Block Synthesis and Step-Growth Polymerization of C-6-Sulfonatomethyl-Containing Sulfated Malto-Oligosaccharides and Their Biological Profiling
Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
FK 137924
National Research, Development and Innovation Office
Programme EXCELES, Project No. LX22NPO5103
European Union - Next Generation EU
PubMed
38203849
PubMed Central
PMC10779578
DOI
10.3390/ijms25010677
PII: ijms25010677
Knihovny.cz E-resources
- Keywords
- anti-inflammatory effect, glycosylation, malto-oligomers, polymerization, sulfonic acid,
- MeSH
- Anti-Inflammatory Agents pharmacology MeSH
- Antiviral Agents pharmacology MeSH
- Sulfonic Acids MeSH
- Oligosaccharides * pharmacology MeSH
- Polymerization MeSH
- Sulfates * MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Anti-Inflammatory Agents MeSH
- Antiviral Agents MeSH
- Sulfonic Acids MeSH
- Oligosaccharides * MeSH
- Sulfates * MeSH
Highly sulfated malto-oligomers, similar to heparin and heparan-sulfate, have good antiviral, antimetastatic, anti-inflammatory and cell growth inhibitory effects. Due to their broad biological activities and simple structure, sulfated malto-oligomer derivatives have a great therapeutic potential, therefore, the development of efficient synthesis methods for their production is of utmost importance. In this work, preparation of α-(1→4)-linked oligoglucosides containing a sulfonatomethyl moiety at position C-6 of each glucose unit was studied by different approaches. Malto-oligomeric sulfonic acid derivatives up to dodecasaccharides were prepared by polymerization using different protecting groups, and the composition of the product mixtures was analyzed by MALDI-MS methods and size-exclusion chromatography. Synthesis of lower oligomers was also accomplished by stepwise and block synthetic methods, and then the oligosaccharide products were persulfated. The antiviral, anti-inflammatory and cell growth inhibitory activity of the fully sulfated malto-oligosaccharide sulfonic acids were determined by in vitro tests. Four tested di- and trisaccharide sulfonic acids effectively inhibited the activation of the TNF-α-mediated inflammatory pathway without showing cytotoxicity.
See more in PubMed
Perez S., Makshakova O., Angulo J., Bedini E., Bisio A., de Paz J.L., Fadda E., Guerrini M., Hricovini M., Lisacek F., et al. Glycosaminoglycans: What Remains to Be Deciphered? JACS Au. 2023;3:628–656. doi: 10.1021/jacsau.2c00569. PubMed DOI PMC
Wieboldt R., Laubli H. Glycosaminoglycans in cancer therapy. Am. J. Physiol. Cell Physiol. 2022;322:C1187–C1200. doi: 10.1152/ajpcell.00063.2022. PubMed DOI
Jackson R.L., Busch S.J., Cardin A.D. Glycosaminoglycans: Molecular properties, protein interactions, and role in physiological processes. Physiol. Rev. 1991;71:481–539. doi: 10.1152/physrev.1991.71.2.481. PubMed DOI
Yeung B.K.S., Chong P.Y.C., Petillo P.A. Synthesis of glycosaminoglycans. J. Carbohydr. Chem. 2002;21:799–865. doi: 10.1081/CAR-120016490. DOI
Mende M., Bednarek C., Wawryszyn M., Sauter P., Biskup M.B., Schepers U., Brasë S. Chemical Synthesis of Glycosaminoglycans. Chem. Rev. 2016;116:8193–8255. doi: 10.1021/acs.chemrev.6b00010. PubMed DOI
Rabenstein D.L. Heparin and heparan sulfate: Structure and function. Nat. Prod. Rep. 2002;19:312–331. doi: 10.1039/b100916h. PubMed DOI
Jin L., Abrahams J.P., Skinner R., Petitou M., Pike R.N., Carrell R.W. The anticoagulant activation of antithrombin by heparin. Proc. Natl. Acad. Sci. USA. 1997;94:14683–14688. doi: 10.1073/pnas.94.26.14683. PubMed DOI PMC
