, Tong CY, Yuen JW, Ko CW, Yip TT, Busson P, Lo KW. Constitutive activation of distinct NF-κB signals in EBV-associated nasopharyngeal carcinoma. J Pathol. 2013;231:311–322. doi: 10.1002/path.4239. PubMed DOI

Rassidakis GZ, Oyarzo MP, Medeiros LJ. BCL-3 overexpression in anaplastic lymphoma kinase-positive anaplastic large cell lymphoma. Blood. 2003;102:1146–1147. doi: 10.1182/blood-2003-04-1366. PubMed DOI

Niu Y, Yang X, Chen Y, Zhang L, Jin X, Tang Y, Li L, Yu L, Guo Y, Wang H. BCL3 expression is a potential prognostic and predictive biomarker in acute myeloid leukemia of FAB subtype M2. Pathol Oncol Res. 2019;25:541–548. doi: 10.1007/s12253-018-0476-7. PubMed DOI PMC

Brenne AT, Fagerli UM, Shaughnessy JD, Jr, Våtsveen TK, Rø TB, Hella H, Zhan F, Barlogie B, Sundan A, Børset M, Waage A. High expression of BCL3 in human myeloma cells is associated with increased proliferation and inferior prognosis. Eur J Haematol. 2009;82:354–363. doi: 10.1111/j.1600-0609.2009.01225.x. PubMed DOI PMC

Pratt MA, Bishop TE, White D, Yasvinski G, Ménard M, Niu MY, Clarke R. Estrogen withdrawal-induced NF-kappaB activity and bcl-3 expression in breast cancer cells: roles in growth and hormone independence. Mol Cell Biol. 2003;23:6887–6900. doi: 10.1128/MCB.23.19.6887-6900.2003. PubMed DOI PMC

Schulten HJ, Bangash M, Karim S, Dallol A, Hussein D, Merdad A, Al-Thoubaity FK, Al-Maghrabi J, Jamal A, Al-Ghamdi F, Choudhry H, Baeesa SS, Chaudhary AG, Al-Qahtani MH. Comprehensive molecular biomarker identification in breast cancer brain metastases. J Transl Med. 2017;15:269. doi: 10.1186/s12967-017-1370-x. PubMed DOI PMC

Czapiewski P, Cornelius M, Hartig R, Kalinski T, Haybaeck J, Dittmer A, Dittmer J, Ignatov A, Nass N. BCL3 expression is strongly associated with the occurrence of breast cancer relapse under tamoxifen treatment in a retrospective cohort study. Virchows Arch. 2022;480:529–541. doi: 10.1007/s00428-021-03238-8. PubMed DOI PMC

Pallares J, Martínez-Guitarte JL, Dolcet X, Llobet D, Rue M, Palacios J, Prat J, Matias-Guiu X. Abnormalities in the NF-kappaB family and related proteins in endometrial carcinoma. J Pathol. 2004;204:569–577. doi: 10.1002/path.1666. PubMed DOI

O'Neil BH, Bůzková P, Farrah H, Kashatus D, Sanoff H, Goldberg RM, Baldwin AS, Funkhouser WK. Expression of nuclear factor-kappaB family proteins in hepatocellular carcinomas. Oncology. 2007;72:97–104. doi: 10.1159/000111116. PubMed DOI

Tu K, Liu Z, Yao B, Xue Y, Xu M, Dou C, Yin G, Wang J. BCL-3 promotes the tumor growth of hepatocellular carcinoma by regulating cell proliferation and the cell cycle through cyclin D1. Oncol Rep. 2016;35:2382–2390. doi: 10.3892/or.2016.4616. PubMed DOI

Uffort DG, Grimm EA, Ellerhorst JA. NF-kappaB mediates mitogen-activated protein kinase pathway-dependent iNOS expression in human melanoma. J Invest Dermatol. 2009;129:148–154. doi: 10.1038/jid.2008.205. PubMed DOI PMC

Diaz-Ramón JL, Gardeazabal J, Izu RM, Garrote E, Rasero J, Apraiz A, et al. Melanoma clinical decision support system: an artificial intelligence-based tool to diagnose and predict disease outcome in early-stage melanoma patients. Cancers (Basel). 2023;15 PubMed PMC

Zou Y, Uddin MM, Padmanabhan S, Zhu Y, Bu P, Vancura A, Vancurova I. The proto-oncogene Bcl3 induces immune checkpoint PD-L1 expression, mediating proliferation of ovarian cancer cells. J Biol Chem. 2018;293:15483–15496. doi: 10.1074/jbc.RA118.004084. PubMed DOI PMC

