Novel Method for Reliable Identification of Siccibacter and Franconibacter Strains: from "Pseudo-Cronobacter" to New Enterobacteriaceae Genera
Jazyk angličtina Země Spojené státy americké Médium electronic-print
Typ dokumentu hodnotící studie, časopisecké články
Grantová podpora
Wellcome Trust - United Kingdom
PubMed
28455327
PubMed Central
PMC5478982
DOI
10.1128/aem.00234-17
PII: AEM.00234-17
Knihovny.cz E-zdroje
- Klíčová slova
- Franconibacter, Siccibacter, intact-cell MALDI-TOF mass spectrometry, “pseudo-Cronobacter”,
- MeSH
- bakteriální proteiny genetika MeSH
- Cronobacter chemie klasifikace genetika izolace a purifikace MeSH
- Enterobacteriaceae chemie klasifikace genetika izolace a purifikace MeSH
- enterobakteriální infekce mikrobiologie MeSH
- fylogeneze MeSH
- lidé MeSH
- multilokusová sekvenční typizace metody MeSH
- spektrometrie hmotnostní - ionizace laserem za účasti matrice metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- hodnotící studie MeSH
- Názvy látek
- bakteriální proteiny MeSH
In the last decade, strains of the genera Franconibacter and Siccibacter have been misclassified as first Enterobacter and later Cronobacter Because Cronobacter is a serious foodborne pathogen that affects premature neonates and elderly individuals, such misidentification may not only falsify epidemiological statistics but also lead to tests of powdered infant formula or other foods giving false results. Currently, the main ways of identifying Franconibacter and Siccibacter strains are by biochemical testing or by sequencing of the fusA gene as part of Cronobacter multilocus sequence typing (MLST), but in relation to these strains the former is generally highly difficult and unreliable while the latter remains expensive. To address this, we developed a fast, simple, and most importantly, reliable method for Franconibacter and Siccibacter identification based on intact-cell matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Our method integrates the following steps: data preprocessing using mMass software; principal-component analysis (PCA) for the selection of mass spectrum fingerprints of Franconibacter and Siccibacter strains; optimization of the Biotyper database settings for the creation of main spectrum projections (MSPs). This methodology enabled us to create an in-house MALDI MS database that extends the current MALDI Biotyper database by including Franconibacter and Siccibacter strains. Finally, we verified our approach using seven previously unclassified strains, all of which were correctly identified, thereby validating our method.IMPORTANCE We show that the majority of methods currently used for the identification of Franconibacter and Siccibacter bacteria are not able to properly distinguish these strains from those of Cronobacter While sequencing of the fusA gene as part of Cronobacter MLST remains the most reliable such method, it is highly expensive and time-consuming. Here, we demonstrate a cost-effective and reliable alternative that correctly distinguishes between Franconibacter, Siccibacter, and Cronobacter bacteria and identifies Franconibacter and Siccibacter at the species level. Using intact-cell MALDI-TOF MS, we extend the current MALDI Biotyper database with 11 Franconibacter and Siccibacter MSPs. In addition, the use of our approach is likely to lead to a more reliable identification scheme for Franconibacter and Siccibacter strains and, consequently, a more trustworthy epidemiological picture of their involvement in disease.