Capila I., Linhardt R.J. Heparin—Protein Interactions. Angew. Chem. Int. Ed. 2002;41:390–412. doi: 10.1002/1521-3773(20020201)41:3<390::AID-ANIE390>3.0.CO;2-B. PubMed DOI
Mulloy B., Hogwood J., Gray E., Lever R., Page C.P. Pharmacology of Heparin and Related Drugs. Pharmacol. Rev. 2016;68:76–141. doi: 10.1124/pr.115.011247. PubMed DOI
Weiss R.J., Esko J.D., Tor Y. Targeting heparin and heparan sulfate protein interactions. Org. Biomol. Chem. 2017;15:5656–5668. doi: 10.1039/C7OB01058C. PubMed DOI PMC
Chhabra M., Doherty G.G., See N.W., Gandhi N.S., Ferro V. From Cancer to COVID-19: A Perspective on Targeting Heparan Sulfate Protein Interactions. Chem. Rec. 2021;21:3087–3101. doi: 10.1002/tcr.202100125. PubMed DOI PMC
Wang P., Chi L., Zhang Z., Zhao H., Zhang F., Linhardt R.J. Heparin: An old drug for new clinical applications. Carbohydr. Polym. 2022;295:119818. doi: 10.1016/j.carbpol.2022.119818. PubMed DOI
Hogwood J., Mulloy B., Lever R., Gray E., Page C.P. Pharmacology of Heparin and Related Drugs: An Update. Pharmacol. Rev. 2023;75:328–379. doi: 10.1124/pharmrev.122.000684. PubMed DOI
Carlson J., Ekre H.P., Helmby H., Gysin J., Greenwood B.M., Wahlgren. M. Disruption of Plasmodium falciparum erythrocyte rosettes by standard heparin and heparin devoid of anticoagulant activity. Am. J. Trop. Med. Hyg. 1992;46:595–602. doi: 10.4269/ajtmh.1992.46.595. PubMed DOI
Abreu R., Essler L., Loy A., Quinn F., Giri P. Heparin inhibits intracellular mycobacterium tuberculosis bacterial replication by reducing iron levels in human macrophages. Sci. Rep. 2018;8:7296. doi: 10.1038/s41598-018-25480-y. PubMed DOI PMC
Agelidis A., Shukla D. Heparanase, Heparan Sulfate and Viral Infection. Adv. Exp. Med. Biol. 2020;1221:759–770. PubMed
Parish C.R., Freeman C., Brown K.J., Francis D.J., Cowden W.B. Identification of sulfated oligosaccharide-based inhibitors of tumor growth and metastasis using novel in vitro assays for angiogenesis and heparanase activity. Cancer Res. 1999;59:3433–3441. PubMed
Ferro V., Dredge K., Liu L., Hammond E., Bytheway I., Li C., Johnstone K., Karoli T., Davis K., Copeman E., et al. PI-88 and Novel Heparan Sulfate Mimetics Inhibit Angiogenesis. Semin. Thromb. Hemost. 2007;33:557–568. doi: 10.1055/s-2007-982088. PubMed DOI
Ferro V., Liu L., Johnstone K.D., Wimmer N., Karoli T., Handley P., Rowley J., Dredge K., Li C.P., Hammond E., et al. Discovery of PG545: A highly potent and simultaneous inhibitor of angiogenesis, tumor growth, and metastasis. J. Med. Chem. 2012;55:3804–3813. doi: 10.1021/jm201708h. PubMed DOI
Chhabra M., Wilson J.C., Wu L., Davies G.J., Gandhi N.S., Ferro V. Structural Insights into Pixatimod (PG545) Inhibition of Heparanase, a Key Enzyme in Cancer and Viral Infections. Chem. Eur. J. 2022;28:e202104222. doi: 10.1002/chem.202104222. PubMed DOI PMC
Lázár L., Herczeg M., Fekete A., Borbás A., Lipták A., Antus S. Synthesis of sulfonic acid analogues of the non-reducing end trisaccharide of the antithrombin binding domain of heparin. Tetrahedron Lett. 2010;51:6711–6714. doi: 10.1016/j.tetlet.2010.10.042. DOI
Herczeg M., Lázár L., Bereczky Z., Kövér K.E., Timári I., Kappelmayer J., Lipták A., Antus S., Borbás A. Synthesis and Anticoagulant Activity of Bioisosteric Sulfonic-Acid Analogues of the Antithrombin-Binding Pentasaccharide Domain of Heparin. Chem. Eur. J. 2012;18:10643–10652. doi: 10.1002/chem.201201041. PubMed DOI
Májer G., Csávás M., Lázár L., Herczeg M., Bényei A., Antus S., Borbás A. Synthesis of sulfonic acid-containing maltose-type keto-oligosaccharides by an iterative approach. Tetrahedron. 2012;68:4986–4994. doi: 10.1016/j.tet.2012.04.067. DOI
