Iridium-based Polymeric Multifunctional Imaging Tools for Biochemistry
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
23-05642S
Czech Science Foundation
LX22NPO5102
National Institute for Cancer Research
European Union - Next Generation EU
PubMed
38217401
DOI
10.1002/cplu.202300647
Knihovny.cz E-zdroje
- Klíčová slova
- HPMA, iBody, imaging, iridium complex,
- MeSH
- fluorescenční barviva chemie MeSH
- fluorescenční mikroskopie metody MeSH
- iridium * chemie MeSH
- konfokální mikroskopie * MeSH
- lidé MeSH
- optické zobrazování metody MeSH
- polymery * chemie MeSH
- průtoková cytometrie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Herein, we report the development of a macromolecular multifunctional imaging tool for biological investigations, which is comprised of an N-(2-hydroxypropyl)methacrylamide backbone, iridium-based luminescent probe, glutamate carboxypeptidase II (GCPII) targeting ligand, and biotin affinity tag. The iridium luminophore is a tris-cyclometalated complex based on [Ir(ppy)3] with one of its 2-phenylpyridine ligands functionalized to allow conjugation. Synthesized macromolecular probes differed in the structure of the polymer and content of the iridium complex. The applicability of the developed imaging tools has been tested in flow cytometry (FACS) based assay, laser confocal microscopy, and fluorescence lifetime imaging microscopy (FLIM). The FACS analysis has shown that the targeted iBodies containing the iridium luminophore exhibit selective labelling of GCPII expressing cells. This observation was also confirmed in the imaging experiments with laser confocal microscopy. The FLIM experiment has shown that the iBodies with the iridium label exhibit a lifetime greater than 100 ns, which distinguishes them from typically used systems labelled with organic fluorophores exhibiting short fluorescence lifetimes. The results of this investigation indicate that the system exhibits interesting properties, which supports the development of additional biological tools utilizing the key components (iridium complexes, iBody concept), primarily focusing on the longer lifetime of the iridium emitter.
Zobrazit více v PubMed
M. Rudin, Molecular Imaging Brasic Principles, Applications in Biomedical Research, Imperial College Press, London, 2005, p. 549;
N. Long, W. T. Wong, The Chemistry of Molecular Imaging, Wiley, 2015, p. 395.
K. Ulbrich, K. Hola, V. Subr, A. Bakandritsos, J. Tucek, R. Zboril, Chem. Rev. 2016, 116, 5338–5431;
T. Lammers, S. Aime, W. E. Hennink, G. Storm, F. Kiessling, Acc. Chem. Res. 2011, 44, 1029–1038;
R. Duncan, R. Gaspar, Mol. Pharm. 2011, 8, 2101–2141.
L. Kostka, V. Subr, R. Laga, P. Chytil, K. Ulbrich, L. W. Seymour, T. Etrych, Physiol. Res. 2015, 64, S29–40;
R. Carlisle, J. Choi, M. Bazan-Peregrino, R. Laga, V. Subr, L. Kostka, K. Ulbrich, C. C. Coussios, L. W. Seymour, J. Natl. Cancer Inst. 2013, 105, 1701–1710.
J. Kopeček, J. Yang, Adv. Drug Delivery Rev. 2020, 156, 40–64;
P. Chytil, L. Kostka, T. Etrych, J Pers Med 2021, 11.
L. Kostka, L. Kotrchova, V. Subr, A. Libanska, C. A. Ferreira, I. Malatova, H. J. Lee, T. E. Barnhart, J. W. Engle, W. Cai, M. Sirova, T. Etrych, Biomaterials 2020, 235, 119728;
Q. Luo, X. Xiao, X. Dai, Z. Duan, D. Pan, H. Zhu, X. Li, L. Sun, K. Luo, Q. Gong, ACS Appl. Mater. Interfaces 2018, 10, 1575–1588;
M. Allmeroth, D. Moderegger, B. Biesalski, K. Koynov, F. Rosch, O. Thews, R. Zentel, Biomacromolecules 2011, 12, 2841–2849;
H. Li, Q. Luo, H. Zhu, Z. Li, X. Wang, N. Roberts, H. Zhang, Q. Gong, Z. Gu, K. Luo, Polym. Chem. 2020, 11, 6374–6386.
V. Šubr, L. Kostka, J. Strohalm, T. Etrych, K. Ulbrich, Macromolecules 2013, 46, 2100–2108;
C. C. Williams, S. H. Thang, T. Hantke, U. Vogel, P. H. Seeberger, J. Tsanaktsidis, B. Lepenies, ChemMedChem 2012, 7, 281–291;
X. Pan, F. Zhang, B. Choi, Y. Luo, X. Guo, A. Feng, S. H. Thang, Eur. Polym. J. 2019, 115, 166–172;
V. Šubr, T. Ormsby, P. Šácha, J. Konvalinka, T. Etrych, L. Kostka, Polym. Chem. 2021, 12, 6009–6021.
V. Šubr, K. Ulbrich, Reactive, Functional Polymers 2006, 66, 1525–1538.
K. Blazkova, J. Beranova, M. Hradilek, L. Kostka, V. Subr, T. Etrych, P. Sacha, J. Konvalinka, J. Biol. Chem. 2021, 297, 101342;
K. Pospíšilová, T. Knedlík, P. Šácha, L. Kostka, J. Schimer, J. Brynda, V. Král, P. Cígler, V. Navrátil, T. Etrych, V. Šubr, M. Kugler, M. Fábry, P. Řezáčová, J. Konvalinka, ACS Omega 2019, 4, 6746–6756.