Ahlqvist K, Saamarthy K, Syed Khaja AS, Bjartell A, Massoumi R. Expression of id proteins is regulated by the Bcl-3 proto-oncogene in prostate cancer. Oncogene. 2013;32:1601–1608. doi: 10.1038/onc.2012.175. PubMed DOI

de Souza Braga M, da Silva Paiva KB, Foguer K, Barbosa Chaves KC, de Sá Lima L, Scavone C, Bellini MH. Involvement of the NF-кB/p50/Bcl-3 complex in response to antiangiogenic therapy in a mouse model of metastatic renal cell carcinoma. Biomed Pharmacother. 2014;68:873–879. doi: 10.1016/j.biopha.2014.07.008. PubMed DOI

Dai J, Lu Y, Wang J, Yang L, Han Y, Wang Y, Yan D, Ruan Q, Wang S. A four-gene signature predicts survival in clear-cell renal-cell carcinoma. Oncotarget. 2016;7:82712–82726. doi: 10.18632/oncotarget.12631. PubMed DOI PMC

Saamarthy K, Björner S, Johansson M, Landberg G, Massoumi R, Jirström K, Masoumi KC. Early diagnostic value of Bcl-3 localization in colorectal cancer. BMC Cancer. 2015;15:341. doi: 10.1186/s12885-015-1342-6. PubMed DOI PMC

Tao Y, Liu Z, Hou Y, Wang S, Liu S, Jiang Y, Tan D, Ge Q, Li C, Hu Y, Liu Z, Chen X, Wang Q, Wang M, Zhang X. Alternative NF-κB signaling promotes colorectal tumorigenesis through transcriptionally upregulating Bcl-3. Oncogene. 2018;37:5887–5900. doi: 10.1038/s41388-018-0363-4. PubMed DOI

Zhang S, Yin C. BCL-3 and β-catenin signaling and tumor staging in colorectal cancer. Cell Mol Biol (Noisy-le-grand). 2020;66:87–91. doi: 10.14715/cmb/2020.66.5.16. PubMed DOI

Fan S, Wu N, Chang S, Chen L, Sun X. The immune regulation of BCL3 in glioblastoma with mutated IDH1. Aging (Albany NY). 2022;14:3856–3873. doi: 10.18632/aging.204048. PubMed DOI PMC

Wu L, Bernal GM, Cahill KE, Pytel P, Fitzpatrick CA, Mashek H, et al. BCL3 expression promotes resistance to alkylating chemotherapy in gliomas. Sci Transl Med. 2018;10 PubMed PMC

Puccio I, Khan S, Butt A, Graham D, Sehgal V, Patel D, Novelli M, Lovat LB, Rodriguez-Justo M, Hamoudi RA. Immunohistochemical assessment of Survivin and Bcl3 expression as potential biomarkers for NF-κB activation in the Barrett metaplasia-dysplasia-adenocarcinoma sequence. Int J Exp Pathol. 2018;99:10–14. doi: 10.1111/iep.12260. PubMed DOI PMC

Soares-Lima SC, Gonzaga IM, Camuzi D, Nicolau-Neto P, Vieira da Silva R, Guaraldi S, Ferreira MA, Hernandez-Vargas H, Herceg Z, Ribeiro Pinto LF. IL6 and BCL3 expression are potential biomarkers in esophageal squamous cell carcinoma. Front Oncol. 2021;11:722417. doi: 10.3389/fonc.2021.722417. PubMed DOI PMC

Dimitrakopoulos FI, Antonacopoulou AG, Kottorou A, Marousi S, Koukourikou I, Kalofonou M, Panagopoulos N, Scopa C, Dougenis D, Papadaki H, Papavassiliou AG, Kalofonos HP. Variant of BCL3 gene is strongly associated with five-year survival of non-small-cell lung cancer patients. Lung Cancer. 2015;89:311–319. doi: 10.1016/j.lungcan.2015.06.006. PubMed DOI

Dimitrakopoulos FD, Antonacopoulou AG, Kottorou AE, Panagopoulos N, Kalofonou F, Sampsonas F, Scopa C, Kalofonou M, Koutras A, Makatsoris T, Dougenis D, Papadaki H, Brock M, Kalofonos HP. Expression of intracellular components of the NF-κB alternative pathway (NF-κB2, RelB, NIK and Bcl3) is associated with clinical outcome of NSCLC patients. Sci Rep. 2019;9:14299. doi: 10.1038/s41598-019-50528-y. PubMed DOI PMC