Zobrazit více v PubMed
Stephan R, Van Trappen S, Cleenwerck I, Vancanneyt M, De Vos P, Lehner A. 2007. Enterobacter turicensis sp. nov. and Enterobacter helveticus sp. nov., isolated from fruit powder. Int J Syst Evol Microbiol 57:820–826. doi:10.1099/ijs.0.64650-0. PubMed DOI
Stephan R, Van Trappen S, Cleenwerck I, Iversen C, Joosten H, De Vos P, Lehner A. 2008. Enterobacter pulveris sp. nov., isolated from fruit powder, infant formula and an infant formula production environment. Int J Syst Evol Microbiol 58:237–241. doi:10.1099/ijs.0.65427-0. PubMed DOI
Mollet C, Drancourt M, Raoult D. 1997. rpoB sequence analysis as a novel basis for bacterial identification. Mol Microbiol 26:1005–1011. doi:10.1046/j.1365-2958.1997.6382009.x. PubMed DOI
Fox GE, Wisotzkey JD, Jurtshuk P Jr. 1992. How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int J Syst Bacteriol 42:166–170. doi:10.1099/00207713-42-1-166. PubMed DOI
Brady C, Cleenwerck I, Venter S, Coutinho T, De Vos P. 2013. Taxonomic evaluation of the genus Enterobacter based on multilocus sequence analysis (MLSA): proposal to reclassify E. nimipressuralis and E. amnigenus into Lelliottia gen. nov as Lelliottia nimipressuralis comb. nov and Lelliottia amnigena comb. nov., respectively, E. gergoviae and E. pyrinus into Pluralibacter gen. nov as Pluralibacter gergoviae comb. nov and Pluralibacter pyrinus comb. nov., respectively, E. cowanii, E. radicincitans, E. oryzae and E. arachidis into Kosakonia gen. nov as Kosakonia cowanii comb. nov., Kosakonia radicincitans comb. nov., Kosakonia oryzae comb. nov and Kosakonia arachidis comb. nov., respectively, and E. turicensis, E. helveticus and E. pulveris into Cronobacter as Cronobacter zurichensis nom. nov., Cronobacter helveticus comb. nov and Cronobacter pulveris comb. nov., respectively, and emended description of the genera Enterobacter and Cronobacter. Syst Appl Microbiol 36:309–319. doi:10.1016/j.syapm.2013.03.005. PubMed DOI
Stephan R, Grim CJ, Gopinath GR, Mammel MK, Sathyamoorthy V, Trach LH, Chase HR, Fanning S, Tall BD. 2014. Re-examination of the taxonomic status of Enterobacter helveticus, Enterobacter pulveris and Enterobacter turicensis as members of the genus Cronobacter and their reclassification in the genera Franconibacter gen. nov. and Siccibacter gen. nov. as Franconibacter helveticus comb. nov., Franconibacter pulveris comb. nov. and Siccibacter turicensis comb. nov, respectively. Int J Syst Evol Microbiol 64:3402–3410. doi:10.1099/ijs.0.059832-0. PubMed DOI PMC
Jackson EE, Masood N, Ibrahim K, Urvoy N, Hariri S, Forsythe SJ. 2015. Description of Siccibacter colletis sp. nov., a novel species isolated from plant material, and emended description of Siccibacter turicensis. Int J Syst Evol Microbiol 65:1335–1341. doi:10.1099/ijs.0.000108. PubMed DOI
Drudy D, Mullane NR, Quinn T, Wall PG, Fanning S. 2006. Enterobacter sakazakii: an emerging pathogen in powdered infant formula. Clin Infect Dis 42:996–1002. doi:10.1086/501019. PubMed DOI
Forsythe SJ, Dickins B, Jolley KA. 2014. Cronobacter, the emergent bacterial pathogen Enterobacter sakazakii comes of age; MLST and whole genome sequence analysis. BMC Genomics 15:1121. doi:10.1186/1471-2164-15-1121. PubMed DOI PMC
FAO/WHO. 2008. Enterobacter sakazakii (Cronobacter spp.) in powdered formulae: meeting report. Microbial Risk Assessment 2008 MRA Series 15. WHO, Geneva, Switzerland.
