• This record comes from PubMed

Block Synthesis and Step-Growth Polymerization of C-6-Sulfonatomethyl-Containing Sulfated Malto-Oligosaccharides and Their Biological Profiling

. 2024 Jan 04 ; 25 (1) : . [epub] 20240104

Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
FK 137924 National Research, Development and Innovation Office
Programme EXCELES, Project No. LX22NPO5103 European Union - Next Generation EU

Highly sulfated malto-oligomers, similar to heparin and heparan-sulfate, have good antiviral, antimetastatic, anti-inflammatory and cell growth inhibitory effects. Due to their broad biological activities and simple structure, sulfated malto-oligomer derivatives have a great therapeutic potential, therefore, the development of efficient synthesis methods for their production is of utmost importance. In this work, preparation of α-(1→4)-linked oligoglucosides containing a sulfonatomethyl moiety at position C-6 of each glucose unit was studied by different approaches. Malto-oligomeric sulfonic acid derivatives up to dodecasaccharides were prepared by polymerization using different protecting groups, and the composition of the product mixtures was analyzed by MALDI-MS methods and size-exclusion chromatography. Synthesis of lower oligomers was also accomplished by stepwise and block synthetic methods, and then the oligosaccharide products were persulfated. The antiviral, anti-inflammatory and cell growth inhibitory activity of the fully sulfated malto-oligosaccharide sulfonic acids were determined by in vitro tests. Four tested di- and trisaccharide sulfonic acids effectively inhibited the activation of the TNF-α-mediated inflammatory pathway without showing cytotoxicity.

See more in PubMed

Perez S., Makshakova O., Angulo J., Bedini E., Bisio A., de Paz J.L., Fadda E., Guerrini M., Hricovini M., Lisacek F., et al. Glycosaminoglycans: What Remains to Be Deciphered? JACS Au. 2023;3:628–656. doi: 10.1021/jacsau.2c00569. PubMed DOI PMC

Wieboldt R., Laubli H. Glycosaminoglycans in cancer therapy. Am. J. Physiol. Cell Physiol. 2022;322:C1187–C1200. doi: 10.1152/ajpcell.00063.2022. PubMed DOI

Jackson R.L., Busch S.J., Cardin A.D. Glycosaminoglycans: Molecular properties, protein interactions, and role in physiological processes. Physiol. Rev. 1991;71:481–539. doi: 10.1152/physrev.1991.71.2.481. PubMed DOI

Yeung B.K.S., Chong P.Y.C., Petillo P.A. Synthesis of glycosaminoglycans. J. Carbohydr. Chem. 2002;21:799–865. doi: 10.1081/CAR-120016490. DOI

Mende M., Bednarek C., Wawryszyn M., Sauter P., Biskup M.B., Schepers U., Brasë S. Chemical Synthesis of Glycosaminoglycans. Chem. Rev. 2016;116:8193–8255. doi: 10.1021/acs.chemrev.6b00010. PubMed DOI

Rabenstein D.L. Heparin and heparan sulfate: Structure and function. Nat. Prod. Rep. 2002;19:312–331. doi: 10.1039/b100916h. PubMed DOI

Jin L., Abrahams J.P., Skinner R., Petitou M., Pike R.N., Carrell R.W. The anticoagulant activation of antithrombin by heparin. Proc. Natl. Acad. Sci. USA. 1997;94:14683–14688. doi: 10.1073/pnas.94.26.14683. PubMed DOI PMC

Capila I., Linhardt R.J. Heparin—Protein Interactions. Angew. Chem. Int. Ed. 2002;41:390–412. doi: 10.1002/1521-3773(20020201)41:3<390::AID-ANIE390>3.0.CO;2-B. PubMed DOI

Mulloy B., Hogwood J., Gray E., Lever R., Page C.P. Pharmacology of Heparin and Related Drugs. Pharmacol. Rev. 2016;68:76–141. doi: 10.1124/pr.115.011247. PubMed DOI