Xiao Z, Zhao H. Ferroptosis-related APOE, BCL3 and ALOX5AP gene polymorphisms are associated with the risk of thyroid Cancer. Pharmgenomics Pers Med. 2022;15:157–165. PubMed PMC

Westerheide SD, Mayo MW, Anest V, Hanson JL, Baldwin AS., Jr The putative oncoprotein Bcl-3 induces cyclin D1 to stimulate G(1) transition. Mol Cell Biol. 2001;21:8428–8436. doi: 10.1128/MCB.21.24.8428-8436.2001. PubMed DOI PMC

Rocha S, Martin AM, Meek DW, Perkins ND. p53 represses cyclin D1 transcription through down regulation of Bcl-3 and inducing increased association of the p52 NF-kappaB subunit with histone deacetylase 1. Mol Cell Biol. 2003;23:4713–4727. doi: 10.1128/MCB.23.13.4713-4727.2003. PubMed DOI PMC

Massoumi R, Chmielarska K, Hennecke K, Pfeifer A, Fässler R. Cyld inhibits tumor cell proliferation by blocking Bcl-3-dependent NF-kappaB signaling. Cell. 2006;125:665–677. doi: 10.1016/j.cell.2006.03.041. PubMed DOI

Bauer A, Villunger A, Labi V, Fischer SF, Strasser A, Wagner H, Schmid RM, Häcker G. The NF-kappaB regulator Bcl-3 and the BH3-only proteins Bim and Puma control the death of activated T cells. Proc Natl Acad Sci U S A. 2006;103:10979–10984. doi: 10.1073/pnas.0603625103. PubMed DOI PMC

Park SG, Chung C, Kang H, Kim JY, Jung G. Up-regulation of cyclin D1 by HBx is mediated by NF-kappaB2/BCL3 complex through kappaB site of cyclin D1 promoter. J Biol Chem. 2006;281:31770–31777. doi: 10.1016/S0021-9258(19)84092-9. PubMed DOI

Mitsui T, Ishida M, Izawa M, Kagami Y, Arita J. Inhibition of Bcl3 gene expression mediates the anti-proliferative action of estrogen in pituitary lactotrophs in primary culture. Mol Cell Endocrinol. 2011;345:68–78. doi: 10.1016/j.mce.2011.07.021. PubMed DOI

Mitchell TC, Thompson BS, Trent JO, Casella CR. A short domain within Bcl-3 is responsible for its lymphocyte survival activity. Ann N Y Acad Sci. 2002;975:132–147. doi: 10.1111/j.1749-6632.2002.tb05947.x. PubMed DOI

Kashatus D, Cogswell P, Baldwin AS. Expression of the Bcl-3 proto-oncogene suppresses p53 activation. Genes Dev. 2006;20:225–235. doi: 10.1101/gad.1352206. PubMed DOI PMC

Bourteele S, Oesterle K, Weinzierl AO, Paxian S, Riemann M, Schmid RM, Planz O. Alteration of NF-kappaB activity leads to mitochondrial apoptosis after infection with pathological prion protein. Cell Microbiol. 2007;9:2202–2217. doi: 10.1111/j.1462-5822.2007.00950.x. PubMed DOI PMC

Hanahan D. Hallmarks of Cancer: new dimensions. Cancer Discov. 2022;12:31–46. doi: 10.1158/2159-8290.CD-21-1059. PubMed DOI

Massoumi R, Kuphal S, Hellerbrand C, Haas B, Wild P, Spruss T, Pfeifer A, Fässler R, Bosserhoff AK. Down-regulation of CYLD expression by snail promotes tumor progression in malignant melanoma. J Exp Med. 2009;206:221–232. doi: 10.1084/jem.20082044. PubMed DOI PMC

Voce DJ, Bernal GM, Cahill KE, Wu L, Mansour N, Crawley CD, Campbell PS, Arina A, Weichselbaum RR, Yamini B. CDK1 is up-regulated by temozolomide in an NF-κB dependent manner in glioblastoma. Sci Rep. 2021;11:5665. doi: 10.1038/s41598-021-84912-4. PubMed DOI PMC

García I, Cosío G, Lizárraga F, Martínez-Ruiz G, Meléndez-Zajgla J, Ceballos G, Espinosa M, Pacheco R, Maldonado V. Bcl-3 regulates UVB-induced apoptosis. Hum Cell. 2013;26:47–55. doi: 10.1007/s13577-012-0056-1. PubMed DOI