Herczeg M., Mező E., Eszenyi D., Lázár L., Csávás M., Bereczki I., Antus S., Borbás A. Synthesis of 6-sulfonatomethyl thioglycosides by nucleophilic substitution: Methods to prevent 1→6 anomeric group migration of thioglycoside 6-O-triflates. Eur. J. Org. Chem. 2013;2013:5570–5573. doi: 10.1002/ejoc.201300681. DOI
Mező E., Herczeg M., Eszenyi D., Borbás A. Large-scale synthesis of 6-deoxy-6-sulfonatomethyl glycosides and their application for novel synthesis of a heparinoid pentasaccharide trisulfonic acid of anticoagulant activity. Carbohydr. Res. 2014;388:19–29. doi: 10.1016/j.carres.2014.02.012. PubMed DOI
Mező E., Eszenyi D., Varga E., Herczeg M., Borbás A. A Modular Synthetic Approach to Isosteric Sulfonic Acid Analogues of the Anticoagulant Pentasaccharide Idraparinux. Molecules. 2016;21:1497. doi: 10.3390/molecules21111497. PubMed DOI PMC
Fraser-Reid B., Wu Z., Udodong U.E., Ottosson H. Armed/Disarmed Effects in Glycosyl Donors: Rationalization and Sidetracking. J. Org. Chem. 1990;55:6068–6070. doi: 10.1021/jo00312a004. DOI
Fraser-Reid B., López J.C. Armed-disarmed effects in carbohydrate chemistry: History, synthetic and mechanistic studies. Top. Curr. Chem. 2011;301:1–29. PubMed
Schmidt R.R., Michel J. Facile Synthesis of α- and β-O-Glycosyl Imidates; Preparation of Glycosides and Disaccharides. Angew. Chem. Int. Ed. Engl. 1980;19:731–732. doi: 10.1002/anie.198007311. DOI
Koenigs W., Knorr E. Ueber einige Derivate des Traubenzuckers und der Galactose. Ber. Dtsch. Chem. Ges. 1901;34:957–981. doi: 10.1002/cber.190103401162. DOI
Xia J., Abbas S.A., Locke R.D., Piskorz C.F., Alderfer J.L., Matta K.L. Use of 1,2-dichloro 4,5-dicyanoquinone (DDQ) for cleavage of the 2-naphthylmethyl (NAP) group. Tetrahedron Lett. 2000;41:169–173. doi: 10.1016/S0040-4039(99)02046-8. DOI
Daskhana G.C., Jayaraman N. Backbone-modified amphiphilic cyclic di- and tetrasaccharides. Chem. Commun. 2014;50:8554–8557. doi: 10.1039/C3CC48794F. PubMed DOI
Kumar V., Yadav N., Kartha K.P.R. In(III) triflate-catalyzed detritylation and glycosylation by solvent-free ball milling. Carbohydr. Res. 2014;397:18–26. doi: 10.1016/j.carres.2014.08.002. PubMed DOI
Someya H., Seki T., Ishigami G., Itoh T., Saga Y., Yamada Y., Aoki S. One-pot synthesis of cyclic oligosaccharides by the polyglycosylation of monothioglycosides. Carbohydr. Res. 2020;487:107888. doi: 10.1016/j.carres.2019.107888. PubMed DOI
Li X., Di Carluccio C., Miao H., Zhang L., Shang J., Molinaro A., Xu P., Silipo A., Yu B., Yang Y. Promoter-Controlled Synthesis and Conformational Analysis of Cyclic Mannosides up to a 32-mer. Angew. Chem. Int. Ed. Engl. 2023;62:e202307851. doi: 10.1002/anie.202307851. PubMed DOI
Li Z., Gildersleeve J.C. An armed–disarmed approach for blocking aglycon transfer of thioglycosides. Tetrahedron Lett. 2007;48:559–562. doi: 10.1016/j.tetlet.2006.11.126. PubMed DOI PMC
Li Z., Gildersleeve J.C. Mechanistic Studies and Methods to Prevent Aglycon Transfer of Thioglycosides. J. Am. Chem. Soc. 2006;128:11612–11619. doi: 10.1021/ja063247q. PubMed DOI
Domon B., Costello C.E. A systematic nomenclature for carbohydrate fragmentations in FAB-MS/MS spectra of Glycoconjugates. Glycoconj. J. 1988;5:397–409. doi: 10.1007/BF01049915. DOI
Zhao W., Jin H., Chen Q., Zhang Y., Hao K., Zhang G. Preactivation-based, iterative one-pot synthesis of anticoagulant pentasaccharide fondaparinux sodium. Org. Chem. Front. 2019;6:3116–3120.