Weiss R.J., Esko J.D., Tor Y. Targeting heparin and heparan sulfate protein interactions. Org. Biomol. Chem. 2017;15:5656–5668. doi: 10.1039/C7OB01058C. PubMed DOI PMC

Chhabra M., Doherty G.G., See N.W., Gandhi N.S., Ferro V. From Cancer to COVID-19: A Perspective on Targeting Heparan Sulfate Protein Interactions. Chem. Rec. 2021;21:3087–3101. doi: 10.1002/tcr.202100125. PubMed DOI PMC

Wang P., Chi L., Zhang Z., Zhao H., Zhang F., Linhardt R.J. Heparin: An old drug for new clinical applications. Carbohydr. Polym. 2022;295:119818. doi: 10.1016/j.carbpol.2022.119818. PubMed DOI

Hogwood J., Mulloy B., Lever R., Gray E., Page C.P. Pharmacology of Heparin and Related Drugs: An Update. Pharmacol. Rev. 2023;75:328–379. doi: 10.1124/pharmrev.122.000684. PubMed DOI

Carlson J., Ekre H.P., Helmby H., Gysin J., Greenwood B.M., Wahlgren. M. Disruption of Plasmodium falciparum erythrocyte rosettes by standard heparin and heparin devoid of anticoagulant activity. Am. J. Trop. Med. Hyg. 1992;46:595–602. doi: 10.4269/ajtmh.1992.46.595. PubMed DOI

Abreu R., Essler L., Loy A., Quinn F., Giri P. Heparin inhibits intracellular mycobacterium tuberculosis bacterial replication by reducing iron levels in human macrophages. Sci. Rep. 2018;8:7296. doi: 10.1038/s41598-018-25480-y. PubMed DOI PMC

Agelidis A., Shukla D. Heparanase, Heparan Sulfate and Viral Infection. Adv. Exp. Med. Biol. 2020;1221:759–770. PubMed

Parish C.R., Freeman C., Brown K.J., Francis D.J., Cowden W.B. Identification of sulfated oligosaccharide-based inhibitors of tumor growth and metastasis using novel in vitro assays for angiogenesis and heparanase activity. Cancer Res. 1999;59:3433–3441. PubMed

Ferro V., Dredge K., Liu L., Hammond E., Bytheway I., Li C., Johnstone K., Karoli T., Davis K., Copeman E., et al. PI-88 and Novel Heparan Sulfate Mimetics Inhibit Angiogenesis. Semin. Thromb. Hemost. 2007;33:557–568. doi: 10.1055/s-2007-982088. PubMed DOI

Ferro V., Liu L., Johnstone K.D., Wimmer N., Karoli T., Handley P., Rowley J., Dredge K., Li C.P., Hammond E., et al. Discovery of PG545: A highly potent and simultaneous inhibitor of angiogenesis, tumor growth, and metastasis. J. Med. Chem. 2012;55:3804–3813. doi: 10.1021/jm201708h. PubMed DOI

Chhabra M., Wilson J.C., Wu L., Davies G.J., Gandhi N.S., Ferro V. Structural Insights into Pixatimod (PG545) Inhibition of Heparanase, a Key Enzyme in Cancer and Viral Infections. Chem. Eur. J. 2022;28:e202104222. doi: 10.1002/chem.202104222. PubMed DOI PMC

Lázár L., Herczeg M., Fekete A., Borbás A., Lipták A., Antus S. Synthesis of sulfonic acid analogues of the non-reducing end trisaccharide of the antithrombin binding domain of heparin. Tetrahedron Lett. 2010;51:6711–6714. doi: 10.1016/j.tetlet.2010.10.042. DOI

Herczeg M., Lázár L., Bereczky Z., Kövér K.E., Timári I., Kappelmayer J., Lipták A., Antus S., Borbás A. Synthesis and Anticoagulant Activity of Bioisosteric Sulfonic-Acid Analogues of the Antithrombin-Binding Pentasaccharide Domain of Heparin. Chem. Eur. J. 2012;18:10643–10652. doi: 10.1002/chem.201201041. PubMed DOI