Soukupová J, Bordoni C, Turnham DJ, Yang WW, Seaton G, Gruca A, French R, Lee KY, Varnava A, Piggott L, Clarkson RWE, Westwell AD, Brancale A. The discovery of a novel Antimetastatic Bcl3 inhibitor. Mol Cancer Ther. 2021;20:775–786. doi: 10.1158/1535-7163.MCT-20-0283. PubMed DOI

Turnham DJ, Yang WW, Davies J, Varnava A, Ridley AJ, Conlan RS, Clarkson RWE. Bcl-3 promotes multi-modal tumour cell migration via NF-κB1 mediated regulation of Cdc42. Carcinogenesis. 2020;41:1432–1443. doi: 10.1093/carcin/bgaa005. PubMed DOI

Hu L, Bai Z, Ma X, Bai N, Zhang Z. The influence of Bcl-3 expression on cell migration and Chemosensitivity of gastric Cancer cells via regulating hypoxia-induced protective autophagy. J Gastric Cancer. 2020;20:95–105. doi: 10.5230/jgc.2020.20.e9. PubMed DOI PMC

Zamora R, Espinosa M, Ceballos-Cancino G, Segura B, Maldonado V, Melendez-Zajgla J. Depletion of the oncoprotein Bcl-3 induces centrosome amplification and aneuploidy in cancer cells. Mol Cancer. 2010;9:223. doi: 10.1186/1476-4598-9-223. PubMed DOI PMC

Gao C, Wang X, Chen L, Wang JH, Gao ZT, Wang H. Knockdown of Bcl-3 inhibits cell growth and induces DNA damage in HTLV-1-infected cells. Asian Pac J Cancer Prev. 2013;14:405–408. doi: 10.7314/APJCP.2013.14.1.405. PubMed DOI

Parker C, Chambers AC, Flanagan DJ, Ho JWY, Collard TJ, Ngo G, Baird DM, Timms P, Morgan RG, Sansom OJ, Williams AC. BCL-3 loss sensitises colorectal cancer cells to DNA damage by targeting homologous recombination. DNA Repair (Amst). 2022;115:103331. doi: 10.1016/j.dnarep.2022.103331. PubMed DOI PMC

Watanabe N, Wachi S, Fujita T. Identification and characterization of BCL-3-binding protein: implications for transcription and DNA repair or recombination. J Biol Chem. 2003;278:26102–26110. doi: 10.1074/jbc.M303518200. PubMed DOI

Wu D, Tian S, Zhu W. Modulating multidrug resistance to drug-based antitumor therapies through NF-κB signaling pathway: mechanisms and perspectives. Expert Opin Ther Targets. 2023;27:503–515. doi: 10.1080/14728222.2023.2225767. PubMed DOI

Zhang X, Dong N, Hu X. Wnt/β-catenin signaling inhibitors. Curr Top Med Chem. 2023;23:880–896. doi: 10.2174/1568026623666230303101810. PubMed DOI

Singh S, Gomez HJ, Thakkar S, Singh SP, Parihar AS. Overcoming acquired drug resistance to Cancer therapies through targeted STAT3 inhibition. Int J Mol Sci. 2023;24 PubMed PMC

Mansour NM, Bernal GM, Wu L, Crawley CD, Cahill KE, Voce DJ, Balyasnikova IV, Zhang W, Spretz R, Nunez L, Larsen GF, Weichselbaum RR, Yamini B. Decoy receptor DcR1 is induced in a p50/Bcl3-dependent manner and attenuates the efficacy of Temozolomide. Cancer Res. 2015;75:2039–2048. doi: 10.1158/0008-5472.CAN-14-2144. PubMed DOI PMC

Ladoire S, Mignot G, Dabakuyo S, Arnould L, Apetoh L, Rébé C, Coudert B, Martin F, Bizollon MH, Vanoli A, Coutant C, Fumoleau P, Bonnetain F, Ghiringhelli F. In situ immune response after neoadjuvant chemotherapy for breast cancer predicts survival. J Pathol. 2011;224:389–400. doi: 10.1002/path.2866. PubMed DOI

Liakou CI, Kamat A, Tang DN, Chen H, Sun J, Troncoso P, Logothetis C, Sharma P. CTLA-4 blockade increases IFNgamma-producing CD4+ICOShi cells to shift the ratio of effector to regulatory T cells in cancer patients. Proc Natl Acad Sci U S A. 2008;105:14987–14992. doi: 10.1073/pnas.0806075105. PubMed DOI PMC

