Simulation-based assessment of robotic cardiac surgery skills: An international multicenter, cross-specialty trial

. 2023 Dec ; 16 () : 619-627. [epub] 20231102

Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38204726
Odkazy

PubMed 38204726
PubMed Central PMC10775167
DOI 10.1016/j.xjon.2023.10.029
PII: S2666-2736(23)00347-9
Knihovny.cz E-zdroje

OBJECTIVE: This study aimed to investigate the validity of simulation-based assessment of robotic-assisted cardiac surgery skills using a wet lab model, focusing on the use of a time-based score (TBS) and modified Global Evaluative Assessment of Robotic Skills (mGEARS) score. METHODS: We tested 3 wet lab tasks (atrial closure, mitral annular stitches, and internal thoracic artery [ITA] dissection) with both experienced robotic cardiac surgeons and novices from multiple European centers. The tasks were assessed using 2 tools: TBS and mGEARS score. Reliability, internal consistency, and the ability to discriminate between different levels of competence were evaluated. RESULTS: The results demonstrated a high internal consistency for all 3 tasks using mGEARS assessment tool. The mGEARS score and TBS could reliably discriminate between different levels of competence for the atrial closure and mitral stitches tasks but not for the ITA harvesting task. A generalizability study also revealed that it was feasible to assess competency of the atrial closure and mitral stitches tasks using mGEARS but not the ITA dissection task. Pass/fail scores were established for each task using both TBS and mGEARS assessment tools. CONCLUSIONS: The study provides sufficient evidence for using TBS and mGEARS scores in evaluating robotic-assisted cardiac surgery skills in wet lab settings for intracardiac tasks. Combining both assessment tools enhances the evaluation of proficiency in robotic cardiac surgery, paving the way for standardized, evidence-based preclinical training and credentialing. CLINICAL TRIAL REGISTRY NUMBER: NCT05043064.

Zobrazit více v PubMed

Cerny S., Oosterlinck W., Onan B., Singh S., Segers P., Bolcal S., et al. Robotic cardiac surgery in Europe: status 2020. Front Cardiovasc Med. 2021;8 PubMed PMC

Gillinov A.M., Mihaljevic T., Javadikasgari H., Suri R.M., Mick S.L., Navia J.L., et al. Early results of robotically assisted mitral valve surgery: analysis of the first 1000 cases. J Thorac Cardiovasc Surg. 2018;155:82–91. PubMed

Bonaros N., Schachner T., Lehr E., Kofler M., Wiedemann D., Hong P., et al. Five hundred cases of robotic totally endoscopic coronary artery bypass grafting: predictors of success and safety. Ann Thorac Surg. 2013;95:803–812. PubMed

Palmen M., Navarra E., Bonatti J., Franke U., Cerny S., Musumeci F., et al. Current state of the art and recommendations in robotic mitral valve surgery. Interact Cardiovasc Thorac Surg. 2022;35:ivac160. PubMed PMC

Vinck E.E., Smood B., Barros L., Palmen M. Robotic cardiac surgery training during residency: preparing residents for the inevitable future. Laparosc Endosc Robot Surg. 2022;5:75–77.

Vanlander A.E., Mazzone E., Collins J.W., Mottrie A.M., Rogiers X.M., van der Poel H.G., et al. Orsi Consensus Meeting on European Robotic Training (OCERT): results from the first multispecialty consensus meeting on training in robot-assisted surgery. Eur Urol. 2020;78:713–716. PubMed

Torregrossa G., Amabile A., Oosterlinck W., Van den Eynde J., Mori M., Geirsson A., et al. The epicenter of change: robotic cardiac surgery as a career choice. J Card Surg. 2021;36:3497–3500. PubMed

Gillinov M., Mick S., Mihaljevic T., Suri R.M. Watch one, do one, teach one. J Thorac Cardiovasc Surg. 2016;151:1506–1507. PubMed

Havemann M.C., Dalsgaard T., Sørensen J.L., Røssaak K., Brisling S., Mosgaard B.J., et al. Examining validity evidence for a simulation-based assessment tool for basic robotic surgical skills. J Robot Surg. 2019;13:99–106. PubMed

Jarocki A., Rice D., Kent M., Oh D., Lin J., Reddy R.M. Validity of robotic simulation for high-stakes examination: a pilot study. J Robot Surg. 2022;16:409–413. PubMed

Haidari T.A., Bjerrum F., Christensen T.D., Vad H., Møller L.B., Hansen H.J., et al. Assessing VATS competence based on simulated lobectomies of all five lung lobes. Surg Endosc. 2022;36:8067–8075. PubMed

Cook D.A., Hatala R., Brydges R., Zendejas B., Szostek J.H., Wang A.T., et al. Technology-enhanced simulation for Health professions education: a systematic review and meta-analysis. JAMA. 2011;306:978–988. PubMed

Downing S.M. Validity: on the meaningful interpretation of assessment data. Med Educ. 2003;37:830–837. PubMed

Yudkowsky R., Park Y.S. 2nd ed. Routledge; 2020. Asessment in Health Professions Education.

Goh A.C., Goldfarb D.W., Sander J.C., Miles B.J., Dunkin B.J. Global evaluative assessment of robotic skills: validation of a clinical assessment tool to measure robotic surgical skills. J Urol. 2012;187:247–252. PubMed

Valdis M., Chu M.W.A., Schlachta C., Kiaii B. Evaluation of robotic cardiac surgery simulation training: a randomized controlled trial. J Thorac Cardiovasc Surg. 2016;151:1498–1505. PubMed

de Montbrun S., Satterthwaite L., Grantcharov T.P. Setting pass scores for assessment of technical performance by surgical trainees. Br J Surg. 2016;103:300–306. PubMed

Jørgensen M., Konge L., Subhi Y. Contrasting groups' standard setting for consequences analysis in validity studies: reporting considerations. Adv Simul. 2018;9:3–5. PubMed PMC

Reade C.C., Bower C.E., Maziarz D.M., Conquest A.M., Sun Y.S., Nifong L.W., et al. Sutureless robot-assisted mitral valve repair: an animal model. Heart Surg Forum. 2003;6:254–257. PubMed

Badhwar V., Wei L.M., Cook C.C., Hayanga J.W.A., Daggubati R., Sengupta P.P., et al. Robotic aortic valve replacement. J Thorac Cardiovasc Surg. 2021;161:1753–1759. PubMed

Badhwar V., Wei L.M., Geirsson A., Dearani J.A., Grossi E.A., Guy T.S., et al. Contemporary robotic cardiac surgical training. J Thorac Cardiovasc Surg. 2023;165:779–783. PubMed

Pietersen P.I., Bjerrum F., Tolsgaard M.G., Konge L., Andersen S.A.W. Standard setting in simulation-based training of surgical procedures. Ann Surg. 2022;275:872–882. PubMed

Swinkels B.M., ten Berg J.M., Kelder J.C., Vermeulen F.E., Van Boven W.J., de Mol B.A. Effect of aortic cross-clamp time on late survival after isolated aortic valve replacement. Interact Cardiovasc Thorac Surg. 2021;32:222–228. PubMed PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Examining the learning curves in robotic cardiac surgery wet lab simulation training

. 2024 Dec 25 ; 40 (1) : .

Zobrazit více v PubMed

ClinicalTrials.gov
NCT05043064

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...