M. J. M. Uijen, Y. H. W. Derks, R. I. J. Merkx, M. G. M. Schilham, J. Roosen, B. M. Prive, S. A. M. van Lith, C. M. L. van Herpen, M. Gotthardt, S. Heskamp, W. A. M. van Gemert, J. Nagarajah, Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 4350–4368.
B. Vorlova, T. Knedlik, J. Tykvart, J. Konvalinka, Frontiers in Bioscience 2019, 24, 648–687.
U. Hennrich, M. Eder, Pharmaceuticals (Basel) 2021, 14;
A. F. Voter, R. A. Werner, K. J. Pienta, M. A. Gorin, M. G. Pomper, L. B. Solnes, S. P. Rowe, Expert Rev. Anticancer Ther. 2022, 22, 681–694;
U. Hennrich, M. Eder, Pharmaceuticals (Basel) 2022, 15.
H. Liu, A. K. Rajasekaran, P. Moy, Y. Xia, S. Kim, V. Navarro, R. Rahmati, N. H. Bander, Cancer Res. 1998, 58, 4055–4060;
J. Neburkova, F. Sedlak, J. Zackova Suchanova, L. Kostka, P. Sacha, V. Subr, T. Etrych, P. Simon, J. Barinkova, R. Krystufek, H. Spanielova, J. Forstova, J. Konvalinka, P. Cigler, Mol. Pharm. 2018, 15, 2932–2945.
M. Yu, Q. Zhao, L. Shi, F. Li, Z. Zhou, H. Yang, T. Yi, C. Huang, Chem. Commun. (Camb.) 2008, 2115–2117;
E. Alessio, Bioinorganic medicinal chemistry, Wiley-VCH Verlag GmbH, Weinheim, Germany, 2011, p. xviii, 422 p;
K. K. Lo, Acc. Chem. Res. 2015;
L. C. Lee, K. K. Lo, J. Am. Chem. Soc. 2022.
A. Sansee, S. Meksawangwong, K. Chainok, K. J. Franz, M. Gal, L. O. Palsson, W. Puniyan, R. Traiphol, R. Pal, F. Kielar, Dalton Trans. 2016, 45, 17420–17430.
A. Zamora, G. Vigueras, V. Rodríguez, M. D. Santana, J. Ruiz, Coord. Chem. Rev. 2018, 360, 34–76;
B. H. Jhun, D. Song, S. Y. Park, Y. You, Top. Curr. Chem. 2022, 380, 35;
C.-N. Ko, G. Li, C.-H. Leung, D.-L. Ma, Coord. Chem. Rev. 2019, 381, 79–103;
X. Zhen, R. Qu, W. Chen, W. Wu, X. Jiang, Biomater. Sci. 2021, 9, 285–300;
R. A. Cherny, C. S. Atwood, M. E. Xilinas, D. N. Gray, W. D. Jones, C. A. McLean, K. J. Barnham, I. Volitakis, F. W. Fraser, Y. Kim, X. Huang, L. E. Goldstein, R. D. Moir, J. T. Lim, K. Beyreuther, H. Zheng, R. E. Tanzi, C. L. Masters, A. I. Bush, Neuron 2001, 30, 665–676;
G.-X. Xu, E. C.-L. Mak, K. K.-W. Lo, Inorg. Chem. Front. 2021, 8, 4553–4579.
S. C. Larnaudie, J. C. Brendel, I. Romero-Canelon, C. Sanchez-Cano, S. Catrouillet, J. Sanchis, J. P. C. Coverdale, J. I. Song, A. Habtemariam, P. J. Sadler, K. A. Jolliffe, S. Perrier, Biomacromolecules 2018, 19, 239–247.
Y. Ma, S. Liu, H. Yang, Y. Wu, H. Sun, J. Wang, Q. Zhao, F. Li, W. Huang, J. Mater. Chem. B 2013, 1, 319–329;
Z. Chen, K. Y. Zhang, X. Tong, Y. Liu, C. Hu, S. Liu, Q. Yu, Q. Zhao, W. Huang, Adv. Funct. Mater. 2016, 26, 4386–4396;
Z. Chen, X. Meng, L. Zou, M. Zhao, S. Liu, P. Tao, J. Jiang, Q. Zhao, ACS Appl. Mater. Interfaces 2020, 12, 12383–12394;
Q. Wu, P. Dai, Y. Wang, J. Zhang, M. Li, K. Y. Zhang, S. Liu, W. Huang, Q. Zhao, Chem. Sci. 2021, 12, 11020–11027.
X. Zheng, X. Wang, H. Mao, W. Wu, B. Liu, X. Jiang, Nat. Commun. 2015, 6, 5834;
S. Ji, S. Zhou, X. Zhang, C. Li, W. Chen, X. Jiang, ACS Appl Bio Mater 2019, 2, 5110–5117.
H. Chen, A. E. Celik, A. Mutschler, A. Combes, A. Runser, A. S. Klymchenko, S. Lecommandoux, C. A. Serra, A. Reisch, Langmuir 2022, 38, 7945–7955.
P. Sacha, T. Knedlik, J. Schimer, J. Tykvart, J. Parolek, V. Navratil, P. Dvorakova, F. Sedlak, K. Ulbrich, J. Strohalm, P. Majer, V. Subr, J. Konvalinka, Angew. Chem. Int. Ed. Engl. 2016, 55, 2356–2360.
S. Perrier, P. Takopluckdee, C. A. Mars, Marcomolecules 2005, 38, 2033–2036;
J. Beranová, T. Knedlík, A. Šimková, V. Šubr, L. Kostka, T. Etrych, P. Šácha, J. Konvalinka, Catalysts 2019, 9;
C. A. Schneider, W. S. Rasband, K. W. Eliceiri, Nat. Methods 2012, 9, 671–675.