Lehner A, Riedel K, Rattei T, Ruepp A, Frishman D, Breeuwer P, Diep B, Eberl L, Stephan R. 2006. Molecular characterization of the alpha-glucosidase activity in Enterobacter sakazakii reveals the presence of a putative gene cluster for palatinose metabolism. Syst Appl Microbiol 29:609–625. doi:10.1016/j.syapm.2006.02.002. PubMed DOI
Lehner A, Nitzsche S, Breeuwer P, Diep B, Thelen K, Stephan R. 2006. Comparison of two chromogenic media and evaluation of two molecular based identification systems for Enterobacter sakazakii detection. BMC Microbiol 6:15. doi:10.1186/1471-2180-6-15. PubMed DOI PMC
Druggan P, Iversen C. 2009. Culture media for the isolation of Cronobacter spp. Int J Food Microbiol 136:169–178. doi:10.1016/j.ijfoodmicro.2009.09.008. PubMed DOI
Restaino L, Frampton EW, Lionberg WC, Becker RJ. 2006. A chromogenic plating medium for the isolation and identification of Enterobacter sakazakii from foods, food ingredients, and environmental sources. J Food Prot 69:315–322. doi:10.4315/0362-028X-69.2.315. PubMed DOI
Jackson EE, Sonbol H, Masood N, Forsythe SJ. 2014. Genotypic and phenotypic characteristics of Cronobacter species, with particular attention to the newly reclassified species Cronobacter helveticus, Cronobacter pulveris, and Cronobacter zurichensis. Food Microbiol 44:226–235. doi:10.1016/j.fm.2014.06.013. PubMed DOI
Seo KH, Brackett RE. 2005. Rapid, specific detection of Enterobacter sakazakii in infant formula using a real-time PCR assay. J Food Prot 68:59–63. doi:10.4315/0362-028X-68.1.59. PubMed DOI
Carter L, Lindsey LA, Grim CJ, Sathyamoorthy V, Jarvis KG, Gopinath G, Lee C, Sadowski JA, Trach L, Pava-Ripoll M, McCardell BA, Tall BD, Hu L. 2013. Multiplex PCR assay targeting a diguanylate cyclase-encoding gene, cgcA, to differentiate species within the genus Cronobacter. Appl Environ Microbiol 79:734–737. doi:10.1128/AEM.02898-12. PubMed DOI PMC
Iversen C, Lehner A, Mullane N, Marugg J, Fanning S, Stephan R, Joosten H. 2007. Identification of “Cronobacter” spp. (Enterobacter sakazakii). J Clin Microbiol 45:3814–3816. doi:10.1128/JCM.01026-07. PubMed DOI PMC
Joseph S, Sonbol H, Hariri S, Desai P, McClelland M, Forsythe SJ. 2012. Diversity of the Cronobacter genus as revealed by multilocus sequence typing. J Clin Microbiol 50:3031–3039. doi:10.1128/JCM.00905-12. PubMed DOI PMC
Baldwin A, Loughlin M, Caubilla-Barron J, Kucerova E, Manning G, Dowson C, Forsythe S. 2009. Multilocus sequence typing of Cronobacter sakazakii and Cronobacter malonaticus reveals stable clonal structures with clinical significance which do not correlate with biotypes. BMC Microbiol 9:223. doi:10.1186/1471-2180-9-223. PubMed DOI PMC
Iversen C, Mullane N, McCardel B, Tal BD, Lehner A, Fannin S, Stephan R, Joosten H. 2008. Cronobacter gen nov, a new genus to accommodate the biogroups of Enterobacter sakazakii, and proposal of Cronobacter sakazakii gen nov, comb nov, Cronobacter malonaticus sp nov, Cronobacter turicensis sp nov, Cronobacter muytjensii sp nov, Cronobacter dublinensis sp nov, Cronobacter genomospecies 1, and of three subspecies, Cronobacter dublinensis subsp dublinensis subsp nov, Cronobacter dublinensis subsp lausannensis subsp nov and Cronobacter dublinensis subsp lactaridi subsp nov. Int J Syst Evol Microbiol 58:1442–1447. doi:10.1099/ijs.0.65577-0. PubMed DOI
Farmer JJ, Asbury MA, Hickman FW, Brenner DJ. 1980. Enterobacter sakazakii—a new species of Enterobacteriaceae isolated from clinical specimens. Int J Syst Bacteriol 30:569–584. doi:10.1099/00207713-30-3-569. DOI