Májer G., Csávás M., Lázár L., Herczeg M., Bényei A., Antus S., Borbás A. Synthesis of sulfonic acid-containing maltose-type keto-oligosaccharides by an iterative approach. Tetrahedron. 2012;68:4986–4994. doi: 10.1016/j.tet.2012.04.067. DOI

Herczeg M., Mező E., Eszenyi D., Lázár L., Csávás M., Bereczki I., Antus S., Borbás A. Synthesis of 6-sulfonatomethyl thioglycosides by nucleophilic substitution: Methods to prevent 1→6 anomeric group migration of thioglycoside 6-O-triflates. Eur. J. Org. Chem. 2013;2013:5570–5573. doi: 10.1002/ejoc.201300681. DOI

Mező E., Herczeg M., Eszenyi D., Borbás A. Large-scale synthesis of 6-deoxy-6-sulfonatomethyl glycosides and their application for novel synthesis of a heparinoid pentasaccharide trisulfonic acid of anticoagulant activity. Carbohydr. Res. 2014;388:19–29. doi: 10.1016/j.carres.2014.02.012. PubMed DOI

Mező E., Eszenyi D., Varga E., Herczeg M., Borbás A. A Modular Synthetic Approach to Isosteric Sulfonic Acid Analogues of the Anticoagulant Pentasaccharide Idraparinux. Molecules. 2016;21:1497. doi: 10.3390/molecules21111497. PubMed DOI PMC

Fraser-Reid B., Wu Z., Udodong U.E., Ottosson H. Armed/Disarmed Effects in Glycosyl Donors: Rationalization and Sidetracking. J. Org. Chem. 1990;55:6068–6070. doi: 10.1021/jo00312a004. DOI

Fraser-Reid B., López J.C. Armed-disarmed effects in carbohydrate chemistry: History, synthetic and mechanistic studies. Top. Curr. Chem. 2011;301:1–29. PubMed

Schmidt R.R., Michel J. Facile Synthesis of α- and β-O-Glycosyl Imidates; Preparation of Glycosides and Disaccharides. Angew. Chem. Int. Ed. Engl. 1980;19:731–732. doi: 10.1002/anie.198007311. DOI

Koenigs W., Knorr E. Ueber einige Derivate des Traubenzuckers und der Galactose. Ber. Dtsch. Chem. Ges. 1901;34:957–981. doi: 10.1002/cber.190103401162. DOI

Xia J., Abbas S.A., Locke R.D., Piskorz C.F., Alderfer J.L., Matta K.L. Use of 1,2-dichloro 4,5-dicyanoquinone (DDQ) for cleavage of the 2-naphthylmethyl (NAP) group. Tetrahedron Lett. 2000;41:169–173. doi: 10.1016/S0040-4039(99)02046-8. DOI

Daskhana G.C., Jayaraman N. Backbone-modified amphiphilic cyclic di- and tetrasaccharides. Chem. Commun. 2014;50:8554–8557. doi: 10.1039/C3CC48794F. PubMed DOI

Kumar V., Yadav N., Kartha K.P.R. In(III) triflate-catalyzed detritylation and glycosylation by solvent-free ball milling. Carbohydr. Res. 2014;397:18–26. doi: 10.1016/j.carres.2014.08.002. PubMed DOI

Someya H., Seki T., Ishigami G., Itoh T., Saga Y., Yamada Y., Aoki S. One-pot synthesis of cyclic oligosaccharides by the polyglycosylation of monothioglycosides. Carbohydr. Res. 2020;487:107888. doi: 10.1016/j.carres.2019.107888. PubMed DOI

Li X., Di Carluccio C., Miao H., Zhang L., Shang J., Molinaro A., Xu P., Silipo A., Yu B., Yang Y. Promoter-Controlled Synthesis and Conformational Analysis of Cyclic Mannosides up to a 32-mer. Angew. Chem. Int. Ed. Engl. 2023;62:e202307851. doi: 10.1002/anie.202307851. PubMed DOI

