Tetrachloroethene-dehalogenating bacteria
Language English Country United States Media print
Document type Journal Article, Research Support, Non-U.S. Gov't, Review
PubMed
10664879
DOI
10.1007/bf02818543
Knihovny.cz E-resources
- MeSH
- Bacteria, Aerobic metabolism MeSH
- Bacteria metabolism MeSH
- Biodegradation, Environmental MeSH
- Euryarchaeota metabolism MeSH
- Gram-Negative Bacteria metabolism MeSH
- Gram-Positive Bacteria metabolism MeSH
- Environmental Pollutants metabolism MeSH
- Tetrachloroethylene metabolism MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Names of Substances
- Environmental Pollutants MeSH
- Tetrachloroethylene MeSH
Tetrachloroethene is a frequent groundwater contaminant often persisting in the subsurface environments. It is recalcitrant under aerobic conditions because it is in a highly oxidized state and is not readily susceptible to oxidation. Nevertheless, at least 15 organisms from different metabolic groups, viz. halorespirators (9), acetogens (2), methanogens (3) and facultative anaerobes (2), that are able to metabolize tetrachloroethene have been isolated as axenic cultures to-date. Some of these organisms couple dehalo-genation to energy conservation and utilize tetrachloroethene as the only source of energy while others dehalogenate tetrachloroethene fortuitously. Halorespiring organisms (halorespirators) utilize halogenated organic compounds as electron acceptors in an anaerobic respiratory process. Different organisms exhibit differences in the final products of tetrachloroethene dehalogenation, some strains convert tetrachloroethene to trichloroethene only, while others also carry out consecutive dehalogenation to dichloroethenes and vinyl chloride. Thus far, only a single organism, 'Dehalococcoides ethenogenes' strain 195, has been isolated which dechlorinates tetrachloroethene all the way down to ethylene. The majority of tetrachloroethene-dehalogenating organisms have been isolated only in the past few years and several of them, i.e., Dehalobacter restrictus, Desulfitobacterium dehalogenans, 'Dehalococcoides ethenogenes', 'Dehalospirillum multivorans', Desulfuromonas chloroethenica, and Desulfomonile tiedjei, are representatives of new taxonomic groups. This contribution summarizes the available information regarding the axenic cultures of the tetrachloroethene-dehalogenating bacteria. The present knowledge about the isolation of these organisms, their physiological characteristics, morphology, taxonomy and their ability to dechlorinate tetrachloroethene is presented to facilitate a comprehensive comparison.
See more in PubMed
Appl Environ Microbiol. 1987 Nov;53(11):2671-4 PubMed
J Bacteriol. 1996 Apr;178(8):2328-33 PubMed
Appl Environ Microbiol. 1998 Apr;64(4):1270-5 PubMed
Arch Microbiol. 1996 Feb;165(2):132-40 PubMed
Environ Sci Technol. 1987 Aug;21(8):722-36 PubMed
J Biol Chem. 1996 Jul 12;271(28):16515-9 PubMed
Appl Environ Microbiol. 1988 Dec;54(12):2976-80 PubMed
Appl Environ Microbiol. 1996 Nov;62(11):4108-13 PubMed
Appl Environ Microbiol. 1991 Mar;57(3):820-4 PubMed
Int J Syst Bacteriol. 1994 Oct;44(4):612-9 PubMed
Arch Microbiol. 1978 Apr 27;117(1):61-6 PubMed
Antonie Van Leeuwenhoek. 1994;66(1-3):239-46 PubMed
Appl Microbiol Biotechnol. 1995 Oct;43(5):920-8 PubMed
Appl Environ Microbiol. 1993 Sep;59(9):2991-7 PubMed
Microbiol Rev. 1992 Sep;56(3):482-507 PubMed
J Bacteriol. 1995 Sep;177(17):5135-9 PubMed
FEMS Microbiol Rev. 1994 Oct;15(2-3):297-305 PubMed
Appl Environ Microbiol. 1996 Mar;62(3):761-5 PubMed
Arch Microbiol. 1981 Jan;128(3):294-8 PubMed
Biodegradation. 1995 Jun;6(2):167-72 PubMed
Appl Environ Microbiol. 1989 Sep;55(9):2144-51 PubMed
Biodegradation. 1995;6(4):309-18 PubMed
Int J Syst Bacteriol. 1997 Oct;47(4):1134-9 PubMed
Arch Microbiol. 1994;162(4):295-301 PubMed
Arch Microbiol. 1997 Dec;168(6):520-7 PubMed
Curr Opin Biotechnol. 1997 Jun;8(3):290-5 PubMed
Arch Microbiol. 1998 Jun;169(6):497-502 PubMed
Arch Microbiol. 1998 Apr;169(4):313-21 PubMed
J Bacteriol. 1998 Aug;180(16):4140-5 PubMed
Biotechnol Prog. 1998 Mar-Apr;14(2):167-88 PubMed
Appl Environ Microbiol. 1983 Jun;45(6):1905-13 PubMed
Science. 1997 Jun 6;276(5318):1568-71 PubMed
Appl Environ Microbiol. 1983 Apr;45(4):1286-94 PubMed
Arch Microbiol. 1997 Dec;168(6):513-9 PubMed
Appl Environ Microbiol. 1987 Jul;53(7):1604-10 PubMed
Biodegradation. 1990;1(4):253-61 PubMed
J Bacteriol. 1978 May;134(2):668-70 PubMed
Biodegradation. 1996-1997;7(6):507-11 PubMed
Arch Microbiol. 1979 Oct;123(1):105-7 PubMed
FEMS Microbiol Lett. 1994 Oct 15;123(1-2):213-8 PubMed
Appl Environ Microbiol. 1991 Aug;57(8):2287-92 PubMed
Appl Environ Microbiol. 1995 Jan;61(1):346-51 PubMed
Arch Microbiol. 1996 Dec;166(6):379-87 PubMed
Appl Environ Microbiol. 1988 Nov;54(11):2819-24 PubMed
Appl Environ Microbiol. 1991 Jul;57(7):2039-46 PubMed
Appl Environ Microbiol. 1994 Jun;60(6):2200-4 PubMed
Appl Environ Microbiol. 1984 Feb;47(2):272-7 PubMed
Appl Environ Microbiol. 1997 Sep;63(9):3594-9 PubMed
Appl Environ Microbiol. 1984 Oct;48(4):840-8 PubMed
Appl Environ Microbiol. 1992 Jun;58(6):1996-2000 PubMed
Appl Environ Microbiol. 1985 May;49(5):1080-3 PubMed
Appl Environ Microbiol. 1996 Oct;62(10):3800-8 PubMed
Arch Microbiol. 1990;153(3):267-71 PubMed