Iversen C, Waddington M, Farmer JJ III, Forsythe SJ. 2006. The biochemical differentiation of Enterobacter sakazakii genotypes. BMC Microbiol 6:94. doi:10.1186/1471-2180-6-94. PubMed DOI PMC
Joseph S, Cetinkaya E, Drahovska H, Levican A, Figueras MJ, Forsythe SJ. 2012. Cronobacter condimenti sp. nov., isolated from spiced meat and Cronobacter universalis sp. nov., a novel species designation for Cronobacter sp. genomospecies 1, recovered from a leg infection, water, and food ingredients. Int J Syst Evol Microbiol 62(Part 6):1277–1283. doi:10.1099/ijs.0.032292-0. PubMed DOI
Jolley KA, Maiden MC. 2010. BIGSdb: scalable analysis of bacterial genome variation at the population level. BMC Bioinformatics 11:595. doi:10.1186/1471-2105-11-595. PubMed DOI PMC
Jaradat ZW, Al Mousa W, Elbetieha A, Al Nabulsi A, Tall BD. 2014. Cronobacter spp.—opportunistic food-borne pathogens. A review of their virulence and environmental-adaptive traits. J Med Microbiol 63:1023–1037. doi:10.1099/jmm.0.073742-0. PubMed DOI
Holy O, Forsythe S. 2014. Cronobacter spp. as emerging causes of healthcare-associated infection. J Hosp Infect 86:169–177. doi:10.1016/j.jhin.2013.09.011. PubMed DOI
Siqueira Santos RF, da Silva N, Junqueira VCA, Kajsik M, Forsythe S, Pereira JL. 2013. Screening for Cronobacter species in powdered and reconstituted infant formulas and from equipment used in formula preparation in maternity hospitals. Ann Nutr Metab 63:62–68. doi:10.1159/000353137. PubMed DOI
Jackson EE, Forsythe SJ. 2016. Comparative study of Cronobacter identification according to phenotyping methods. BMC Microbiol 16:146. doi:10.1186/s12866-016-0768-6. PubMed DOI PMC
Joseph S, Cetinkaya E, Drahovska H, Levican A, Figueras MJ, Forsythe SJ. 2012. Cronobacter condimenti sp. nov., isolated from spiced meat, and Cronobacter universalis sp. nov., a species designation for Cronobacter sp. genomospecies 1, recovered from a leg infection, water and food ingredients. Int J Syst Evol Microbiol 62:1277–1283. doi:10.1099/ijs.0.032292-0. PubMed DOI
Joseph S, Hariri S, Forsythe SJ. 2013. Lack of continuity between Cronobacter biotypes and species as determined using multilocus sequence typing. Mol Cell Probes 27:137–139. doi:10.1016/j.mcp.2013.02.002. PubMed DOI
Khot PD, Couturier MR, Wilson A, Croft A, Fisher MA. 2012. Optimization of matrix-assisted laser desorption ionization–time of flight mass spectrometry analysis for bacterial identification. J Clin Microbiol 50:3845–3852. doi:10.1128/JCM.00626-12. PubMed DOI PMC
Sauer S, Kliem M. 2010. Mass spectrometry tools for the classification and identification of bacteria. Nat Rev Microbiol 8:74–82. doi:10.1038/nrmicro2243. PubMed DOI
Stets MI, Pinto AS, Huergo LF, de Souza EM, Guimaraes VF, Alves AC, Steffens MBR, Monteiro RA, Pedrosa FD, Cruz LM. 2013. Rapid identification of bacterial isolates from wheat roots by high resolution whole cell MALDI-TOF MS analysis. J Biotechnol 165:167–174. doi:10.1016/j.jbiotec.2013.04.001. PubMed DOI
Stephan R, Ziegler D, Pfluger V, Vogel G, Lehner A. 2010. Rapid genus- and species-specific identification of Cronobacter spp. by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 48:2846–2851. doi:10.1128/JCM.00156-10. PubMed DOI PMC
Karamonová L, Junková P, Mihalová D, Javùrková B, Fukal L, Rauch P, Blažková M. 2013. The potential of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for the identification of biogroups of Cronobacter sakazakii. Rapid Commun Mass Spectrom 27:409–418. doi:10.1002/rcm.6464. PubMed DOI