Shirsat A.A., Rai D., Ghotekar B.K., Kulkarni S.S. Total Synthesis of Trisaccharide Repeating Unit of Staphylococcus aureus Strain M. Org. Lett. 2023;25:2913–2917. doi: 10.1021/acs.orglett.3c00997. PubMed DOI
Montchamp J.-L., Tian F., Hart M.E., Frost J.W. Butane 2,3-Bisacetal Protection of Vicinal Diequatorial Diols. J. Org. Chem. 1996;61:3897–3899. doi: 10.1021/jo960170n. PubMed DOI
Hense A., Ley S.V., Osborn H.M.I., Owen D.R., Poisson J.-F., Warriner S.L., Wesson K.E. Direct preparation of diacetals from 1,2-diketones and their use as 1,2-diol protecting groups. J. Chem. Soc. Perkin Trans. 1997;1:2023–2031. doi: 10.1039/a702497e. DOI
Ley S.V., Baeschlin D.K., Dixon D.J., Foster A.C., Ince S.J., Priepke H.W.M., Reynolds D.J. 1,2-Diacetals: A New Opportunity for Organic Synthesis. Chem. Rev. 2001;101:53–80. doi: 10.1021/cr990101j. PubMed DOI
Gómez A.M.A. Survey of Ley’s Reactivity Tuning in Oligosaccharide Synthesis. In: Fraser-Reid B., López J.C., editors. Reactivity Tuning in Oligosaccharide Assembly. Volume 301. Springer; Heidelberg, Germany: 2011. pp. 31–68. PubMed
Herczeg M., Demeter F., Mező E., Pap M., Borbás A. Simultaneous Application of Arylmethylene Acetal and Butane Diacetal Groups for Protection of Hexopyranosides: Synthesis and Chemoselective Ring-Opening Reactions. Eur. J. Org. Chem. 2015;26:5730–5741. doi: 10.1002/ejoc.201500732. DOI
Tandon R., Sharp J.S., Zhang F., Pomin V.H., Ashpole N.M., Mitra D., McCandless M.G., Jin W., Liu H., Sharma P., et al. Effective inhibition of SARS-CoV-2 entry by heparin and enoxaparin derivatives. J. Virol. 2021;95:e01987-20. doi: 10.1128/JVI.01987-20. PubMed DOI PMC
Eilts F., Bauer S., Fraser K., Dordick J.S., Wolff M.W., Linhardt R.J., Zhang F. The diverse role of heparan sulfate and other GAGs in SARS-CoV-2 infections and therapeutics. Carbohydr. Polym. 2023;299:120167. doi: 10.1016/j.carbpol.2022.120167. PubMed DOI PMC
Sun L., Chopra P., Tomris I., van der Woude R., Liu L., de Vries R.P., Boons G.-J. Well-Defined Heparin Mimetics Can Inhibit Binding of the Trimeric Spike of SARS-CoV-2 in a Length-Dependent Manner. JACS Au. 2023;3:1185–1195. doi: 10.1021/jacsau.3c00042. PubMed DOI PMC