Peng W, Liu C, Xu C, Lou Y, Chen J, Yang Y, Yagita H, Overwijk WW, Lizée G, Radvanyi L, Hwu P. PD-1 blockade enhances T-cell migration to tumors by elevating IFN-γ inducible chemokines. Cancer Res. 2012;72:5209–5218. doi: 10.1158/0008-5472.CAN-12-1187. PubMed DOI PMC

Gaire B, Padmanabhan S, Zou Y, Uddin MM, Reddy SU, Vancurova I. IFNγ induces Bcl3 expression by JAK1/STAT1/p65 signaling, resulting in increased IL-8 expression in ovarian cancer cells. FEBS Open Bio. 2023;13:1495–1506. doi: 10.1002/2211-5463.13624. PubMed DOI PMC

Cilibrasi C, Papanastasopoulos P, Samuels M, Giamas G. Reconstituting immune surveillance in breast Cancer: molecular pathophysiology and current immunotherapy strategies. Int J Mol Sci. 2021;22(21):12015. doi: 10.3390/ijms222112015. PubMed DOI PMC

Padmanabhan S, Zou Y, Vancurova I. Immunoblotting analysis of intracellular PD-L1 levels in interferon-γ-treated ovarian Cancer cells stably transfected with Bcl3 shRNA. Methods Mol Biol. 2020;2108:211–220. doi: 10.1007/978-1-0716-0247-8_18. PubMed DOI

Yang M, Zhang G, Wang Y, He M, Xu Q, Lu J, Liu H, Xu C. Tumour-associated neutrophils orchestrate intratumoural IL-8-driven immune evasion through Jagged2 activation in ovarian cancer. Br J Cancer. 2020;123:1404–1416. doi: 10.1038/s41416-020-1026-0. PubMed DOI PMC

Xiao Y, Yu D. Tumor microenvironment as a therapeutic target in cancer. Pharmacol Ther. 2021;221:107753. doi: 10.1016/j.pharmthera.2020.107753. PubMed DOI PMC

Hu Y, Zhang H, Xie N, Liu D, Jiang Y, Liu Z, Ye D, Liu S, Chen X, Li C, Wang Q, Huang X, Liu Y, Shi Y, Zhang X. Bcl-3 promotes TNF-induced hepatocyte apoptosis by regulating the deubiquitination of RIP1. Cell Death Differ. 2022;29:1176–1186. doi: 10.1038/s41418-021-00908-7. PubMed DOI PMC

Smalley M, Piggott L, Clarkson R. Breast cancer stem cells: obstacles to therapy. Cancer Lett. 2013;338:57–62. doi: 10.1016/j.canlet.2012.04.023. PubMed DOI

Nairuz T, Mahmud Z, Manik RK, Kabir Y. Cancer stem cells: an insight into the development of metastatic tumors and therapy resistance. Stem Cell Rev Rep. 2023;19:1577–1595. doi: 10.1007/s12015-023-10529-x. PubMed DOI

Carr D, Zein A, Coulombe J, Jiang T, Cabrita MA, Ward G, Daneshmand M, Sau A, Pratt MAC. Multiple roles for Bcl-3 in mammary gland branching, stromal collagen invasion, involution and tumor pathology. Breast Cancer Res. 2022;24:40. doi: 10.1186/s13058-022-01536-w. PubMed DOI PMC

Kang S, Yun J, Kim DY, Jung SY, Kim YJ, Park JH, Ji ST, Jang WB, Ha J, Kim JH, Baek SH, Kwon SM. Adequate concentration of B cell leukemia/lymphoma 3 (Bcl3) is required for pluripotency and self-renewal of mouse embryonic stem cells via downregulation of Nanog transcription. BMB Rep. 2018;51:92–97. doi: 10.5483/BMBRep.2018.51.2.219. PubMed DOI PMC

Ai J, Wörmann SM, Görgülü K, Vallespinos M, Zagorac S, Alcala S, Wu N, Kabacaoglu D, Berninger A, Navarro D, Kaya-Aksoy E, Ruess DA, Ciecielski KJ, Kowalska M, Demir IE, Ceyhan GO, Heid I, Braren R, Riemann M, Schreiner S, Hofmann S, Kutschke M, Jastroch M, Slotta-Huspenina J, Muckenhuber A, Schlitter AM, Schmid RM, Steiger K, Diakopoulos KN, Lesina M, Sainz B, Jr, Algül H. Bcl3 couples Cancer stem cell enrichment with pancreatic Cancer molecular subtypes. Gastroenterology. 2021;161:318–332.e319. doi: 10.1053/j.gastro.2021.03.051. PubMed DOI