Farmer JJ., III 2015. My 40-year history with Cronobacter/Enterobacter sakazakii—lessons learned, myths debunked, and recommendations. Front Pediatr 3:84. doi:10.3389/fped.2015.00084. PubMed DOI PMC
Franco CF, Mellado MC, Alves PM, Coelho AV. 2010. Monitoring virus-like particle and viral protein production by intact cell MALDI-TOF mass spectrometry. Talanta 80:1561–1568. doi:10.1016/j.talanta.2009.06.081. PubMed DOI
Sedo O, Vavrova A, Vad'urova M, Tvrzova L, Zdrahal Z. 2013. The influence of growth conditions on strain differentiation within the Lactobacillus acidophilus group using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry profiling. Rapid Commun Mass Spectrom 27:2729–2736. doi:10.1002/rcm.6741. PubMed DOI
Sedo O, Sedlacek I, Zdrahal Z. 2011. Sample preparation methods for MALDI-MS profiling of bacteria. Mass Spectrom Rev 30:417–434. doi:10.1002/mas.20287. PubMed DOI
Welker M, Moore ER. 2011. Applications of whole-cell matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry in systematic microbiology. Syst Appl Microbiol 34:2–11. doi:10.1016/j.syapm.2010.11.013. PubMed DOI
Keyser M, Witthuhn RC, Ronquest LC, Britz TJ. 2003. Treatment of winery effluent with upflow anaerobic sludge blanket (UASB)–granular sludges enriched with Enterobacter sakazakii. Biotechnol Lett 25:1893–1898. doi:10.1023/B:BILE.0000003978.72266.96. PubMed DOI
Lehner A, Tasara T, Stephan R. 2004. 16S rRNA gene based analysis of Enterobacter sakazakii strains from different sources and development of a PCR assay for identification. BMC Microbiol 4:43. doi:10.1186/1471-2180-4-43. PubMed DOI PMC
Hassan AA, Akineden O, Kress C, Estuningsih S, Schneider E, Usleber E. 2007. Characterization of the gene encoding the 16S rRNA of Enterobacter sakazakii and development of a species-specific PCR method. Int J Food Microbiol 116:214–220. doi:10.1016/j.ijfoodmicro.2006.12.011. PubMed DOI
Stoop B, Lehner A, Iversen C, Fanning S, Stephan R. 2009. Development and evaluation of rpoB based PCR systems to differentiate the six proposed species within the genus Cronobacter. Int J Food Microbiol 136:165–168. doi:10.1016/j.ijfoodmicro.2009.04.023. PubMed DOI
Lehner A, Fricker-Feer C, Stephan R. 2012. Identification of the recently described Cronobacter condimenti by an rpoB-gene-based PCR system. J Med Microbiol 61:1034–1035. doi:10.1099/jmm.0.042903-0. PubMed DOI
Strohalm M, Kavan D, Novak P, Volny M, Havlicek V. 2010. mMass 3: a cross-platform software environment for precise analysis of mass spectrometric data. Anal Chem 82:4648–4651. doi:10.1021/ac100818g. PubMed DOI
Strohalm M, Hassman M, Kosata B, Kodicek M. 2008. mMass data miner: an open source alternative for mass spectrometric data analysis. Rapid Commun Mass Spectrom 22:905–908. doi:10.1002/rcm.3444. PubMed DOI
Shao C, Tian Y, Dong Z, Gao J, Gao Y, Jia X, Guo G, Wen X, Jiang C, Zhang X. 2012. The use of principal component analysis in MALDI-TOF MS: a powerful tool for establishing a mini-optimized proteomic profile. Am J Biomed Sci 4:85–101. doi:10.5099/aj120100085. PubMed DOI PMC
Hrdlickova Kuckova S, Rambouskova G, Hynek R, Cejnar P, Oltrogge D, Fuchs R. 2015. Evaluation of mass spectrometric data using principal component analysis for determination of the effects of organic lakes on protein binder identification. J Mass Spectrom 50:1270–1278. doi:10.1002/jms.3699. PubMed DOI