Li Z., Gildersleeve J.C. An armed–disarmed approach for blocking aglycon transfer of thioglycosides. Tetrahedron Lett. 2007;48:559–562. doi: 10.1016/j.tetlet.2006.11.126. PubMed DOI PMC

Li Z., Gildersleeve J.C. Mechanistic Studies and Methods to Prevent Aglycon Transfer of Thioglycosides. J. Am. Chem. Soc. 2006;128:11612–11619. doi: 10.1021/ja063247q. PubMed DOI

Domon B., Costello C.E. A systematic nomenclature for carbohydrate fragmentations in FAB-MS/MS spectra of Glycoconjugates. Glycoconj. J. 1988;5:397–409. doi: 10.1007/BF01049915. DOI

Zhao W., Jin H., Chen Q., Zhang Y., Hao K., Zhang G. Preactivation-based, iterative one-pot synthesis of anticoagulant pentasaccharide fondaparinux sodium. Org. Chem. Front. 2019;6:3116–3120.

Shirsat A.A., Rai D., Ghotekar B.K., Kulkarni S.S. Total Synthesis of Trisaccharide Repeating Unit of Staphylococcus aureus Strain M. Org. Lett. 2023;25:2913–2917. doi: 10.1021/acs.orglett.3c00997. PubMed DOI

Montchamp J.-L., Tian F., Hart M.E., Frost J.W. Butane 2,3-Bisacetal Protection of Vicinal Diequatorial Diols. J. Org. Chem. 1996;61:3897–3899. doi: 10.1021/jo960170n. PubMed DOI

Hense A., Ley S.V., Osborn H.M.I., Owen D.R., Poisson J.-F., Warriner S.L., Wesson K.E. Direct preparation of diacetals from 1,2-diketones and their use as 1,2-diol protecting groups. J. Chem. Soc. Perkin Trans. 1997;1:2023–2031. doi: 10.1039/a702497e. DOI

Ley S.V., Baeschlin D.K., Dixon D.J., Foster A.C., Ince S.J., Priepke H.W.M., Reynolds D.J. 1,2-Diacetals:  A New Opportunity for Organic Synthesis. Chem. Rev. 2001;101:53–80. doi: 10.1021/cr990101j. PubMed DOI

Gómez A.M.A. Survey of Ley’s Reactivity Tuning in Oligosaccharide Synthesis. In: Fraser-Reid B., López J.C., editors. Reactivity Tuning in Oligosaccharide Assembly. Volume 301. Springer; Heidelberg, Germany: 2011. pp. 31–68. PubMed

Herczeg M., Demeter F., Mező E., Pap M., Borbás A. Simultaneous Application of Arylmethylene Acetal and Butane Diacetal Groups for Protection of Hexopyranosides: Synthesis and Chemoselective Ring-Opening Reactions. Eur. J. Org. Chem. 2015;26:5730–5741. doi: 10.1002/ejoc.201500732. DOI

Tandon R., Sharp J.S., Zhang F., Pomin V.H., Ashpole N.M., Mitra D., McCandless M.G., Jin W., Liu H., Sharma P., et al. Effective inhibition of SARS-CoV-2 entry by heparin and enoxaparin derivatives. J. Virol. 2021;95:e01987-20. doi: 10.1128/JVI.01987-20. PubMed DOI PMC

Eilts F., Bauer S., Fraser K., Dordick J.S., Wolff M.W., Linhardt R.J., Zhang F. The diverse role of heparan sulfate and other GAGs in SARS-CoV-2 infections and therapeutics. Carbohydr. Polym. 2023;299:120167. doi: 10.1016/j.carbpol.2022.120167. PubMed DOI PMC

Sun L., Chopra P., Tomris I., van der Woude R., Liu L., de Vries R.P., Boons G.-J. Well-Defined Heparin Mimetics Can Inhibit Binding of the Trimeric Spike of SARS-CoV-2 in a Length-Dependent Manner. JACS Au. 2023;3:1185–1195. doi: 10.1021/jacsau.3c00042. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...