Tang W, Wang H, Ha HL, Tassi I, Bhardwaj R, Claudio E, Siebenlist U. The B-cell tumor promoter Bcl-3 suppresses inflammation-associated colon tumorigenesis in epithelial cells. Oncogene. 2016;35:6203–6211. doi: 10.1038/onc.2016.152. PubMed DOI PMC

Franzoso G, Carlson L, Xing L, Poljak L, Shores EW, Brown KD, Leonardi A, Tran T, Boyce BF, Siebenlist U. Requirement for NF-kappaB in osteoclast and B-cell development. Genes Dev. 1997;11:3482–3496. doi: 10.1101/gad.11.24.3482. PubMed DOI PMC

Anderson RL, Balasas T, Callaghan J, Coombes RC, Evans J, Hall JA, Kinrade S, Jones D, Jones PS, Jones R, Marshall JF, Panico MB, Shaw JA, Steeg PS, Sullivan M, Tong W, Westwell AD, Ritchie JWA. A framework for the development of effective anti-metastatic agents. Nat Rev Clin Oncol. 2019;16:185–204. doi: 10.1038/s41571-018-0134-8. PubMed DOI PMC

Han Y, Shin SH, Lim CG, Heo YH, Choi IY, Kim HH. Synthetic RNA therapeutics in Cancer. J Pharmacol Exp Ther. 2023;386:212–223. doi: 10.1124/jpet.123.001587. PubMed DOI

Guan Y, Yao H, Zheng Z, Qiu G, Sun K. MiR-125b targets BCL3 and suppresses ovarian cancer proliferation. Int J Cancer. 2011;128:2274–2283. doi: 10.1002/ijc.25575. PubMed DOI

Wang J, Chen T, Wang L, Yao B, Sun L, Chen S, Liu Q. MicroRNA-627-5p inhibits the proliferation of hepatocellular carcinoma cells by targeting BCL3 transcription coactivator. Clin Exp Pharmacol Physiol. 2020;47:485–494. doi: 10.1111/1440-1681.13218. PubMed DOI

Wang J, Liu R, Wang Y, Mo H, Niu Y, Xu Q, Liu Q. Repression of the miR-627-5p by histone deacetylase 3 contributes to hypoxia-induced hepatocellular carcinoma progression. J Cancer. 2021;12:5320–5330. doi: 10.7150/jca.58697. PubMed DOI PMC

Sun D, Zhao Y, Wang W, Guan C, Hu Z, Liu L, Jiang X. PCAT1 induced by transcription factor YY1 promotes cholangiocarcinoma proliferation, migration and invasion by sponging miR-216a-3p to up-regulate oncogene BCL3. Biol Chem. 2021;402:207–219. doi: 10.1515/hsz-2020-0276. PubMed DOI

Ge P, Chen X, Liu J, Jing R, Zhang X, Li H. Hsa_circ_0088036 promotes nonsmall cell lung cancer progression by regulating miR-1343-3p/Bcl-3 axis through TGFβ/Smad3/EMT signaling. Mol Carcinog. 2023;62:1073–1085. doi: 10.1002/mc.23547. PubMed DOI

Jamaluddin M, Choudhary S, Wang S, Casola A, Huda R, Garofalo RP, Ray S, Brasier AR. Respiratory syncytial virus-inducible BCL-3 expression antagonizes the STAT/IRF and NF-kappaB signaling pathways by inducing histone deacetylase 1 recruitment to the interleukin-8 promoter. J Virol. 2005;79:15302–15313. doi: 10.1128/JVI.79.24.15302-15313.2005. PubMed DOI PMC

Zhao Y, Ramakrishnan A, Kim KE, Rabson AB. Regulation of Bcl-3 through interaction with the Lck tyrosine kinase. Biochem Biophys Res Commun. 2005;335:865–873. doi: 10.1016/j.bbrc.2005.07.162. PubMed DOI

Bundy DL, McKeithan TW. Diverse effects of BCL3 phosphorylation on its modulation of NF-kappaB p52 homodimer binding to DNA. J Biol Chem. 1997;272:33132–33139. doi: 10.1074/jbc.272.52.33132. PubMed DOI

Massoumi R. CYLD: a deubiquitination enzyme with multiple roles in cancer. Future Oncol. 2011;7:285–297. doi: 10.2217/fon.10.187. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...